Spectral resolutions in effect algebras

Anna Jenčová and Sylvia Pulmannová

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

$$
\text { July } 2022
$$

Dedicated to the memory of David J. Foulis

Effect algebras

An effect algebra is a system $(E, 0,1, \oplus)$, where $0,1 \in E$ are constants, \oplus is a partial binary operation on E such that:
(E1) if $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b=b \oplus a$;
(E2) if $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $a \oplus(b \oplus c)$ is defined and $a \oplus(b \oplus c)=(a \oplus b) \oplus c$;
(E3) for every $a \in E$ there is unique $a^{\prime} \in E$ such that $a \oplus a^{\prime}=1$;
(E4) if $a \oplus 1 \in E$, then $a=0$.

Covers many different algebraic structures: MV-effect algebras, OMPs, orthoalgebras, etc.

Hilbert space effect algebras

Effect algebras are an algebraic model of Hilbert space effects:

$$
E(\mathcal{H})=\{E \in B(\mathcal{H}), \quad 0 \leq E \leq I\}
$$

- measurements on a quantum system in the Hilbert space formalism
- important special property - spectrality:
for $a \in E(\mathcal{H})$ there is a family $\left\{p_{a, \lambda}\right\}_{\lambda \in[0,1]}$ of projections such that

$$
a=\int \lambda d p_{a, \lambda}
$$

Spectral resolution in Hilbert space effect algebras

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\left\{p_{\lambda}\right\}_{\lambda \in[0,1]}$ such that

- $1=p_{1} \geq p_{\lambda} \geq p_{\mu}$ for $1 \geq \lambda \geq \mu$ (nondecreasing),
- $\bigwedge_{\lambda>\mu} p_{\lambda}=p_{\mu}$ (right continuous),
- $p_{\lambda} a=a p_{\lambda}$ (commutativity),
- $p_{\lambda} a \leq \lambda p_{\lambda}, p_{\lambda}^{\perp} a \geq \lambda p_{\lambda}^{\perp}$.

Further, a is uniquely determined by $\left\{p_{a, \lambda}\right\}$ and a commutes with b if $p_{a, \lambda}$ commutes with $p_{b, \mu}$ for all λ and μ.

Spectral resolution in Hilbert space effect algebras

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\left\{p_{\lambda}\right\}_{\lambda \in[0,1]}$ such that

- $1=p_{1} \geq p_{\lambda} \geq p_{\mu}$ for $1 \geq \lambda \geq \mu$ (nondecreasing),
- $\bigwedge_{\lambda>\mu} p_{\lambda}=p_{\mu}$ (right continuous),
- $p_{\lambda} a=a p_{\lambda}$ (commutativity),
- $p_{\lambda} a \leq \lambda p_{\lambda}, p_{\lambda}^{\perp} a \geq \lambda p_{\lambda}^{\perp}$.

Further, a is uniquely determined by $\left\{p_{a, \lambda}\right\}$ and a commutes with b if $p_{a, \lambda}$ commutes with $p_{b, \mu}$ for all λ and μ.

Question

Can we have some type of a spectral resolution for an abstract effect algebra E ?

Spectral resolution in Hilbert space effect algebras

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\left\{p_{\lambda}\right\}_{\lambda \in[0,1]}$ such that

- $1=p_{1} \geq p_{\lambda} \geq p_{\mu}$ for $1 \geq \lambda \geq \mu$ (nondecreasing),
- $\bigwedge_{\lambda>\mu} p_{\lambda}=p_{\mu}$ (right continuous),
- $p_{\lambda} a=a p_{\lambda}$ (commutativity),
- $p_{\lambda} a \leq \lambda p_{\lambda}, p_{\lambda}^{\perp} a \geq \lambda p_{\lambda}^{\perp}$.

Further, a is uniquely determined by $\left\{p_{a, \lambda}\right\}$ and a commutes with b if $p_{a, \lambda}$ commutes with $p_{b, \mu}$ for all λ and μ.

Question

What are the additional structures and/or properties of E needed to obtain this?

