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The definition

Definition
Let P,Q be posets. A relation f ⊆ P ×Q is monotone relation from P
to Q if and only if, for every p1, p2 ∈ P and q1, q2 ∈ Q,

p2 ≥ p1 and f (p1, q2) and q2 ≥ q1 imply f (p2, q1)

We write f : P −7−→ Q for a monotone relation f from P to Q.

Example
Let P, Q be posets. Both the universal relation P ×Q ⊆ P ×Q and the
empty relation ∅ ⊆ P ×Q are monotone.
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It is instructive to visualize a monotone relation between two disjoint
finite posets P and Q in the following way.

Draw the Hasse diagram of Q.

Draw the Hasse diagram of P over the diagram of Q.

Draw some additional lines between elements of P and elements of
Q,so that the resulting picture is a Hasse diagram of a poset C .

This poset then determines a monotone relation fC ⊆ P ×Q given
by the rule fC (p, q) if and only if q ≤C p.
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For every monotone mapping f : P → Q, there is a monotone relation
f̂ : P −7−→ Q given by

f̂ (p, q)⇔ f (p) ≥ q
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Let P,Q,R be posets, let f : P −7−→ Q and g : Q −7−→ R be monotone
relations. The composite relation g ◦ f ⊆ |P| × |R| is given by the rule

(g ◦ f )(p, r) if and only if f (p, q) and g(q, r) for some q ∈ Q.

It is easy to check that the composite relation of two monotone relations
is monotone and that the operation of composition is associative.
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For a poset P, the identity monotone relation is the relation
idP : P −7−→ P given by the rule

idP(x , y)⇔ x ≥ y

It is easy to see that for every monotone relation f : P −7−→ Q,
f = idQ ◦ f = f ◦ idP .
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The category of posets and monotone relations, denoted by RelPos, is a
category whose objects are posets and morphisms are monotone
relations.
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The direct product ⊗ of posets is a bifunctor from RelPos× RelPos to
RelPos. Indeed, for a pair of monotone relations f : A −7−→ B and
g : C −7−→ D the monotone relation (f ⊗ g) : A⊗ C −7−→ B ⊗D by the rule

(f ⊗ g)((a, c), (b, d))⇔ f (a, b) and g(c , d)
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Fix a 1-element poset and call it 1.
(RelPos,⊗, 1) is a symmetric monoidal category

For cographs, we have cog(f ⊗ g) = cog(f )× cog(g).
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A dual object to an object A of a symmetric monoidal category (C,⊗, I )
is an object A∗ such that there are morphisms ηA : I → A∗ ⊗ A and
εA : A⊗ A∗ → I such that the diagrams

A
ρ−1

A //

idA

��

A⊗ I

idA⊗ηA
��

A⊗ A∗ ⊗ A

εA⊗idA
��

A I ⊗ A
λA

oo

A∗
λ−1

A∗ //

idA∗

��

I ⊗ A∗

ηA⊗idA∗
��

A∗ ⊗ A⊗ A∗

idA∗⊗εA
��

A A∗ ⊗ IρA∗
oo

(1)

commute. The morphisms ηA and εA are called coevaluation and
evaluation, respectively.
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If A∗ and A+ are dual objects of an object A, then A∗ ' A+.

Consider the symmetric monoidal category of vector spaces
equipped with the tensor product (Vect(K ),⊗,K ). A vector space
V has a dual iff V is finitely dimensional;

the dual object of V is then simply the usual linear dual of V .

Modules over a commutative ring: M has a dual iff M is a finitely
generated projective module.

By fixing a chosen dual for each object, taking a dual can be made
to a contravariant functor ∗ : C → Cop.

So, for a morphism f : A→ B there is a dual morphism
f ∗ : B∗ → A∗.
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Definition
A symmetric monoidal category is compact closed if every of its objects
has a dual.

The category of finite-dimensional vector spaces FinVect(K ) is compact
closed.
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Theorem
(RelPos,×, 1) is a compact closed category.

The dual object of a poset A is the dual poset of A.

For cographs: cog(f ∗) ' (cog(f ))∗.
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FinVect(C) is compact closed.

FinHilb (finite dimensional Hilbert spaces) is compact closed as well.

What do we gain if we equip vector spaces with an inner product?

We gain the Riesz representation theorem, which means that every
object V of FinHilb is equipped with a canonical isomorphism
V → V ∗.

On categorical level, every morphism f : V → U is equipped with
another morphism f † : U → V such that f †† = f .
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A dagger category is a category C equipped with an functor † : C → Cop

that is identity on objects and satisfies f †† = f for every morphism f of
C. In fact, the † functor can be characterized a mapping on the class of
morphisms of C that has the following properties:

(idH)† = idH

(f ◦ g)† = g† ◦ f †

f †† = f
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RelPos is probably not a dagger category.

However, there is a partial solution:

we can replace RelPos with a
category of self-dual posets with a fixed isomorphism ′ : A→ A∗.
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An involution on a poset P is mapping ′ : P → P satisfying the following
conditions.

For all x , y ∈ P, x ≤ y if and only if y ′ ≤ x ′.

For all x ∈ P, x ′′ = x .

A poset equipped with an involution is called involutive poset, or poset
with involution.
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The category RelPosInv has posets equipped with involutions for objects
and monotone relations for morphisms. Note that the morphism in
RelPosInv do not interact with the involutive structure at all. However,
the involutive structure on objects allows us to flip the morphisms: if
f : A −7−→ B is a monotone relation, then there is a monotone relation
f † : B −7−→ A given by the rule

f †(b, a) = f (a′, b′).

It is easy to check that f † is a monotone relation. Moreover, RelPosInv
equipped with † is a dagger category.
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Theorem (GJ)
RelPosInv is a dagger compact category.
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A Frobenius structure in a symmetric monoidal category (C,⊗, I ) is an
object A equipped with a monoid structure (A,∇, e) and a comonoid
structure (A,∆, c) such that the following diagram commutes

A⊗ A
idA⊗∆ //

∇

%%
∆⊗idA

��

A⊗ A⊗ A

∇⊗idA

��

A
∆

%%
A⊗ A⊗ A

idA⊗∇
// A⊗ A

(2)

A Frobenius structure is a dagger Frobenius structure if ∇ = ∆† and
m = c†. Clearly, every dagger Frobenius structure is completely
determined by its (co)monoid structure.
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Theorem (Vicary)
Dagger Frobenius structures in FinHilb are H∗-algebras.
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Problem
What are dagger Frobenius structures in RelPosInv?

I do not know, but I have nice examples!
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An effect algebra is a partial algebra (E ,⊕, 0, 1) with a binary partial
operation ⊕ and two nullary operations 0, 1 satisfying the following
conditions.

(E1) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a.

(E2) If a ⊕ b and (a ⊕ b)⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are
defined and (a ⊕ b)⊕ c = a ⊕ (b ⊕ c).

(E3) For every a ∈ E there is a unique a′ ∈ E such that a ⊕ a′ exists and
a ⊕ a′ = 1.

(E4) If a ⊕ 1 is defined, then a = 0.
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For every effect algebra E , there is a (clearly monotone) relation
∆: E −7−→ E ⊗ E given by the rule

∆(x , (a, b))⇔ x ≥ a ⊕ b

Moreover, there is a monotone relation c : E −7−→ I given by c = E → I
(the total relation).
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Theorem (GJ)
For every effect algebra E, (E ,∆, c) is a comonoid that gives rise to a
dagger Frobenius structure on E.
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