Dimensionalities on monoids in Rel

Gejza Jenča

Slovak University of Technology in Bratislava

SSAOS 2025

This research is supported by grants VEGA 2/0128/24 and 1/0036/23

The category of sets and relations

...denoted by Rel.

- Objects: sets.
- Morphisms: binary relations; $f: A \to B$ in **Rel** is a set of pairs $f \subseteq A \times B$.
- Identities: $id_A : A \rightarrow A$ is the identity relation.
- Composition: if $f: A \to B$ and $g: B \to C$, then $(a, c) \in g \circ f$ iff there exists $b \in B$ such that $(a, b) \in f$ and $(b, c) \in g$.

Additional structure on **Rel**

• In **ReI**, every morphism can be turned around: for each $f: A \to B$ we have $f^{\dagger}: B \to A$ with

$$f^{\dagger}(b,a) \iff f(a,b)$$

 Relations between the same sets can be ordered by inclusion f ⊆ g, so Rel is enriched over Pos.

Additional structure in action

An equivalence on A is a relation \sim : $A \rightarrow A$ such that

- id_A ⊆~
- ∼=∼[†]
- ~C~ o ~

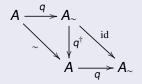
A relation $f: A \rightarrow B$ is a mapping iff

- $id_A \subseteq f^{\dagger} \circ f$
- $f \circ f^{\dagger} \subseteq \mathrm{id}_B$

Equivalences and quotients

Theorem

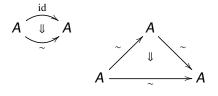
A relation \sim : A \rightarrow A is an equivalence if and only if there is a set A $_\sim$ and a mapping q: A \rightarrow A $_\sim$ such that



commutes. The mapping q is then (essentially) unique and is called the quotient map of \sim .

(Lax) diagrams

Reflexivity and transitivity



Relational magmas

A *pointed magma* in **Rel** is an object *S* equipped with a binary and a nullary operation

$$\nabla \colon S \times S \to S$$
 $e \colon I \to S$

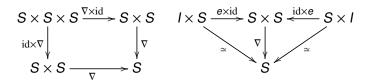
where I is a singleton set.

We write

- e_*^a for e(*, a), where $I = \{*\}$ and $a \in S$.
- ∇^c_{ab} for $\nabla((a,b),c)$, where $(a,b) \in S \times S$ and $c \in C$.

Relational monoids

A pointed magma in **Rel** (S, ∇, e) is a *monoid* if the diagrams



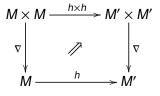
commute.

Examples of relational monoids

- Every monoid in Set.
- Every hypermonoid, hypergroup etc.
- Every small category (elements are the arrows).
- Every poset (elements are the comparable pairs).
- Every effect algebra, hence every OML, OA, BA, MV-algebra etc.

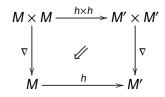
Morphisms of monoids in Rel

There are at least two meaningful notions of morphisms of monoids in **Rel**.



Lax morphism

$$(h \circ \nabla) \subseteq (\nabla \circ (h \times h))$$
$$h \circ e \subseteq e$$



Oplax morphism

$$(h \circ \nabla) \supseteq (\nabla \circ (h \times h))$$
$$e \subseteq h \circ e$$

Homomorphisms, congruences and submonoids are oplax

Let A, B be ordinary monoids (in **Set**).

- A mapping $h: A \to B$ is oplax iff it is a homomorphism.
- An equivalence \sim : $A \rightarrow A$ if oplax iff it is a congruence.
- Let $C \subseteq A$. Write $=_C : A \rightarrow A$ for the relation

$$=_C (a_1, a_2) \iff a_1 = a_2 \in C$$

Then $=_C$ is an oplax morphism iff C is a submonoid of A.

The definition

Definition

A dimensionality on a relational monoid A is a <u>lax</u> equivalence on A.

This gives us a new notion even for ordinary monoids. If (A, ., e) is a monoid in **Set**, then an equivalence \sim on A is a dimensionality iff

- If $e \sim x$, then e = x.
- For all $a, b, c \in A$ such that $a.b \sim c$, there exist $a', b' \in A$ such that $a \sim a', b \sim b'$ and a'.b' = c.