Spectral resolution in Hilbert space effect algebras

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\left\{p_{\lambda}\right\}_{\lambda \in[0,1]}$ such that

- $1=p_{1} \geq p_{\lambda} \geq p_{\mu}$ for $1 \geq \lambda \geq \mu$ (nondecreasing),
- $\bigwedge_{\lambda>\mu} p_{\lambda}=p_{\mu}$ (right continuous),
- $p_{\lambda} a=a p_{\lambda}$ (commutativity),
$-p_{\lambda} a \leq \lambda p_{\lambda}, p_{\lambda}^{\perp} a \geq \lambda p_{\lambda}^{\perp}$. multiplication? constants?
Further, a is uniquely determined by $\left\{p_{a, \lambda}\right\}$ and a commutes with b if $p_{a, \lambda}$ commutes with $p_{b, \mu}$ for all λ and μ. ??

Question

What are the additional structures and/or properties of E needed to obtain this?

Spectrality in partially ordered unital abelian groups

Let G be a POUAG, with unit u.

- A compression: morphism $J: G \rightarrow G$, generalizing
- the compressions

$$
a \mapsto \text { pap, } \quad a \in B^{\text {sa }}(\mathcal{H}), p \text { a projection },
$$

- the projection

$$
a \mapsto a \wedge n p, a \leq n u,
$$

onto the ideal G_{p} generated by a sharp element p in an interpolation group.

- A compression base $\left\{J_{p}\right\}_{p \in P}$: a suitable set of compressions

Spectrality in partially ordered unital abelian groups

G with $\left\{J_{p}\right\}_{p \in P}$ is spectral if it has

- comparability property: $g=g_{+}-g_{-}, g_{+}, g_{-} \in G^{+}$

$$
\exists p \in P \text { such that } J_{p}(g)=g_{+}, J_{p^{\perp}}(g)=-g_{-}
$$

- Rickart mapping:

$$
g \mapsto g^{*} \in P \text { complement of the "support projection". }
$$

Rational spectral resolution: for $g \in G$,

$$
p_{g, \lambda}:=(n g-m u)_{+}^{*}, \quad \lambda=\frac{m}{n} .
$$

Spectrality in partially ordered unital abelian groups

Let G be an archimedean spectral POUAG.
The rational spectral resolution of $g \in G$ is the unique family of projections $\left\{p_{\lambda}\right\}_{\lambda \in \mathbb{Q}}$ such that

- for $\lambda<I_{g}, p_{\lambda}=0, \lambda \geq u_{g}, p_{\lambda}=1$ (bounded),
- $p_{\lambda} \geq p_{\mu}$ for $\lambda \geq \mu$ (nondecreasing),
- $\bigwedge_{\lambda>\mu} p_{\lambda}=p_{\mu}$ (right continuous),
- g compatible with all p_{λ},
$-n J_{p_{\lambda}}(g) \leq m p_{\lambda}, n J_{p_{\lambda}^{\perp}}(g) \geq m p_{\lambda}^{\perp}, \lambda=\frac{m}{n}$.
Further, g is uniquely determined by $\left\{p_{g, \lambda}\right\}$ and g is compatible with $p \in P$ if and only if $p_{g, \lambda}$ is compatible with p for all λ.

Compressions and compression bases in effect algebras

Let E be an effect algebra.
A compression is an additive map $J: E \rightarrow E$ such that

$$
a \leq J(1) \Longleftrightarrow J(a)=a, \quad a \leq J(1)^{\perp} \Longleftrightarrow J(a)=0 .
$$

Compressions and compression bases in effect algebras

Let E be an effect algebra.
A compression is an additive map $J: E \rightarrow E$ such that

$$
a \leq J(1) \Longleftrightarrow J(a)=a, \quad a \leq J(1)^{\perp} \Longleftrightarrow J(a)=0 .
$$

Properties:

- J is idempotent.
- J has a supplement: $\operatorname{Im} J=\operatorname{Ker} J^{\prime}, \operatorname{Im} J^{\prime}=\operatorname{Ker} J$.
- focus of J : $J(1)$, a principal element (sharp).

