# Unitization and symmetrization of non-commutative partial abelian monoids

#### Gejza Jenča

Department of Mathematics and Descriptive Geometry Faculty of Civil Engineering Slovak Technical University

Summer School of General Algebra and Ordered Sets 2014

# Unitization and symmetrization of non-commutative partial abelian monoids

#### Gejza Jenča

Department of Mathematics and Descriptive Geometry Faculty of Civil Engineering Slovak Technical University

Summer School of General Algebra and Ordered Sets 2014

## Effect Algebras

Foulis and Bennett [1994], Kôpka and Chovanec [1994], Giuntini and Greuling [1989]

An effect algebra is a partial algebra  $(E; \oplus, 0, 1)$  satisfying the following conditions.

- (E1) If  $a \oplus b$  is defined, then  $b \oplus a$  is defined and  $a \oplus b = b \oplus a$ .
- (E2) If  $a \oplus b$  and  $(a \oplus b) \oplus c$  are defined, then  $b \oplus c$  and  $a \oplus (b \oplus c)$  are defined and  $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ .
- (E3) For every  $a \in E$  there is a unique  $a' \in E$  such that  $a \oplus a' = 1$ .
- (E4) If  $a \oplus 1$  exists, then a = 0

# Morphisms of effect algebras

▶ A mapping  $f: A \rightarrow B$  of effect algebras is a *morphism* if it preserves all existing sums, 0 and 1.

## Morphisms of effect algebras

- ▶ A mapping  $f: A \rightarrow B$  of effect algebras is a *morphism* if it preserves all existing sums, 0 and 1.
- This gives us the category of effect algebras EA.

# Basic relationships

#### Let *E* be an effect algebra.

- ▶ Neutral element:  $a \oplus 0 = a$ .
- ▶ Cancellativity:  $a \oplus b = a \oplus c \Rightarrow b = c$ .
- ▶ Partial difference: If  $a \oplus b = c$  then we write  $a = c \ominus b$ .  $\ominus$  is well defined and  $a' = 1 \ominus a$ .
- ▶ *Positivity:*  $a \oplus b = 0$  implies a = b = 0.
- ▶ Poset: Write  $b \le c$  iff  $\exists a : a \oplus b = c$ ;  $(E, \le)$  is then a bounded poset.
- ▶ Domain of  $\oplus$ :  $a \oplus b$  is defined iff  $a \le b'$  iff  $b \le a'$ .

## Important subclasses

The class of effect algebras is (essentially) a common superclass of several classes of algebras:

- orthomodular lattices
- orthoalgebras
- MV-algebras
- Boolean algebras

# Generalized effect algebras

A generalized effect algebra is a partial algebra  $(A; \oplus, 0, 1)$  satisfying the following conditions.

- (GE1) If  $a \oplus b$  is defined, then  $b \oplus a$  is defined and  $a \oplus b = b \oplus a$ .
- (GE2) If  $a \oplus b$  and  $(a \oplus b) \oplus c$  are defined, then  $b \oplus c$  and  $a \oplus (b \oplus c)$  are defined and  $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ .
- (GE3) Neutral element:  $a \oplus 0 = a$ .
- (GE4) Cancellativity:  $a \oplus b = a \oplus c \Rightarrow b = c$ .
- (GE5) Positivity:  $a \oplus b = 0$  implies a = b = 0.

# Morphisms of generalized effect algebras

A mapping f : A → B of generalized effect algebras is a morphism if it preserves all existing sums and 0.

# Morphisms of generalized effect algebras

- ▶ A mapping  $f: A \rightarrow B$  of generalized effect algebras is a *morphism* if it preserves all existing sums and 0.
- This gives us the category of generalized effect algebras GEA.

# Morphisms of generalized effect algebras

- ▶ A mapping  $f: A \rightarrow B$  of generalized effect algebras is a *morphism* if it preserves all existing sums and 0.
- This gives us the category of generalized effect algebras GEA.
- ▶ There is a forgetful functor  $U : EA \rightarrow GEA$ .

# Unitization of generalized effect algebras

Hedlíková and Pulmannová [1996]

#### **Theorem**

For every generalized effect algebra A there is an effect algebra E(A) and an embedding of generalized effect algebras  $\eta_A:A\to UE(A)$ .

▶ The range of  $\eta_A$  is and ideal of UE(A).

# Unitization of generalized effect algebras

Hedlíková and Pulmannová [1996]

#### **Theorem**

For every generalized effect algebra A there is an effect algebra E(A) and an embedding of generalized effect algebras  $\eta_A:A\to UE(A)$ .