Example

Write $F_{mon}[x]$ for the set of all monic polynomials of one variable over a field F:

$$F_{\text{mon}}[x] = \{x^n + a_{n-1}x^{n-1} + \dots + a_0 : n \in \mathbb{N} \text{ and } a_{n-1}, \dots, a_0 \in F\}$$

Let \sim be an equivalence on $F_{mon}[x]$ given by the rule $\mathbf{p} \sim \mathbf{q}$ iff \mathbf{p} and \mathbf{q} have the same degree.

Then \sim is a dimensionality on the monoid $(F_{mon}[x],.,1)$ iff F is algebraically complete.

- In this example, \sim is a congruence.
- But in general, it does not have to be one.

Examples

Same length

Example

Consider the monoid (\mathbb{R}^2 , +, (0,0)). The relation \sim on \mathbb{R}^2 given by the rule

$$\vec{x} \sim \vec{y} \text{ iff } ||\vec{x}|| = ||\vec{y}||$$

is a dimensionality.

- Draw a picture of some board.
- This example is not a congruence.
- However, note that there is an action of $\mathbb R$ on the monoid $(\mathbb R^2,+,(0,0))$ such that the orbits of the action are exactly the equivalence classes of \sim .

Groups of automorphisms induce dimensionalities

Theorem

Let (A, ∇, e) be a monoid in **Rel** , let Γ be a subgroup of $\operatorname{Aut}(A)$. Write

$$x \sim_{\Gamma} y \text{ iff } \exists f \in \Gamma : f(x) = y$$

Then \sim_{Γ} is a dimensionality on A.

- Not all dimensionalities arise in this way:
- see the "monic polynomials" example.

Quotients of magmas in Rel

For every equivalence \sim on a pointed magma (S, ∇, e) in **Rel** we may construct a pointed magma $(S_{\sim}, \nabla_{\sim}, e_{\sim})$, where ∇_{\sim} and e_{\sim} are given by the rules

$$(\nabla_{\sim})_{AB}^{C} \iff \exists (a,b) \in A \times B, c \in C : \nabla_{ab}^{c}$$

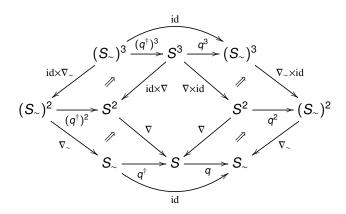
$$(e_{\sim})_{*}^{P} \iff \exists p \in P : e_{*}^{p}$$
(1)

Main result

Theorem

For every dimensionality on a relational monoid (S, ∇, e) , $(S_{\sim}, \nabla_{\sim}, e_{\sim})$ is a relational monoid.

A snippet of the proof



Main result 2

Definition

A monoid A in **Rel** equipped with a mapping $(x \mapsto x^{-1})$ is a *hypergroup* if

$$abla^c_{ab} \iff
abla^b_{(a^{-1})c} \iff
abla^a_{c(b^{-1})}$$

Theorem

If A is a hypergroup and \sim is a dimensionality that preserves the inverse

$$\begin{array}{ccc}
A & \xrightarrow{\sim} & A \\
 & \downarrow & \downarrow \\
A & \xrightarrow{\sim} & A
\end{array}$$

then A_{\sim} is a hypergroup.

Example

From the "same length" dimensionality on \mathbb{R}^2 we obtain the hypergroup of all lengths: $([0,\infty),\nabla,\{0\})$

$$\nabla^z_{xy} \Leftrightarrow |x-y| \le z \le x+y$$

Example

Pick the subgroup $\Gamma=\{1,4\}$ of the multiplicative group of the field $\mathbb{Z}_5,$ then

$$\mathbb{Z}_5/{\sim_\Gamma} = \{\{0\}, \{1,4\}, \{2,3\}\}$$

The additive hypergroup \mathbb{Z}_5/\sim_Γ is

+~	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2][0]	[1][2]
[2]	[2]	[1][2]	[1][0]

Inner automorphisms of S_n

- Consider the symmetric group S_n .
- Let Γ be the group of inner automorphisms.
- We have $f \sim_{\Gamma} g$ iff f, g have the same cyclic type.
- Cyclic types correspond to decomposition of n as the sum of natural numbers (up to commutativity of +), i.e. integer partitions.
- S_n/Γ is a hypergroup.
- For S_6 , we have

$$abla^6_{(3+3)(2+1+1+1+1)} \quad
abla^{(3+2+1)}_{(3+3)(2+1+1+1+1)}$$