Compressions and compression bases in effect algebras

A compression base: $\left\{J_{p}\right\}_{p \in P}$

- $P \subseteq E$ a subalgebra (an OMP)
- $J_{p}(1)=p$, for all $p \in P$
- if $p \leftrightarrow q$, then $J_{p} J_{q}=J_{q} J_{p}=J_{r}$ for some $r \in P$

Elements of P are called projections.

Properties of compression bases

- P is an OMP,

Properties of compression bases

- P is an OMP,
- For $a \in E$,

$$
a=J_{p}(a) \oplus J_{p^{\perp}}(a) \Longleftrightarrow a \leftrightarrow p \Longleftrightarrow J_{p}(a)=a \wedge p .
$$

Properties of compression bases

- P is an OMP,
- For $a \in E$,

$$
a=J_{p}(a) \oplus J_{p^{\perp}}(a) \Longleftrightarrow a \leftrightarrow p \Longleftrightarrow J_{p}(a)=a \wedge p .
$$

- bicommutant of a :

$$
P(a)=\{p \in P: p \leftrightarrow a, \forall q \in P, q \leftrightarrow a \Longrightarrow q \leftrightarrow p\} .
$$

a Boolean subalgebra in P

Examples

- Hilbert space effects: unique (maximal) compression base

$$
E(\mathcal{H}), \text { with }\left\{U_{p}\right\}_{p \in P(\mathcal{H})}, U_{p}(a)=\text { pap. }
$$

Examples

- Hilbert space effects: unique (maximal) compression base

$$
E(\mathcal{H}), \text { with }\left\{U_{p}\right\}_{p \in P(\mathcal{H})}, U_{p}(a)=p a p .
$$

- Central compression bases: $P=\Gamma(E)$ the center of E :
E, with $\left\{U_{p}\right\}_{p \in \Gamma(E)}, U_{p}(a)=p \wedge a$.

Examples

- Hilbert space effects: unique (maximal) compression base

$$
E(\mathcal{H}), \text { with }\left\{U_{p}\right\}_{p \in P(\mathcal{H})}, U_{p}(a)=p a p
$$

- Central compression bases: $P=\Gamma(E)$ the center of E :

$$
E, \text { with }\left\{U_{p}\right\}_{p \in \Gamma(E)}, U_{p}(a)=p \wedge a .
$$

- Effect algebras with RDP (MV-effect algebras): the central compression base is the unique (maximal) compression base.

Examples

- The horizontal sum of Hilbert space effect algebras

$$
E=E(\mathcal{H}) \hat{\oplus} E(\mathcal{H})
$$

Examples

- The horizontal sum of Hilbert space effect algebras

$$
E=E(\mathcal{H}) \hat{\oplus} E(\mathcal{H}) .
$$

- Let φ be a faithful state on $E(\mathcal{H})(\varphi(a)=0$ implies $a=0)$.

Examples

- The horizontal sum of Hilbert space effect algebras

$$
E=E(\mathcal{H}) \hat{\oplus} E(\mathcal{H})
$$

- Let φ be a faithful state on $E(\mathcal{H})(\varphi(a)=0$ implies $a=0)$.
- We can construct a compression base with the set of projections $P=P(\mathcal{H}) \hat{\oplus} P(\mathcal{H})$:

$$
J_{(p, 0)}(a, 0)=\left(J_{p}(a), a\right), \quad J_{(p, 0)}(0, a)=(\varphi(a) p, 0)
$$

(similarly for $\left.J_{(0, p)}\right)$.

Examples

- The horizontal sum of Hilbert space effect algebras

$$
E=E(\mathcal{H}) \hat{\oplus} E(\mathcal{H}) .
$$

- Let φ be a faithful state on $E(\mathcal{H})(\varphi(a)=0$ implies $a=0)$.
- We can construct a compression base with the set of projections $P=P(\mathcal{H}) \hat{\oplus} P(\mathcal{H})$:

$$
J_{(p, 0)}(a, 0)=\left(J_{p}(a), a\right), \quad J_{(p, 0)}(0, a)=(\varphi(a) p, 0)
$$

(similarly for $J_{(0, p)}$).

- we obtain many different compression bases with the same P.

Spectrality: projection cover property

$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ - an effect algebra with a fixed compression base.

