Spectral resolutions in effect algebras

Anna Jenčová and Sylvia Pulmannová

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

July 2022

Dedicated to the memory of David J. Foulis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Effect algebras

An effect algebra is a system $(E, 0, 1, \oplus)$, where $0, 1 \in E$ are constants, \oplus is a partial binary operation on E such that:

(E1) if a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a;
(E2) if a ⊕ b and (a ⊕ b) ⊕ c are defined, then a ⊕ (b ⊕ c) is defined and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;
(E3) for every a ∈ E there is unique a' ∈ E such that a ⊕ a' = 1;
(E4) if a ⊕ 1 ∈ E, then a = 0.

Covers many different algebraic structures: MV-effect algebras, OMPs, orthoalgebras, etc.

Foulis & Bennett, 1994

Hilbert space effect algebras

Effect algebras are an algebraic model of Hilbert space effects:

$$E(\mathcal{H}) = \{ E \in B(\mathcal{H}), \quad 0 \le E \le I \}$$

- measurements on a quantum system in the Hilbert space formalism
- important special property spectrality:

for $a \in E(\mathcal{H})$ there is a family $\{p_{a,\lambda}\}_{\lambda \in [0,1]}$ of projections such that

$$a = \int \lambda dp_{a,\lambda}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\{p_{\lambda}\}_{\lambda \in [0,1]}$ such that

•
$$1 = p_1 \ge p_\lambda \ge p_\mu$$
 for $1 \ge \lambda \ge \mu$ (nondecreasing),

•
$$\bigwedge_{\lambda>\mu} p_{\lambda} = p_{\mu}$$
 (right continuous),

•
$$p_{\lambda}a = ap_{\lambda}$$
 (commutativity),

$$\triangleright p_{\lambda}a \leq \lambda p_{\lambda}, p_{\lambda}^{\perp}a \geq \lambda p_{\lambda}^{\perp}.$$

Further, *a* is uniquely determined by $\{p_{a,\lambda}\}$ and *a* commutes with *b* if $p_{a,\lambda}$ commutes with $p_{b,\mu}$ for all λ and μ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\{p_{\lambda}\}_{\lambda \in [0,1]}$ such that

▶
$$1 = p_1 \ge p_\lambda \ge p_\mu$$
 for $1 \ge \lambda \ge \mu$ (nondecreasing),

•
$$\bigwedge_{\lambda>\mu} p_{\lambda} = p_{\mu}$$
 (right continuous),

•
$$p_{\lambda}a = ap_{\lambda}$$
 (commutativity),

$$> p_{\lambda}a \leq \lambda p_{\lambda}, \ p_{\lambda}^{\perp}a \geq \lambda p_{\lambda}^{\perp}.$$

Further, *a* is uniquely determined by $\{p_{a,\lambda}\}$ and *a* commutes with *b* if $p_{a,\lambda}$ commutes with $p_{b,\mu}$ for all λ and μ .

Question

Can we have some type of a spectral resolution for an abstract effect algebra E?

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\{p_{\lambda}\}_{\lambda \in [0,1]}$ such that

•
$$1 = p_1 \ge p_\lambda \ge p_\mu$$
 for $1 \ge \lambda \ge \mu$ (nondecreasing),

•
$$\bigwedge_{\lambda>\mu} p_{\lambda} = p_{\mu}$$
 (right continuous),

•
$$p_{\lambda}a = ap_{\lambda}$$
 (commutativity),

$$\blacktriangleright p_{\lambda}a \leq \lambda p_{\lambda}, \ p_{\lambda}^{\perp}a \geq \lambda p_{\lambda}^{\perp}.$$

Further, *a* is uniquely determined by $\{p_{a,\lambda}\}$ and *a* commutes with *b* if $p_{a,\lambda}$ commutes with $p_{b,\mu}$ for all λ and μ .

Question

What are the additional structures and/or properties of E needed to obtain this?

Let $a \in E(\mathcal{H})$. The spectral resolution of a is the unique family of projections $\{p_{\lambda}\}_{\lambda \in [0,1]}$ such that

▶
$$1 = p_1 \ge p_\lambda \ge p_\mu$$
 for $1 \ge \lambda \ge \mu$ (nondecreasing),

•
$$\bigwedge_{\lambda>\mu} p_{\lambda} = p_{\mu}$$
 (right continuous),

•
$$p_{\lambda}a = ap_{\lambda}$$
 (commutativity),

►
$$p_{\lambda}a \leq \lambda p_{\lambda}$$
, $p_{\lambda}^{\perp}a \geq \lambda p_{\lambda}^{\perp}$. multiplication? constants?

