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Effect algebras

An effect algebra is a system (E,0,1,®), where 0,1 € E are
constants, @ is a partial binary operation on E such that:

(E1) if a® b is defined, then b & a is defined and a® b= b & a;

(E2) if a® b and (a @ b) @ c are defined, then a® (b® ¢) is
defined and a® (b® c) =(a® b) ® c;

(E3) for every a € E there is unique &’ € E such that a® a’ = 1;
(E4) ifa® 1€ E, thena=0.

Covers many different algebraic structures: MV-effect algebras,
OMPs, orthoalgebras, etc.

Foulis & Bennett, 1994



Hilbert space effect algebras

Effect algebras are an algebraic model of Hilbert space effects:

E(H)={Ee€B(H), 0<E<I}

P> measurements on a quantum system in the Hilbert space
formalism

P important special property - spectrality:

for a € E(H) there is a family {pa x}re[o,1) of projections such

that
2= [ dpa



Spectral resolution in Hilbert space effect algebras

Let a € E(H). The spectral resolution of a is the unique family of
projections {px}re[o,1] Such that

» 1=p; > py>p, for 1> X > p (nondecreasing),
> Axs, Pr = pu (right continuous),

> pya = apy ( commutativity),

> pra < Apy, pya > Apy.

Further, a is uniquely determined by {p, »} and a commutes with
b if p,» commutes with pp , for all A and p.
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Spectral resolution in Hilbert space effect algebras

Let a € E(H). The spectral resolution of a is the unique family of
projections {px}re[o,1] Such that

» 1=p; > py>p, for 1> X > p (nondecreasing),
> Axs, Pr = pu (right continuous),

> pra = apy (commutativity),

> pra < Apa, pf\-a > /\pf\-. multiplication? constants?

Further, a is uniquely determined by {p, »} and a commutes with
b if p, » commutes with p, , for all A and p. 77

Question
What are the additional structures and/or properties of E needed
to obtain this?



Spectrality in partially ordered unital abelian groups

Let G be a POUAG, with unit u.

» A compression: morphism J: G — G, generalizing

- the compressions
a+— pap, a € B*(H), p a projection,

- the projection
a—aAnp, a<nu,

onto the ideal G, generated by a sharp element p in an
interpolation group.

» A compression base {Jp}pcp: a suitable set of compressions

Foulis, 2003-2005



Spectrality in partially ordered unital abelian groups

G with {Jp}pep is spectral if it has
» comparability property: g =g+ —g_, g+,8- € G*
3 p € P such that Jy(g) = g+, J,.(g) = —g-
» Rickart mapping:

g+ g* € P complement of the "support projection”.

Rational spectral resolution: for g € G,

% m
peri=(ng —mu)y, A=



Spectrality in partially ordered unital abelian groups

Let G be an archimedean spectral POUAG.

The rational spectral resolution of g € G is the unique family of
projections {py}rcq such that

> for A < lg, pAx =0, A > ug, py =1 (bounded),
» py > p, for A > p (nondecreasing),
> x>, Px = pu (right continuous),
> g compatible with all py,
m

> nJp,(g) < mpx, nJ,1(g) = mpy, A= 1

n-

Further, g is uniquely determined by {p,; 1} and g is compatible
with p € P if and only if pg ) is compatible with p for all A.



Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map J: E — E such that

a<J(1) < J(a) = a, a<J)t = Ja)=o.

Gudder, 2006; SP, 2006



Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map J: E — E such that

a<J(1) < J(a) = a, a<J)t < J@@)=o.

Properties:

> J is idempotent.
» J has a supplement: ImJ = KerJ’, ImJ’ = KerJ.
» focus of J: J(1), a principal element (sharp).

Gudder, 2006; SP, 2006



Compressions and compression bases in effect algebras

A compression base: {Jp}pcp
» P C E a subalgebra (an OMP)
> Jp(l)=p, forall pe P
» if p< q, then JyJg = JgJp = J; for some r € P

Elements of P are called projections.
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Properties of compression bases

» P s an OMP,
» For a € E,

a=Jp(a) D Jyu(a) <= a<rp = Jp(a)=aNp.
» bicommutant of a:
P(a)={peP:p+a, Vge P,g+a = q<+ p}.

a Boolean subalgebra in P
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Examples

» Hilbert space effects: unique (maximal) compression base
E(#), with {Up}pepn). Up(a) = pap.
» Central compression bases: P = I'(E) the center of E:
E, with {Up} per(e), Up(a) = p A a.

> Effect algebras with RDP (MV-effect algebras): the central
compression base is the unique (maximal) compression base.
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Examples

» The horizontal sum of Hilbert space effect algebras
E = E(H)DE(H).

» Let ¢ be a faithful state on E(#) (¢(a) = 0 implies a = 0).

> We can construct a compression base with the set of
projections P = P(H)BHP(H):

Jp0)(a:0) = (Jp(a),a),  Jip0)(0,3) = (#(a)p, 0)

(similarly for Jo p))-
» we obtain many different compression bases with the same P.