Definition (Gudder, 2006)
($E,\left\{J_{p}\right\}_{p \in P}$) has the projection cover property if for any $a \in E$, there is a projection cover: $a^{\circ} \in P$ such that

$$
a \leq p \Longleftrightarrow a^{\circ} \leq p, \quad \forall p \in P
$$

Then P is an OML.

Spectrality: b-property

Definition (SP, 2006)
$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ has the b-property if for all $a \in E, q \in P$,

$$
a \leftrightarrow q \Longleftrightarrow P(a) \leftrightarrow q .
$$

For $a, b \in E, a C b(a$ commutes with $b)$ if $P(a) \leftrightarrow P(b)$.

Spectrality: b-property

Definition (SP, 2006)
$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ has the b-property if for all $a \in E, q \in P$,

$$
a \leftrightarrow q \Longleftrightarrow P(a) \leftrightarrow q .
$$

For $a, b \in E, a C b(a$ commutes with $b)$ if $P(a) \leftrightarrow P(b)$.

Under b-property: for $p \in P$,

$$
a C p \Longleftrightarrow a \leftrightarrow p .
$$

Spectrality: b-comparability

Definition (SP, 2006)
($E,\left\{J_{p}\right\}_{p \in P}$) has the b-comparability property if

- it has the b-property
- for all $a, b \in E$, $a C b$, we have

$$
\exists p \in P(a, b), \quad J_{p}(a) \leq J_{p}(b), J_{p^{\perp}}(b) \leq J_{p^{\perp}}(a) .
$$

Spectrality: b-comparability

Definition (SP, 2006)

$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ has the b-comparability property if

- it has the b-property
- for all $a, b \in E$, $a C b$, we have

$$
\exists p \in P(a, b), \quad J_{p}(a) \leq J_{p}(b), J_{p^{\perp}}(b) \leq J_{p^{\perp}}(a) .
$$

Under b-comparability: any $a \in E$ has a splitting projection:

$$
\begin{aligned}
& p \in P(a): J_{p}(a) \leq J_{p}(1-a), \quad J_{p^{\perp}}(a) \geq J_{p^{\perp}}(1-a) \\
& \text { " } J_{p}(a) \leq 1 / 2 " \\
& \text { " } J_{p^{\perp}}(a) \geq 1 / 2 \text { " }
\end{aligned}
$$

Spectrality

Definition (SP, 2006)
$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ is spectral if it has both the projection cover and the b-comparability property.

Then

Spectrality

Definition (SP, 2006)
$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ is spectral if it has both the projection cover and the b-comparability property.

Then

- $P=\{$ sharp elements in $E\}, P$ is an OML,

Spectrality

Definition (SP, 2006)

($E,\left\{J_{p}\right\}_{p \in P}$) is spectral if it has both the projection cover and the b-comparability property.

Then

- $P=\{$ sharp elements in $E\}, P$ is an OML,
- E is covered by C-blocks

$$
C(B):=\{a \in E, a \leftrightarrow B\} \text { for a block } B \subseteq P
$$

\equiv maximal sets of mutually commuting elements

Spectrality

Definition (SP, 2006)

$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ is spectral if it has both the projection cover and the b-comparability property.

Then

- $P=\{$ sharp elements in $E\}, P$ is an OML,
- E is covered by C-blocks

$$
C(B):=\{a \in E, a \leftrightarrow B\} \quad \text { for a block } B \subseteq P
$$

\equiv maximal sets of mutually commuting elements

- any C-block is a spectral MV-effect algebra

Spectrality

Definition (SP, 2006)

$\left(E,\left\{J_{p}\right\}_{p \in P}\right)$ is spectral if it has both the projection cover and the b-comparability property.

Then

- $P=\{$ sharp elements in $E\}, P$ is an OML,
- E is covered by C-blocks

$$
C(B):=\{a \in E, a \leftrightarrow B\} \quad \text { for a block } B \subseteq P
$$

\equiv maximal sets of mutually commuting elements

- any C-block is a spectral MV-effect algebra
- any $a \in E$ has a largest splitting projection

Binary spectral resolutions

Let $a \in E$.
By repeated applications of splitting, we construct a family $\left\{p_{a, \lambda(w)}\right\}_{w \in\{0,1\}^{*}}$, indexed by binary fractions

$$
\lambda(w)=\sum_{i=1}^{n} w_{i} 2^{-i}, \quad w \in\{0,1\}^{n}
$$

- the binary spectral resolution of a.