Further, *a* is uniquely determined by $\{p_{a,\lambda}\}$ and *a* commutes with *b* if $p_{a,\lambda}$ commutes with $p_{b,\mu}$ for all λ and μ . ??

Question

What are the additional structures and/or properties of ${\it E}$ needed to obtain this?

Spectrality in partially ordered unital abelian groups

Let G be a POUAG, with unit u.

- A compression: morphism $J: G \rightarrow G$, generalizing
 - the compressions

 $a \mapsto pap$, $a \in B^{sa}(\mathcal{H})$, p a projection,

- the projection

 $a \mapsto a \wedge np, a \leq nu,$

onto the ideal G_p generated by a sharp element p in an interpolation group.

▶ A compression base $\{J_p\}_{p \in P}$: a suitable set of compressions

Spectrality in partially ordered unital abelian groups

G with $\{J_p\}_{p\in P}$ is spectral if it has

• comparability property: $g = g_+ - g_-$, $g_+, g_- \in G^+$

$$\exists \ p \in P$$
 such that $J_{
ho}(g) = g_+, \ J_{p^{\perp}}(g) = -g_-$

Rickart mapping:

 $g \mapsto g^* \in P$ complement of the "support projection".

Rational spectral resolution: for $g \in G$,

$$p_{g,\lambda} := (ng - mu)^*_+, \qquad \lambda = \frac{m}{n}$$

Spectrality in partially ordered unital abelian groups

Let G be an archimedean spectral POUAG.

The rational spectral resolution of $g \in G$ is the unique family of projections $\{p_{\lambda}\}_{\lambda \in \mathbb{Q}}$ such that

▶ for
$$\lambda < l_g$$
, $p_{\lambda} = 0$, $\lambda \ge u_g$, $p_{\lambda} = 1$ (bounded),

•
$$p_{\lambda} \geq p_{\mu}$$
 for $\lambda \geq \mu$ (nondecreasing),

•
$$\bigwedge_{\lambda>\mu} p_{\lambda} = p_{\mu}$$
 (right continuous),

•
$$nJ_{p_{\lambda}}(g) \leq mp_{\lambda}, \ nJ_{p_{\lambda}^{\perp}}(g) \geq mp_{\lambda}^{\perp}, \ \lambda = rac{m}{n}.$$

Further, g is uniquely determined by $\{p_{g,\lambda}\}$ and g is compatible with $p \in P$ if and only if $p_{g,\lambda}$ is compatible with p for all λ . Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map $J: E \rightarrow E$ such that

$$a \leq J(1) \iff J(a) = a, \qquad a \leq J(1)^{\perp} \iff J(a) = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map $J: E \rightarrow E$ such that

$$a \leq J(1) \iff J(a) = a, \qquad a \leq J(1)^{\perp} \iff J(a) = 0.$$

Properties:

- J is idempotent.
- ▶ J has a supplement: ImJ = KerJ', ImJ' = KerJ.
- focus of J: J(1), a principal element (sharp).

Gudder, 2006; SP, 2006

Compressions and compression bases in effect algebras

A compression base: $\{J_p\}_{p \in P}$

•
$$P \subseteq E$$
 a subalgebra (an OMP)

•
$$J_p(1) = p$$
, for all $p \in P$

▶ if
$$p \leftrightarrow q$$
, then $J_p J_q = J_q J_p = J_r$ for some $r \in P$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Elements of P are called projections.

Properties of compression bases

▶ *P* is an OMP,

Properties of compression bases

P is an OMP,
For a ∈ E,
a = J_p(a) ⊕ J_{p⊥}(a) ⇔ a ↔ p ⇔ J_p(a) = a ∧ p.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Properties of compression bases

P is an OMP,
For a ∈ E,
a = J_p(a) ⊕ J_{p⊥}(a) ⇔ a ⇔ p ⇔ J_p(a) = a ∧ p.
bicommutant of a:
P(a) = {p ∈ P : p ⇔ a, ∀q ∈ P, q ⇔ a ⇒ q ⇔ p}.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

a Boolean subalgebra in P

► Hilbert space effects: unique (maximal) compression base

 $E(\mathcal{H}), \text{ with } \{U_p\}_{p \in P(\mathcal{H})}, \ U_p(a) = pap.$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

► Hilbert space effects: unique (maximal) compression base

$$E(\mathcal{H})$$
, with $\{U_p\}_{p\in P(\mathcal{H})}$, $U_p(a) = pap$.

