Colimits of effect algebras via a reflection Dedicated to Sylvia Pulmannová and Anatolij Dvurečenskij

Gejza Jenča

Slovak University of Technology Bratislava

TACL 2019

Gejza Jenča

Colimits of effect algebras via a reflection

TACL 2019 1 / 37

An *effect algebra* is a partial algebra (E; +, 0, 1) satisfying the following conditions.

(E1) If a + b is defined, then b + a is defined and a + b = b + a.

- (E2) If a + b and (a + b) + c are defined, then b + c and a + (b + c) are defined and (a + b) + c = a + (b + c).
- (E3) For every $a \in E$ there is a unique $a^{\perp} \in E$ such that $a + a^{\perp} = 1$. (E4) If a + 1 exists, then a = 0

Let E be an effect algebra.

- Cancellativity: $a + b = a + c \Rightarrow b = c$.
- Partial difference: If a + b = c then we write a = c − b. The operation − is well defined and a[⊥] = 1 − a.
- Poset: Write $b \leq c$ iff $\exists a : a + b = c$; (E, \leq) is then a bounded poset.

The class of effect algebras includes

- orthomodular lattices
- MV-algebras
- Boolean algebras.

Definition

Let A be an effect algebra, let $\sim \subseteq A \times A$ be a relation such that the following conditions are satisfied.

- ullet \sim is an equivalence.
- If $x_1 \sim x_2$ and $y_1 \sim y_2$ and $x_1 + y_1$ exists and $x_2 + y_2$ exists, then $x_1 + y_1 \sim x_2 + y_2$.
- If $x_1 \sim x_2$, then $x_1^{\perp} \sim x_2^{\perp}$.

Then we say that \sim is *a congruence* on *A*.

Definition

Let E, F be effect algebras, let $f: A \rightarrow B$. We say that f is a morphism of effect algebras iff

- f(1) = 1 and
- for all $x, y \in A$ such that x + y exists in A, f(x) + f(y) exists in Band f(x + y) = f(x) + f(y)

Whenever $f: A \to B$ is a morphism of effect algebras, its kernel $\Theta_f \subseteq A \times A$, given by

$$x\Theta_f y \Longleftrightarrow f(x) = f(y)$$

is a congruence.

In non-partial algebras:

- ullet there is a quotient algebra A/Θ
- and a mapping

 $x\mapsto [x]_\Theta$

that takes every element to its equivalence class.

- For effect algebras, the quotient A/Θ might be non-associative.
- The problem is *existence* of sums, not their value.

• We may try to come up with sufficient conditions on Θ under which A/Θ is an effect algebra.

- We may try to come up with sufficient conditions on Θ under which A/Θ is an effect algebra.
- The general idea is to enforce the existence of sums by adding some conditions to the definition of the congruence.

- We may try to come up with sufficient conditions on Θ under which A/Θ is an effect algebra.
- The general idea is to enforce the existence of sums by adding some conditions to the definition of the congruence.
- Examples
 - Strong: if $x_1 \Theta x_2$ and $x_1 + y$ exists, then $x_2 + y$ exists.

- We may try to come up with sufficient conditions on Θ under which A/Θ is an effect algebra.
- The general idea is to enforce the existence of sums by adding some conditions to the definition of the congruence.
- Examples
 - Strong: if $x_1 \Theta x_2$ and $x_1 + y$ exists, then $x_2 + y$ exists.
 - Weaker: if $x_1 \ominus x_2$ and $x_1 + y_1$ exists, then there is $y_2 \ominus y_1$ such that $x_2 \ominus y_2$ exists.

- We may try to come up with sufficient conditions on Θ under which A/Θ is an effect algebra.
- The general idea is to enforce the existence of sums by adding some conditions to the definition of the congruence.
- Examples
 - Strong: if $x_1 \Theta x_2$ and $x_1 + y$ exists, then $x_2 + y$ exists.
 - Weaker: if $x_1 \ominus x_2$ and $x_1 + y_1$ exists, then there is $y_2 \ominus y_1$ such that $x_2 \ominus y_2$ exists.
 - Ideals: we might consider only quotients by ideals.

