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Effect algebras

An effect algebra is a system (E , 0, 1,⊕), where 0, 1 ∈ E are
constants, ⊕ is a partial binary operation on E such that:

(E1) if a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a;

(E2) if a⊕ b and (a⊕ b)⊕ c are defined, then a⊕ (b ⊕ c) is
defined and a⊕ (b ⊕ c) = (a⊕ b)⊕ c;

(E3) for every a ∈ E there is unique a′ ∈ E such that a⊕ a′ = 1;

(E4) if a⊕ 1 ∈ E , then a = 0.

Covers many different algebraic structures: MV-effect algebras,
OMPs, orthoalgebras, etc.

Foulis & Bennett, 1994



Hilbert space effect algebras

Effect algebras are an algebraic model of Hilbert space effects:

E (H) = {E ∈ B(H), 0 ≤ E ≤ I}

I measurements on a quantum system in the Hilbert space
formalism

I important special property - spectrality:

for a ∈ E (H) there is a family {pa,λ}λ∈[0,1] of projections such
that

a =

∫
λdpa,λ



Spectral resolution in Hilbert space effect algebras

Let a ∈ E (H). The spectral resolution of a is the unique family of
projections {pλ}λ∈[0,1] such that

I 1 = p1 ≥ pλ ≥ pµ for 1 ≥ λ ≥ µ (nondecreasing),

I
∧
λ>µ pλ = pµ (right continuous),

I pλa = apλ ( commutativity),

I pλa ≤ λpλ, p⊥λ a ≥ λp⊥λ .

Further, a is uniquely determined by {pa,λ} and a commutes with
b if pa,λ commutes with pb,µ for all λ and µ.

Question
What are the additional structures and/or properties of E needed
to obtain this?
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I pλa = apλ (commutativity),
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Spectrality in partially ordered unital abelian groups

Let G be a POUAG, with unit u.

I A compression: morphism J : G → G , generalizing

- the compressions

a 7→ pap, a ∈ Bsa(H), p a projection,

- the projection
a 7→ a ∧ np, a ≤ nu,

onto the ideal Gp generated by a sharp element p in an
interpolation group.

I A compression base {Jp}p∈P : a suitable set of compressions

Foulis, 2003-2005



Spectrality in partially ordered unital abelian groups

G with {Jp}p∈P is spectral if it has

I comparability property: g = g+ − g−, g+, g− ∈ G+

∃ p ∈ P such that Jp(g) = g+, Jp⊥(g) = −g−

I Rickart mapping:

g 7→ g∗ ∈ P complement of the ”support projection”.

Rational spectral resolution: for g ∈ G ,

pg ,λ := (ng −mu)∗+, λ =
m

n
.



Spectrality in partially ordered unital abelian groups

Let G be an archimedean spectral POUAG.

The rational spectral resolution of g ∈ G is the unique family of
projections {pλ}λ∈Q such that

I for λ < lg , pλ = 0, λ ≥ ug , pλ = 1 (bounded),

I pλ ≥ pµ for λ ≥ µ (nondecreasing),

I
∧
λ>µ pλ = pµ (right continuous),

I g compatible with all pλ,

I nJpλ(g) ≤ mpλ, nJp⊥λ
(g) ≥ mp⊥λ , λ = m

n .

Further, g is uniquely determined by {pg ,λ} and g is compatible
with p ∈ P if and only if pg ,λ is compatible with p for all λ.



Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map J : E → E such that

a ≤ J(1) ⇐⇒ J(a) = a, a ≤ J(1)⊥ ⇐⇒ J(a) = 0.

Properties:

I J is idempotent.

I J has a supplement: ImJ = KerJ ′, ImJ ′ = KerJ.

I focus of J: J(1), a principal element (sharp).

Gudder, 2006; SP, 2006
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Compressions and compression bases in effect algebras

A compression base: {Jp}p∈P
I P ⊆ E a subalgebra (an OMP)

I Jp(1) = p, for all p ∈ P

I if p ↔ q, then JpJq = JqJp = Jr for some r ∈ P

Elements of P are called projections.



Properties of compression bases

I P is an OMP,

I For a ∈ E ,

a = Jp(a)⊕ Jp⊥(a) ⇐⇒ a↔ p ⇐⇒ Jp(a) = a ∧ p.

I bicommutant of a:

P(a) = {p ∈ P : p ↔ a, ∀q ∈ P, q ↔ a =⇒ q ↔ p}.

a Boolean subalgebra in P
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Examples

I Hilbert space effects: unique (maximal) compression base

E (H), with {Up}p∈P(H), Up(a) = pap.

I Central compression bases: P = Γ(E ) the center of E :

E , with {Up}p∈Γ(E), Up(a) = p ∧ a.

I Effect algebras with RDP (MV-effect algebras): the central
compression base is the unique (maximal) compression base.
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Examples

I The horizontal sum of Hilbert space effect algebras

E = E (H)⊕̂E (H).

I Let ϕ be a faithful state on E (H) (ϕ(a) = 0 implies a = 0).

I We can construct a compression base with the set of
projections P = P(H)⊕̂P(H):

J(p,0)(a, 0) = (Jp(a), a), J(p,0)(0, a) = (ϕ(a)p, 0)

(similarly for J(0,p)).