Characterization of the binary spectral resolution

Let E be archimedean and spectral. The binary spectral resolution $\left\{p_{\lambda(w)}\right\}_{w \in\{0,1\}^{*}}$ is the unique family in P

- $1=p_{1} \geq p_{\lambda} \geq p_{\mu}$ for $1 \geq \lambda \geq \mu$,
- $\wedge_{\lambda>\mu} p_{\lambda}=p_{\mu}$,
- $p_{\lambda} \leftrightarrow a$ for all λ,
- For $n, w \in\{0,1\}^{n}$, put

$$
u_{w}:=\left(p_{\lambda(w)+2^{-n}}\right) \wedge p_{\lambda(w)}^{\prime}
$$

then $f_{w}\left(J_{u_{w}}(a)\right)$ exists in $\left[0, u_{w}\right]$, for the partially defined map

$$
f_{w}=f_{w_{n}} \circ \cdots \circ f_{w_{1}}, \quad f_{0}(b)=2 b, \quad f_{1}(b)=\left(2 b^{\prime}\right)^{\prime}
$$

Spectral resolution in C-blocks

Another way to construct a spectral resolution for $a \in E$:

- a is contained in a C-block C - a spectral MV-effect algebra

Spectral resolution in C-blocks

Another way to construct a spectral resolution for $a \in E$:

- a is contained in a C-block C - a spectral MV-effect algebra
- C is the unit interval in a unital ℓ-group G

Spectral resolution in C-blocks

Another way to construct a spectral resolution for $a \in E$:

- a is contained in a C-block C - a spectral MV-effect algebra
- C is the unit interval in a unital ℓ-group G
- C is spectral iff G is spectral \Longrightarrow there is the rational spectral resolution of a in G (Foulis):

$$
\left\{p_{a, \lambda}^{C}\right\}_{\lambda \in \mathbb{Q}}
$$

Spectral resolution in C-blocks

Another way to construct a spectral resolution for $a \in E$:

- a is contained in a C-block C - a spectral MV-effect algebra
- C is the unit interval in a unital ℓ-group G
- C is spectral iff G is spectral \Longrightarrow there is the rational spectral resolution of a in G (Foulis):

$$
\left\{p_{a, \lambda}^{C}\right\}_{\lambda \in \mathbb{Q}}
$$

- this spectral resolution does not depend on the choice of C

Spectral resolution in C-blocks

Another way to construct a spectral resolution for $a \in E$:

- a is contained in a C-block C - a spectral MV-effect algebra
- C is the unit interval in a unital ℓ-group G
- C is spectral iff G is spectral \Longrightarrow there is the rational spectral resolution of a in G (Foulis):

$$
\left\{p_{a, \lambda}^{C}\right\}_{\lambda \in \mathbb{Q}}
$$

- this spectral resolution does not depend on the choice of C
- For binary fractions - the previous construction

$$
p_{a, \lambda(w)}^{C}=p_{a, \lambda(w)}, \quad w \in\{0,1\}^{*} .
$$

Further properties of spectral resolutions

If E has a separating family of states, then for $a \in E$:

- a is uniquely determined by its binary spectral resolution
- a is compatible with $q \in P$ if and only if $p_{a, \lambda}$ is compatible with q for all binary fractions λ.

Further properties of spectral resolutions

If E has a separating family of states, then for $a \in E$:

- a is uniquely determined by its binary spectral resolution
- a is compatible with $q \in P$ if and only if $p_{a, \lambda}$ is compatible with q for all binary fractions λ.

Note:
For groups, these properties hold if G is archimedean, which implies that it has an ordering set of states.

Spectrality of interval effect algebras

E is an interval effect algebra if $E \simeq[0, u]$ in a $\operatorname{POUAG}(G, u)$
\rightarrow (the universal group of E).