- We may try to come up with sufficient conditions on Θ under which A/Θ is an effect algebra.
- The general idea is to enforce the existence of sums by adding some conditions to the definition of the congruence.
- Examples
 - Strong: if $x_1 \Theta x_2$ and $x_1 + y$ exists, then $x_2 + y$ exists.
 - Weaker: if $x_1 \ominus x_2$ and $x_1 + y_1$ exists, then there is $y_2 \ominus y_1$ such that $x_2 \ominus y_2$ exists.
 - Ideals: we might consider only quotients by ideals.
- This area was explored around the year 2000 by Gudder, Chevalier, Pulmannová, GJ in several papers.

Congruences, from a categorical viewpoint

• A congruence on an algebra A can be characterized as a *subalgebra of* A × A that (as a relation) is an equivalence:

$$\Theta \longrightarrow A \times A$$

Congruences, from a categorical viewpoint

• A congruence on an algebra A can be characterized as a *subalgebra of* A × A that (as a relation) is an equivalence:

$$\Theta \longrightarrow A \times A$$

• Composing this embedding with two projections A imes A o A

$$\Theta \longrightarrow A \times A \Longrightarrow A$$

Congruences, from a categorical viewpoint

• A congruence on an algebra A can be characterized as a *subalgebra of* A × A that (as a relation) is an equivalence:

$$\Theta \longrightarrow A \times A$$

• Composing this embedding with two projections A imes A o A

$$\exists \hookrightarrow A \times A \Longrightarrow A$$

• gives us, in a canonical way, two mappings

$$\Theta \xrightarrow[p_2]{p_1} A$$

If we compose p_1, p_2 with the quotient map $q(x) = [x]_{\Theta}$

$$\Theta \xrightarrow{p_1} A \xrightarrow{q} A/\Theta$$

we obtain an equality

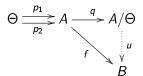
$$q \circ p_1 = q \circ p_2$$

Moreover, q is the "best" mapping with respect to the equality $q \circ p_1 = q \circ p_2$, meaning

Moreover, q is the "best" mapping with respect to the equality $q \circ p_1 = q \circ p_2,$ meaning

• whenever
$$f \circ p_1 = f \circ p_2$$
,

• there is a unique arrow *u* making the diagram



commute.

That means, $q: A \rightarrow A/\Theta$ is a coequalizer of the pair

$$\Theta \xrightarrow{p_1}_{p_2} A$$

Problem

Does the category of effect algebras have coequalizers?

That means, $q: A \rightarrow A/\Theta$ is a coequalizer of the pair

$$\Theta \xrightarrow{p_1} A$$

Problem

Does the category of effect algebras have coequalizers?

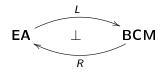
Or, more generally:

Problem

Does the category of effect algebras have all (small) colimits?

• Yes [Jacobs and Mandemaker 2012].

- Yes [Jacobs and Mandemaker 2012].
- There is a coreflection



between effect algebras **EA** and *barred commutative monoids* **BCM**.

Definition

Let C be a full subcategory of a category \mathcal{D} . A coreflection of an object $X \in \mathcal{D}$ is a choice of an object $G(X) \in C$ and an arrow $\epsilon_X \colon G(X) \to X$ such that for every other arrow $f \colon A \to X$ with $A \in C$ there is a unique $u \colon A \to G(X)$ such that

Definition

Let C be a full subcategory of a category \mathcal{D} . A coreflection of an object $X \in \mathcal{D}$ is a choice of an object $G(X) \in C$ and an arrow $\epsilon_X \colon G(X) \to X$ such that for every other arrow $f \colon A \to X$ with $A \in C$ there is a unique $u \colon A \to G(X)$ such that

If every object has a coreflection, C is a *coreflective subcategory* of D.

• consider the diagram as \mathcal{D} -valued and compute the (co)limit in \mathcal{D} ;

- ullet consider the diagram as \mathcal{D} -valued and compute the (co)limit in \mathcal{D} ;
- coreflect the result into C;

- ullet consider the diagram as \mathcal{D} -valued and compute the (co)limit in \mathcal{D} ;
- coreflect the result into C;
- this is the (co)limit in \mathcal{C} .

• BCM is a quasivariety, so it has all colimits.

- BCM is a quasivariety, so it has all colimits.
- Therefore, **EA** is cocomplete.