I we obtain many different compression bases with the same P.
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Spectrality: projection cover property

(E , {Jp}p∈P) - an effect algebra with a fixed compression base.

Definition (Gudder, 2006)

(E , {Jp}p∈P) has the projection cover property if for any a ∈ E ,
there is a projection cover: a◦ ∈ P such that

a ≤ p ⇐⇒ a◦ ≤ p, ∀p ∈ P.

Then P is an OML.



Spectrality: b-property

Definition (SP, 2006)

(E , {Jp}p∈P) has the b-property if for all a ∈ E , q ∈ P,

a↔ q ⇐⇒ P(a)↔ q.

For a, b ∈ E , aCb (a commutes with b) if P(a)↔ P(b).

Under b-property: for p ∈ P,

aCp ⇐⇒ a↔ p.
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Spectrality: b-comparability

Definition (SP, 2006)

(E , {Jp}p∈P) has the b-comparability property if

I it has the b-property

I for all a, b ∈ E , aCb, we have

∃p ∈ P(a, b), Jp(a) ≤ Jp(b), Jp⊥(b) ≤ Jp⊥(a).

Under b-comparability: any a ∈ E has a splitting projection:

p ∈ P(a) : Jp(a) ≤ Jp(1− a), Jp⊥(a) ≥ Jp⊥(1− a)

“Jp(a) ≤ 1/2” “Jp⊥(a) ≥ 1/2”
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Spectrality

Definition (SP, 2006)

(E , {Jp}p∈P) is spectral if it has both the projection cover and the
b-comparability property.

Then

I P = {sharp elements in E}, P is an OML,

I E is covered by C-blocks

C (B) := {a ∈ E , a↔ B} for a block B ⊆ P

≡ maximal sets of mutually commuting elements

I any C-block is a spectral MV-effect algebra

I any a ∈ E has a largest splitting projection
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Binary spectral resolutions

Let a ∈ E .

By repeated applications of splitting, we construct a family
{pa,λ(w)}w∈{0,1}∗ , indexed by binary fractions

λ(w) =
n∑

i=1

wi2
−i , w ∈ {0, 1}n

- the binary spectral resolution of a.



Characterization of the binary spectral resolution

Let E be archimedean and spectral. The binary spectral resolution
{pλ(w)}w∈{0,1}∗ is the unique family in P

I 1 = p1 ≥ pλ ≥ pµ for 1 ≥ λ ≥ µ,

I
∧
λ>µ pλ = pµ,

I pλ ↔ a for all λ,

I For n, w ∈ {0, 1}n, put

uw := (pλ(w)+2−n) ∧ p′λ(w),

then fw (Juw (a)) exists in [0, uw ], for the partially defined map

fw = fwn ◦ · · · ◦ fw1 , f0(b) = 2b, f1(b) = (2b′)′.



Spectral resolution in C-blocks

Another way to construct a spectral resolution for a ∈ E :

I a is contained in a C-block C - a spectral MV-effect algebra

I C is the unit interval in a unital `-group G

I C is spectral iff G is spectral =⇒ there is the rational
spectral resolution of a in G (Foulis):

{pCa,λ}λ∈Q

I this spectral resolution does not depend on the choice of C

I For binary fractions - the previous construction

pCa,λ(w) = pa,λ(w), w ∈ {0, 1}∗.
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Further properties of spectral resolutions

If E has a separating family of states, then for a ∈ E :

I a is uniquely determined by its binary spectral resolution

I a is compatible with q ∈ P if and only if pa,λ is compatible
with q for all binary fractions λ.

Note:

For groups, these properties hold if G is archimedean, which
implies that it has an ordering set of states.
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Spectrality of interval effect algebras

E is an interval effect algebra if E ' [0, u] in a POUAG (G , u)

→ (the universal group of E ).

I Question: E is spectral
?⇐⇒ G is spectral?

I True for

- MV-effect algebras
- archimedean divisible (convex) effect algebras,

I False in general.

Counterexample: the horizontal sum E (H)⊕̂E (H)

(an interval effect algebra which is spectral but its universal
group is not spectral).
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Convex effect algebras

I archimedean convex effect algebra E ' unit interval in an
order unit space (A,A+, u)

I E is spectral ⇐⇒ A is spectral (as a POUAG)

I a stronger notion: spectral duality (Alfsen and Schultz, 1976,

2003)

- A has a predual base normed space V

- stronger conditions on the compressions
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JB-algebras

Let A be a JB-algebra. Then

I spectral duality holds ⇐⇒ A is a JBW-algebra

I the following are equivalent:

I A is spectral

I A is Rickart

I any maximal associative subalgebra of A is monotone
σ-complete
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Generalized spin factors

A generalized spin factor is an order unit space defined from a
Banach space (X , ‖ · ‖) (Berdikulov and Odilov, 1994):

A = R × X , A+ = {(a, x), ‖x‖ ≤ a}, u = (1, 0)

Let (X , ‖ · ‖) be reflexive. Then

I A is spectral ⇐⇒ (X , ‖ · ‖) is strictly convex.

I A is is spectral duality ⇐⇒ (X , ‖ · ‖) is strictly convex and
smooth.
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