• Central compression bases: $P = \Gamma(E)$ the center of E:

$$E$$
, with $\{U_p\}_{p\in\Gamma(E)}, U_p(a)=p\wedge a$.

Hilbert space effects: unique (maximal) compression base

$$E(\mathcal{H})$$
, with $\{U_p\}_{p\in P(\mathcal{H})}, U_p(a) = pap.$

• Central compression bases: $P = \Gamma(E)$ the center of E:

$$E$$
, with $\{U_p\}_{p\in\Gamma(E)}$, $U_p(a)=p\wedge a$.

Effect algebras with RDP (MV-effect algebras): the central compression base is the unique (maximal) compression base.

The horizontal sum of Hilbert space effect algebras

 $E = E(\mathcal{H}) \oplus E(\mathcal{H}).$

► The horizontal sum of Hilbert space effect algebras

$$E = E(\mathcal{H}) \oplus E(\mathcal{H}).$$

• Let φ be a faithful state on $E(\mathcal{H})$ ($\varphi(a) = 0$ implies a = 0).

The horizontal sum of Hilbert space effect algebras

$$E = E(\mathcal{H}) \oplus E(\mathcal{H}).$$

• Let φ be a faithful state on $E(\mathcal{H})$ ($\varphi(a) = 0$ implies a = 0).

We can construct a compression base with the set of projections P = P(H)⊕P(H):

 $J_{(p,0)}(a,0) = (J_p(a),a), \qquad J_{(p,0)}(0,a) = (\varphi(a)p,0)$

(similarly for $J_{(0,p)}$).

The horizontal sum of Hilbert space effect algebras

$$E = E(\mathcal{H}) \oplus E(\mathcal{H}).$$

• Let φ be a faithful state on $E(\mathcal{H})$ ($\varphi(a) = 0$ implies a = 0).

We can construct a compression base with the set of projections P = P(H)⊕P(H):

$$J_{(p,0)}(a,0) = (J_p(a),a), \qquad J_{(p,0)}(0,a) = (\varphi(a)p,0)$$

(similarly for $J_{(0,p)}$).

▶ we obtain many different compression bases with the same *P*.

Spectrality: projection cover property

 $(E, \{J_p\}_{p \in P})$ - an effect algebra with a fixed compression base.

Definition (Gudder, 2006)

 $(E, \{J_p\}_{p \in P})$ has the projection cover property if for any $a \in E$, there is a projection cover: $a^{\circ} \in P$ such that

$$a \leq p \iff a^{\circ} \leq p, \qquad \forall p \in P.$$

Then P is an OML.

Spectrality: b-property

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ has the b-property if for all $a \in E$, $q \in P$,

$$a \leftrightarrow q \iff P(a) \leftrightarrow q.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For $a, b \in E$, aCb (a commutes with b) if $P(a) \leftrightarrow P(b)$.

Spectrality: b-property

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ has the b-property if for all $a \in E$, $q \in P$,

$$a \leftrightarrow q \iff P(a) \leftrightarrow q.$$

For $a, b \in E$, aCb (a commutes with b) if $P(a) \leftrightarrow P(b)$.

Under b-property: for $p \in P$,

$$aCp \iff a \leftrightarrow p.$$

Spectrality: b-comparability

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ has the b-comparability property if

- it has the b-property
- ▶ for all $a, b \in E$, aCb, we have

 $\exists p \in P(a,b), \quad J_p(a) \leq J_p(b), \ J_{p^{\perp}}(b) \leq J_{p^{\perp}}(a).$

Spectrality: b-comparability

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ has the b-comparability property if

- it has the b-property
- for all $a, b \in E$, aCb, we have

$$\exists
ho \in P(a,b), \quad J_{
ho}(a) \leq J_{
ho}(b), \,\, J_{
ho^{\perp}}(b) \leq J_{
ho^{\perp}}(a).$$

Under b-comparability: any $a \in E$ has a splitting projection:

$$p \in P(a): J_p(a) \le J_p(1-a), \qquad J_{p^{\perp}}(a) \ge J_{p^{\perp}}(1-a)$$

 $"J_p(a) \le 1/2" \qquad "J_{p^{\perp}}(a) \ge 1/2"$

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ is spectral if it has both the projection cover and the b-comparability property.