Spectrality: projection cover property

(E,{Jp}pep) - an effect algebra with a fixed compression base.

Definition (Gudder, 2006)

(E,{Jp}pep) has the projection cover property if for any a € E,
there is a projection cover: a° € P such that

a<lp <= a°<p, Vp € P.

Then P is an OML.
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Spectrality: b-property

Definition (SP, 2006)
(E,{Jp}pep) has the b-property if for all a € E, g € P,

a<rq < P(a) < q.

For a, b € E, aCb (a commutes with b) if P(a) <> P(b).

Under b-property: for p € P,

aCp <= a+ p.
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Definition (SP, 2006)
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» for all a,b € E, aCb, we have
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Spectrality: b-comparability

Definition (SP, 2006)

(E,{Jp}pecp) has the b-comparability property if
» it has the b-property
» for all a,b € E, aCb, we have

dp € P(a,b), Jp(a) < Jp(b), J,1(b) < J,i(a).

Under b-comparability: any a € E has a splitting projection:

pe P(a): Jp(a) < Jp(1—a), Jpi(a) > (1 —a)
“Jp(a) <1/2" “Jpr(a) > 1/2"
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Spectrality

Definition (SP, 2006)
(E,{Jp}pep) is spectral if it has both the projection cover and the
b-comparability property.

Then

» P = {sharp elements in E}, P is an OML,
» E is covered by C-blocks

C(B):={a€ E,a<> B} forablock BCP

= maximal sets of mutually commuting elements
» any C-block is a spectral MV-effect algebra
P> any a € E has a largest splitting projection



Binary spectral resolutions

Let ac E.

By repeated applications of splitting, we construct a family
{Pax(w)}we{o,1}+, indexed by binary fractions

n
Aw) = Z w2~ w e {0,1}"
i=1

- the binary spectral resolution of a.



Characterization of the binary spectral resolution

Let E be archimedean and spectral. The binary spectral resolution
{Pr(w) }we{o,13+ is the unique family in P

> 1l=p1>pyx>pyforl> A=y,
> AospPr=pPu
> py < aforall )\,
» For n, w € {0,1}", put
U = (Px(w)+2-7) A P’A(w)a
then f,,(J,, (2)) exists in [0, uy], for the partially defined map

fw =Tw, 09 -0 fwl, fb(b) = 2b, fl(b) = (2bl),
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Spectral resolution in C-blocks

Another way to construct a spectral resolution for a € E:

P ais contained in a C-block C - a spectral MV-effect algebra
» C is the unit interval in a unital ¢-group G

» ( is spectral iff G is spectral = there is the rational
spectral resolution of a in G (Foulis):

C
{pa,)\}/\EQ

» this spectral resolution does not depend on the choice of C

» For binary fractions - the previous construction

pac:)\(w) = pa,)\(w)v w e {07 1}*



Further properties of spectral resolutions

If E has a separating family of states, then for a € E:

P ais uniquely determined by its binary spectral resolution

» ais compatible with g € P if and only if p, ) is compatible
with g for all binary fractions \.



Further properties of spectral resolutions

If E has a separating family of states, then for a € E:

P ais uniquely determined by its binary spectral resolution

» ais compatible with g € P if and only if p, ) is compatible
with g for all binary fractions \.

Note:

For groups, these properties hold if G is archimedean, which
implies that it has an ordering set of states.
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Spectrality of interval effect algebras

E is an interval effect algebra if E ~ [0, u] in a POUAG (G, v)

— (the universal group of E).

. . ? .
» Question: E is spectral <= G is spectral?

» True for

- MV-effect algebras

- archimedean divisible (convex) effect algebras,
> False in general.

Counterexample: the horizontal sum E(H)SE(H)

(an interval effect algebra which is spectral but its universal
group is not spectral).



Convex effect algebras

» archimedean convex effect algebra E ~ unit interval in an
order unit space (A, A", u)
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Convex effect algebras

» archimedean convex effect algebra E ~ unit interval in an
order unit space (A, A", u)
» E is spectral <= A is spectral (as a POUAG)

P a stronger notion: spectral duality (Alfsen and Schultz, 1976,
2003)

- A has a predual base normed space V

- stronger conditions on the compressions
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JB-algebras

Let A be a JB-algebra. Then

» spectral duality holds <= A is a JBW-algebra

» the following are equivalent:

> A is spectral
> A is Rickart

» any maximal associative subalgebra of A is monotone
o-complete



Generalized spin factors

A generalized spin factor is an order unit space defined from a
Banach space (X, || - ||) (Berdikulov and Odilov, 1994):

A=Rx X, AT={(ax), x| <a}, u=(1,0)
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Generalized spin factors

A generalized spin factor is an order unit space defined from a
Banach space (X, || - ||) (Berdikulov and Odilov, 1994):

A=Rx X, A" ={(ax), |Ix|| <a}, v=(1,0)
Let (X, || - ||) be reflexive. Then

» Alis spectral <= (X, || -||) is strictly convex.

» A s is spectral duality <= (X, || -||) is strictly convex and
smooth.