Moreover, Jacobs and Mandemaker have constructed an example of a non-surjective coequalizer

$$B \xrightarrow[g_2]{g_1} A \xrightarrow{q} Q$$

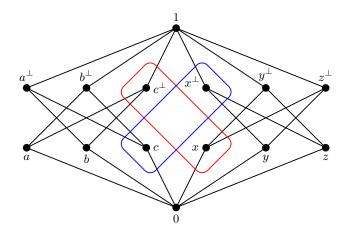
Moreover, Jacobs and Mandemaker have constructed an example of a non-surjective coequalizer

$$B \xrightarrow[g_2]{g_1} A \xrightarrow{q} Q$$

and one can easily adapt their example to show that there are "non-surjective" quotient maps:

$$\Theta \xrightarrow[\rho_2]{\rho_1} A \xrightarrow{q} A / \Theta$$

A congruence



The quotient is isomorphic to the Boolean algebra 2^4 .

Gejza Jen ča

TACL 2019 20 / 37

э

It is difficult to compute colimits in **BCM**.

Gejza Jenča

Colimits of effect algebras via a reflection

TACL 2019 21 / 37

Idea: representation of a quantum logic by the set of all decompositions of unit.

Idea: representation of a quantum logic by the set of all decompositions of unit. Keywords:

- test space
- frame manual
- Foulis-Randall space
- E-test space
- D-test space

Idea: representation of a quantum logic by the set of all decompositions of unit. Keywords:

- test space
- frame manual
- Foulis-Randall space
- E-test space
- D-test space

Names:

- D. Foulis, C. Randall
- P. Frazer-Lock
- A. Wilce
- A. Pulmannová, S. Gudder, A. Dvurečenskij

• A finite multiset over a set X is a mapping

$$\mathbf{t}\colon X\to\mathbb{N}$$

with finite support.

- The set of all finite multisets over a set X is denoted by M(X).
- (M(X), +, 0) is a monoid (free commutative monoid generated by X).
- M(X) is partially ordered (pointwise).

A finite multiset system \mathcal{X} is a pair $(V(\mathcal{X}), T(\mathcal{X}))$, where $V(\mathcal{X})$ is a set called *the set of points of* \mathcal{X} and $T(\mathcal{X})$ is a set of finite multisets over $V(\mathcal{X})$, called *tests of* \mathcal{X} .

A morphism of finite multisets systems $f: \mathcal{X} \to \mathcal{Y}$ is a mapping $f: V(\mathcal{X}) \to V(\mathcal{Y})$ such that the *pushforward of a test* $t \in T(\mathcal{X})$ is a test of \mathcal{Y} :

$$f_*(t)(y) = \sum_{x \in f^{-1}(y)} t(x)$$

Gejza Jenča

Theorem

The category of finite multiset systems is complete and cocomplete.

Gejza Jenča

Colimits of effect algebras via a reflection

TACL 2019 26 / 37

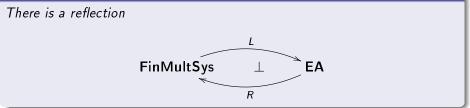
э

Theorem

The category of finite multiset systems is complete and cocomplete.

Importantly, the limits and colimits are easy to compute: there is an obviously defined functor $FinMultSys \rightarrow Set$ that creates all limits and colimits.

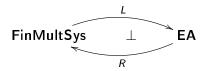
Theorem



TACL 2019 27 / 37

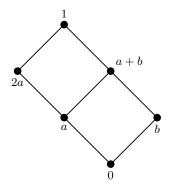
- A 🖓

æ



If A is an effect algebra, then R(A) is the set of all *decompositions of unit* (called the *tests of* A).

Example



0	а	b	2 <i>a</i>	a + b	1
0	2	1	0	0	0
0	0	1	1	0	0
5	1	0	0	1	0
3	0	0	0	0	1

Gejza Jenča

Colimits of effect algebras via a reflection

TACL 2019

イロト イヨト イヨト イヨト

29 / 37

3

- Let \mathcal{X} be a finite multiset system.
- An event of \mathcal{X} is a $V(\mathcal{X})$ -based multiset

 $a\colon V(\mathcal{X}) \to \mathbb{N}$

such that there is a test $t \in T(\mathcal{X})$ such that $a \leq t$.

- Let $\mathcal X$ be a finite multiset system.
- An event of \mathcal{X} is a $V(\mathcal{X})$ -based multiset

 $a\colon V(\mathcal{X}) \to \mathbb{N}$

such that there is a test $t \in T(\mathcal{X})$ such that $a \leq t$.