Then

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ is spectral if it has both the projection cover and the b-comparability property.

Then

•
$$P = \{\text{sharp elements in } E\}, P \text{ is an OML},$$

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ is spectral if it has both the projection cover and the b-comparability property.

Then

- $P = \{\text{sharp elements in } E\}, P \text{ is an OML},$
- ► *E* is covered by C-blocks

 $C(B) := \{a \in E, a \leftrightarrow B\}$ for a block $B \subseteq P$

 \equiv maximal sets of mutually commuting elements

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ is spectral if it has both the projection cover and the b-comparability property.

Then

- $P = \{\text{sharp elements in } E\}, P \text{ is an OML},$
- E is covered by C-blocks

 $C(B) := \{a \in E, a \leftrightarrow B\}$ for a block $B \subseteq P$

 \equiv maximal sets of mutually commuting elements

any C-block is a spectral MV-effect algebra

Definition (SP, 2006)

 $(E, \{J_p\}_{p \in P})$ is spectral if it has both the projection cover and the b-comparability property.

Then

- $P = \{\text{sharp elements in } E\}, P \text{ is an OML},$
- E is covered by C-blocks

 $C(B) := \{a \in E, a \leftrightarrow B\}$ for a block $B \subseteq P$

 \equiv maximal sets of mutually commuting elements

- any C-block is a spectral MV-effect algebra
- any $a \in E$ has a largest splitting projection

Binary spectral resolutions

Let $a \in E$.

By repeated applications of splitting, we construct a family $\{p_{a,\lambda(w)}\}_{w\in\{0,1\}^*}$, indexed by binary fractions

$$\lambda(w) = \sum_{i=1}^n w_i 2^{-i}, \qquad w \in \{0,1\}^n$$

- the binary spectral resolution of a.

Characterization of the binary spectral resolution

Let *E* be archimedean and spectral. The binary spectral resolution $\{p_{\lambda(w)}\}_{w \in \{0,1\}^*}$ is the unique family in *P*

►
$$1 = p_1 \ge p_\lambda \ge p_\mu$$
 for $1 \ge \lambda \ge \mu$,

$$\blacktriangleright \ \bigwedge_{\lambda > \mu} p_{\lambda} = p_{\mu},$$

$$\blacktriangleright p_{\lambda} \leftrightarrow a \text{ for all } \lambda,$$

For *n*,
$$w \in \{0, 1\}^n$$
, put

$$u_w := (p_{\lambda(w)+2^{-n}}) \wedge p'_{\lambda(w)},$$

then $f_w(J_{u_w}(a))$ exists in $[0, u_w]$, for the partially defined map

$$f_w = f_{w_n} \circ \cdots \circ f_{w_1}, \quad f_0(b) = 2b, \ f_1(b) = (2b')'.$$

Spectral resolution in C-blocks

Another way to construct a spectral resolution for $a \in E$:

 \blacktriangleright a is contained in a C-block C - a spectral MV-effect algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Another way to construct a spectral resolution for $a \in E$:

 \blacktriangleright a is contained in a C-block C - a spectral MV-effect algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• C is the unit interval in a unital ℓ -group G

Another way to construct a spectral resolution for $a \in E$:

- ▶ a is contained in a C-block C a spectral MV-effect algebra
- C is the unit interval in a unital ℓ -group G
- C is spectral iff G is spectral \implies there is the rational spectral resolution of a in G (Foulis):

$$\{p_{a,\lambda}^{C}\}_{\lambda\in\mathbb{Q}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Another way to construct a spectral resolution for $a \in E$:

- \blacktriangleright a is contained in a C-block C a spectral MV-effect algebra
- C is the unit interval in a unital ℓ -group G
- C is spectral iff G is spectral \implies there is the rational spectral resolution of a in G (Foulis):

$$\{p_{a,\lambda}^{C}\}_{\lambda\in\mathbb{Q}}$$

this spectral resolution does not depend on the choice of C

Another way to construct a spectral resolution for $a \in E$:

- a is contained in a C-block C a spectral MV-effect algebra
- C is the unit interval in a unital ℓ -group G
- ► C is spectral iff G is spectral ⇒ there is the rational spectral resolution of a in G (Foulis):

$$\{p_{a,\lambda}^{C}\}_{\lambda\in\mathbb{Q}}$$

- this spectral resolution does not depend on the choice of C
- For binary fractions the previous construction

$$p_{a,\lambda(w)}^{C} = p_{a,\lambda(w)}, \qquad w \in \{0,1\}^*.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Further properties of spectral resolutions

If *E* has a separating family of states, then for $a \in E$:

- ▶ *a* is uniquely determined by its binary spectral resolution
- a is compatible with q ∈ P if and only if p_{a,λ} is compatible with q for all binary fractions λ.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Further properties of spectral resolutions

If *E* has a separating family of states, then for $a \in E$:

- ▶ *a* is uniquely determined by its binary spectral resolution
- a is compatible with q ∈ P if and only if p_{a,λ} is compatible with q for all binary fractions λ.