Spectrality of interval effect algebras

E is an interval effect algebra if $E \simeq[0, u]$ in a $\operatorname{POUAG}(G, u)$
\rightarrow (the universal group of E).

- Question: E is spectral $\stackrel{?}{\Longleftrightarrow} G$ is spectral?

Spectrality of interval effect algebras

E is an interval effect algebra if $E \simeq[0, u]$ in a $\operatorname{POUAG}(G, u)$
\rightarrow (the universal group of E).

- Question: E is spectral $\stackrel{?}{\Longleftrightarrow} G$ is spectral?
- True for
- MV-effect algebras
- archimedean divisible (convex) effect algebras,

Spectrality of interval effect algebras

E is an interval effect algebra if $E \simeq[0, u]$ in a $\operatorname{POUAG}(G, u)$
\rightarrow (the universal group of E).

- Question: E is spectral $\stackrel{?}{\Longleftrightarrow} G$ is spectral?
- True for
- MV-effect algebras
- archimedean divisible (convex) effect algebras,
- False in general.

Counterexample: the horizontal sum $E(\mathcal{H}) \hat{\oplus} E(\mathcal{H})$ (an interval effect algebra which is spectral but its universal group is not spectral).

Convex effect algebras

- archimedean convex effect algebra $E \simeq$ unit interval in an order unit space $\left(A, A^{+}, u\right)$

Convex effect algebras

- archimedean convex effect algebra $E \simeq$ unit interval in an order unit space $\left(A, A^{+}, u\right)$
- E is spectral $\Longleftrightarrow A$ is spectral (as a POUAG)

Convex effect algebras

- archimedean convex effect algebra $E \simeq$ unit interval in an order unit space $\left(A, A^{+}, u\right)$
- E is spectral $\Longleftrightarrow A$ is spectral (as a POUAG)
- a stronger notion: spectral duality (Alfsen and Schultz, 1976, 2003)
- A has a predual base normed space V
- stronger conditions on the compressions

JB-algebras

Let A be a JB-algebra. Then

- spectral duality holds $\Longleftrightarrow A$ is a JBW-algebra

JB-algebras

Let A be a JB-algebra. Then

- spectral duality holds $\Longleftrightarrow A$ is a JBW-algebra
- the following are equivalent:

JB-algebras

Let A be a JB-algebra. Then

- spectral duality holds $\Longleftrightarrow A$ is a JBW-algebra
- the following are equivalent:
- A is spectral

JB-algebras

Let A be a JB-algebra. Then

- spectral duality holds $\Longleftrightarrow A$ is a JBW-algebra
- the following are equivalent:
- A is spectral
- A is Rickart

JB-algebras

Let A be a JB-algebra. Then

- spectral duality holds $\Longleftrightarrow A$ is a JBW-algebra
- the following are equivalent:
- A is spectral
- A is Rickart
- any maximal associative subalgebra of A is monotone σ-complete

Generalized spin factors

A generalized spin factor is an order unit space defined from a Banach space $(X,\|\cdot\|)$ (Berdikulov and Odilov, 1994):

$$
A=R \times X, \quad A^{+}=\{(a, x), \quad\|x\| \leq a\}, \quad u=(1,0)
$$

Generalized spin factors

A generalized spin factor is an order unit space defined from a Banach space $(X,\|\cdot\|)$ (Berdikulov and Odilov, 1994):

$$
A=R \times X, \quad A^{+}=\{(a, x), \quad\|x\| \leq a\}, \quad u=(1,0)
$$

Let $(X,\|\cdot\|)$ be reflexive. Then

- A is spectral $\Longleftrightarrow(X,\|\cdot\|)$ is strictly convex.

Generalized spin factors

A generalized spin factor is an order unit space defined from a Banach space $(X,\|\cdot\|)$ (Berdikulov and Odilov, 1994):

$$
A=R \times X, \quad A^{+}=\{(a, x),\|x\| \leq a\}, \quad u=(1,0)
$$

Let $(X,\|\cdot\|)$ be reflexive. Then

- A is spectral $\Longleftrightarrow(X,\|\cdot\|)$ is strictly convex.
- A is is spectral duality $\Longleftrightarrow(X,\|\cdot\|)$ is strictly convex and smooth.