• The set of all events is denoted by $E(\mathcal{X})$.

- Let \mathcal{X} be a finite multiset system.
- An event of \mathcal{X} is a $V(\mathcal{X})$ -based multiset

 $a\colon V(\mathcal{X}) \to \mathbb{N}$

such that there is a test $t \in T(\mathcal{X})$ such that $a \leq t$.

- The set of all events is denoted by $E(\mathcal{X})$.
- Two events $a, b \in E(\mathcal{X})$ are complements of each other if

 $a+b\in T(\mathcal{X})$

- Let \mathcal{X} be a finite multiset system.
- An event of \mathcal{X} is a $V(\mathcal{X})$ -based multiset

a: $V(\mathcal{X}) \to \mathbb{N}$

such that there is a test $t \in T(\mathcal{X})$ such that $a \leq t$.

- The set of all events is denoted by $E(\mathcal{X})$.
- Two events $a, b \in E(\mathcal{X})$ are complements of each other if

$$a+b\in T(\mathcal{X})$$

 Two events a, a' are perspective (in symbols a ~ a') if the share a common complement:

$$a+b\in T(\mathcal{X})$$
 $b+a'\in T(\mathcal{X})$

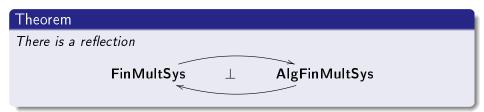
Definition

- A finite multiset system is \mathcal{X} algebraic if
 - $\bullet\,$ The set of tests of ${\cal X}$ is order-convex, that means

$$t_1,t_2\in \mathcal{T}(\mathcal{X}) ext{ and } t_1\leq s\leq t_2 \implies s\in \mathcal{T}(\mathcal{X}).$$

• If $a \sim a'$ and a is a complement of c, then a' is a complement of c. In other words,

$$\left.\begin{array}{l} a'+b \in T(\mathcal{X}) \\ b+a \in T(\mathcal{X}) \\ a+c \in T(\mathcal{X}) \end{array}\right\} \implies a'+c \in T(\mathcal{X})$$



Gejza Jenča

Colimits of effect algebras via a reflection

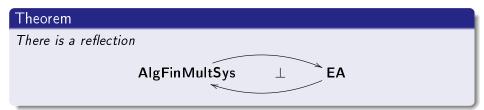
TACL 2019 32 / 37

For every effect algebra A, the finite multiset system consisting of all decompositions of unit of A is algebraic.

- Let \mathcal{X} be an algebraic multiset system.
- The relation of perspectivity \sim on the set of all events $E(\mathcal{X})$ is an equivalence relation.
- Perspectivity behaves well with respect to sums of events:

$$a_1 \sim a_2$$
 and $b_1 \sim b_2 \implies a_1 + b_1 \sim a_2 + b_2$

• $E(\mathcal{X})/\sim$ forms an effect algebra.



Gejza Jenča

Colimits of effect algebras via a reflection

TACL 2019

æ

35 / 37

Gejza Jenča

Colimits of effect algebras via a reflection

TACL 2019

36 / 37

- We have an effect algebra E and a congruence Θ on E.
- We want to compute E/Θ in the category **EA**.

- We have an effect algebra E and a congruence Θ on E.
- We want to compute E/Θ in the category **EA**.
- We start with the finite multiset system of decompositions of unit in *E*.

- We have an effect algebra E and a congruence Θ on E.
- We want to compute E/Θ in the category **EA**.
- We start with the finite multiset system of decompositions of unit in *E*.
- We pushforward all tests from the set E to the set of equivalence classes of Θ along the quotient map.

- We have an effect algebra E and a congruence Θ on E.
- We want to compute E/Θ in the category **EA**.
- We start with the finite multiset system of decompositions of unit in *E*.
- We pushforward all tests from the set E to the set of equivalence classes of Θ along the quotient map.
- We add new tests until we get an algebraic finite multiset system.

- We have an effect algebra E and a congruence Θ on E.
- We want to compute E/Θ in the category **EA**.
- We start with the finite multiset system of decompositions of unit in *E*.
- We pushforward all tests from the set E to the set of equivalence classes of Θ along the quotient map.
- We add new tests until we get an algebraic finite multiset system.
- This algebraic finite multiset system gives you the quotient E/Θ in the category **EA**.