Note:

For groups, these properties hold if G is archimedean, which implies that it has an ordering set of states.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

E is an interval effect algebra if $E \simeq [0, u]$ in a POUAG (*G*, *u*) \rightarrow (the universal group of *E*).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

E is an interval effect algebra if $E \simeq [0, u]$ in a POUAG (G, u)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \rightarrow (the universal group of *E*).

• Question: E is spectral $\stackrel{?}{\iff}$ G is spectral?

E is an interval effect algebra if $E \simeq [0, u]$ in a POUAG (G, u)

 \rightarrow (the universal group of *E*).

- Question: E is spectral \Leftrightarrow G is spectral?
- True for
 - MV-effect algebras
 - archimedean divisible (convex) effect algebras,

E is an interval effect algebra if $E \simeq [0, u]$ in a POUAG (G, u)

 \rightarrow (the universal group of *E*).

- Question: E is spectral $\stackrel{?}{\iff}$ G is spectral?
- True for
 - MV-effect algebras
 - archimedean divisible (convex) effect algebras,
- False in general.

Counterexample: the horizontal sum $E(\mathcal{H}) \oplus E(\mathcal{H})$ (an interval effect algebra which is spectral but its universal group is not spectral).

Convex effect algebras

 archimedean convex effect algebra E ~ unit interval in an order unit space (A, A⁺, u)

Convex effect algebras

 archimedean convex effect algebra E ~ unit interval in an order unit space (A, A⁺, u)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• *E* is spectral \iff *A* is spectral (as a POUAG)

Convex effect algebras

- archimedean convex effect algebra E ~ unit interval in an order unit space (A, A⁺, u)
- *E* is spectral \iff *A* is spectral (as a POUAG)
- a stronger notion: spectral duality (Alfsen and Schultz, 1976, 2003)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A has a predual base normed space V
- stronger conditions on the compressions

Let A be a JB-algebra. Then

• spectral duality holds \iff A is a JBW-algebra

Let A be a JB-algebra. Then

• spectral duality holds \iff A is a JBW-algebra

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶ the following are equivalent:

Let A be a JB-algebra. Then

• spectral duality holds \iff A is a JBW-algebra

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ▶ the following are equivalent:
 - A is spectral

Let A be a JB-algebra. Then

• spectral duality holds \iff A is a JBW-algebra

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ▶ the following are equivalent:
 - A is spectral
 A is Rickart

Let A be a JB-algebra. Then

- spectral duality holds \iff A is a JBW-algebra
- ▶ the following are equivalent:
 - A is spectral
 - A is Rickart
 - any maximal associative subalgebra of A is monotone *σ*-complete

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Generalized spin factors

A generalized spin factor is an order unit space defined from a Banach space $(X, \|\cdot\|)$ (Berdikulov and Odilov, 1994):

$$A = R \times X, \quad A^+ = \{(a, x), \|x\| \le a\}, \quad u = (1, 0)$$

Generalized spin factors

A generalized spin factor is an order unit space defined from a Banach space $(X, \|\cdot\|)$ (Berdikulov and Odilov, 1994):

$$A = R \times X, \quad A^+ = \{(a, x), \|x\| \le a\}, \quad u = (1, 0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $(X, \|\cdot\|)$ be reflexive. Then

• A is spectral $\iff (X, \|\cdot\|)$ is strictly convex.

Generalized spin factors

A generalized spin factor is an order unit space defined from a Banach space $(X, \|\cdot\|)$ (Berdikulov and Odilov, 1994):

$$A = R imes X, \quad A^+ = \{(a, x), \|x\| \le a\}, \quad u = (1, 0)$$

Let $(X, \|\cdot\|)$ be reflexive. Then

- A is spectral $\iff (X, \|\cdot\|)$ is strictly convex.
- ► A is is spectral duality ⇔ (X, || · ||) is strictly convex and smooth.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・