1. Milan Petrík, Peter Sarkoci: Continuous weakly cancellative triangular subnorms: I. Their web-geometric properties. Fuzzy Sets and Systems 332 (2018) 93-110. (link)

  2. Libor Běhounek, Ulrich Bodenhofer, Petr Cintula, Susane Saminger-Platz, Peter Sarkoci: Graded Dominance and Related Graded Properties of Fuzzy Connectives. Fuzzy Sets and Systems 262 (2015) 78-101. (link)

  3. Karol Mikula, Mariana Remešíková, Peter Sarkoci, Daniel Ševčovič: Manifold Evolution with Tangential Redistribution of Points. SIAM J. Sci. Comput. 36 (2014) A1384-A1414. AMS-MSC: 53C44 65M08 65M50 (link)

  4. Peter Sarkoci: Dominance of Ordinal Sums of the Łukasiewicz and the Product Triangular Norm (2009). Mathematical Inequalities and Applications 17 (2014) 335-347. AMS-MSC: 26D07 39B62 (link)

  5. Gejza Jenča, Peter Sarkoci: Linear Extensions and Order-Preserving Poset Partitions. Journal of Combinatorial Theory A 122 (2014) 28-38. AMS-MSC: 06A07 37F20 (link)

  6. Milan Petrík, Peter Sarkoci: Associativity of Triangular Norms Characterized by the Geometry of Their Level-Sets. Fuzzy Sets and Systems 202 (2012) 100-109. AMS-MSC: 39B52 53A60 03B52 (link)

  7. Radko Mesiar, Peter Sarkoci: Open Problems Posed at the Tenth International Conference on Fuzzy Set Theory and Applications (FSTA 2010, Liptovský Ján, Slovakia). Kybernetika 46 (2010) 585-599. AMS-MSC: 03E72 06F25 60E05 (link)

  8. Mirko Navara, Milan Petrík, Peter Sarkoci: Explicit Formulas for Generators of Triangular Norms. Publicationes Mathematicae Debrecen 77 (2010) 171-191. AMS-MSC: 03E72 20M14 26B05 39B22 54E70

  9. Fabrizio Durante, Rachele Foschi, Peter Sarkoci: Distorted Copulas: Constructions and Tail Dependence. Communications in Statistics - Theory and Methods 39 (2010) 2288-2301. AMS-MSC: 60E05 62H20 (link)

  10. Milan Petrík, Peter Sarkoci: Zero-reconstructible Triangular Norms as Universal Approximators. Neural Network World 20 (2010) 63-67. AMS-MSC: 20M14 39B22 (link)

  11. Fabrizio Durante, Susanne Saminger-Platz, Peter Sarkoci: Rectangular patchwork for bivariate copulas and tail dependence. Communications in Statistics - Theory and Methods 38 (2009) 2515-2527. AMS-MSC: 62H05 60E05 65C05 (link)

  12. Fabrizio Durante, Peter Sarkoci, Carlo Sempi: Shuffles of copulas. Journal of Mathematical Analysis and Applications 352 (2009) 914-921. AMS-MSC: 60E05 28D05 (link)

  13. Milan Petrik, Peter Sarkoci: Convex combinations of continuous nilpotent t-norms. Journal of Mathematical Analysis and Applications 350 (2009) 271-275. AMS-MSC: 20M14 39B52 (53A60 14C21 03B52 03E72) (link)

  14. Fabrizio Durante, Susanne Saminger-Platz, Peter Sarkoci: On representations of 2-increasing binary aggregation functions. Information Sciences 178 (2008) 4534-4541. AMS-MSC: 39B62 26B35 60E05 (link)

  15. Peter Sarkoci: Dominance is not transitive on continuous triangular norms. Aequationes Mathematicae 75 (2008) 201-207. AMS-MSC: 26D07 39B62 (54E70) (link)

  16. Fabrizio Durante, Peter Sarkoci: A note on the convex combinations of triangular norms. Fuzzy Sets and Systems 159 (2008) 77-80. AMS-MSC: 62H05 (60E05) (link)

  17. Fabrizio Durante, Erich Peter Klement, José Juan Quesada-Molina, Peter Sarkoci: Remarks on two product-like constructions for copulas. Kybernetika 43 (2007) 235-244. AMS-MSC: 60E05 (link)

  18. Susanne Saminger, Peter Sarkoci, Bernard De Baets: The dominance relation on the class of continuous t-norms from an ordinal sum point of view. Lecture Notes in Artificial Inteligence 4342 (2006) 319-334. AMS-MSC: 26D07 39B62 (54E70) (link)

  19. Peter Sarkoci: Domination in the families of Frank and Hamacher t-norms. Kybernetika (Prague) 41 (2005) 349-360. AMS-MSC: 26D15 (link)

  20. Peter Sarkoci, Michal Sabo: Information boundedness principle in fuzzy inference process. Kybernetika (Prague) 38 (2002) 327-338. AMS-MSC: 03B52 (68T37) (link)

KMaDGWiki: sarkoci/PublishedManuscripta (last edited 2018-03-29 11:33:14 by sarkoci)