- ▶ The range of  $\eta_A$  is and ideal of UE(A).
- ▶ UE(A) is a disjoint union of  $\eta_A(A)$  and  $\{(\eta_A(x))' : x \in A\}$ .

# Unitization of generalized effect algebras

Hedlíková and Pulmannová [1996]

#### **Theorem**

For every generalized effect algebra A there is an effect algebra E(A) and an embedding of generalized effect algebras  $\eta_A:A\to UE(A)$ .

- ▶ The range of  $\eta_A$  is and ideal of UE(A).
- ▶ UE(A) is a disjoint union of  $\eta_A(A)$  and  $\{(\eta_A(x))' : x \in A\}$ .
- ▶ If A is upper-bounded, then  $UE(A) \simeq A \times 2$ , where 2 is the 2-element Boolean algebra.

## Where does the unitization construction come from

Theorem *E* is a left adjoint functor to *U*.

## Where does the unitization construction come from

#### **Theorem**

E is a left adjoint functor to U.Moreover, the adjunction is monadic.

### Where does the unitization construction come from

#### **Theorem**

E is a left adjoint functor to U.Moreover, the adjunction is monadic.

### Corollary

Let A, B be generalized effect algebras. let  $f: A \to UE(B)$  be a morphism. There is a unique morphism of effect algebras  $u: E(A) \to E(B)$  such that

$$UE(A) \xrightarrow{u} UE(B)$$
 $\eta_A \uparrow f$ 

commutes.

### Corollary

The unitization construction preserves colimits.

## Corollary

The unitization construction preserves colimits. In particular,

$$E(A \oplus B) \simeq E(A) \oplus E(B),$$

where on the left side  $\oplus$  is the 0-pasting and on the right side  $\oplus$  is the 0, 1-pasting.



# Pseudo effect algebras (PEAs)

Dvurečenskij and Vetterlein [2001a,b]

An *pseudo effect algebra* is a partial algebra  $(E; \oplus, 0, 1)$  satisfying the following conditions.

- (PE1) If  $a \oplus b$  and  $(a \oplus b) \oplus c$  are defined, then  $b \oplus c$  and  $a \oplus (b \oplus c)$  are defined and  $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ .
- (PE2) For every  $a \in E$  there are unique elements  $a^-, a^- \in E$  such that  $a \oplus a^- = a^- \oplus a = 1$ .
- (PE3) If  $a \oplus b$  exists, then there are  $c, d \in E$  such that  $a \oplus b = c \oplus a = b \oplus d = 1$ .
- (PE4) If  $a \oplus 1$  or  $1 \oplus a$  exist, then a = 0.

## Generalized pseudo effect algebras (GPEAs)

An *pseudo effect algebra* is a partial algebra  $(E; \oplus, 0, 1)$  satisfying the following conditions.

- (GPE1) If  $a \oplus b$  and  $(a \oplus b) \oplus c$  are defined, then  $b \oplus c$  and  $a \oplus (b \oplus c)$  are defined and  $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ .
- (GPE2) If  $a \oplus b$  exists, then there are  $c, d \in E$  such that  $a \oplus b = c \oplus a = b \oplus d = 1$ .
- (GPE3) If  $a \oplus b = a \oplus c$  or  $b \oplus a = c \oplus a$ , then b = c.
- (GPE4)  $a \oplus 0 = 0 \oplus a = a$ .
- (GPE5) If  $a \oplus b = 0$ , then a = b = 0.

#### Is there a unitization?

#### **Problem**

Can every GPEA be embedded, as an ideal, into a PEA?

### A unitization result

Foulis and Pulmannová [2014]

#### **Theorem**

Let P be a GPEA, suppose that there is an automorphism  $\gamma: E \to E$  (called unitizing automorphism) such that

 $\gamma a \oplus b$  exists iff  $b \oplus a$ .

Then P admits a nice unitization E(P).

# The adjunction generalizes to the non-commutative case

- There is a category "GPEAS equipped with an unitizing automorphism", call it GPEAγ.
- ► There is a forgetful functor  $U : \mathbf{GPEA} \to \mathbf{GPEA}\gamma$ ; the unitizing automorphism for U(E) is just  $x \mapsto x^{--}$ .
- The unitization construction F : GPEAγ → GPEA is a functor left adjoint to U.

# Symmetric pseudo effect algebras

#### Definition

An pseudo effect algebra is called *symmetric* if, for all elements  $a, a^{\sim} = a^{-}$ .

A symmetric pseudo effect algebra need not be commutative.

## A canonical automorphism

Foulis and Pulmannová [2014]

#### Lemma

In a pseudo effect algebra,  $x \mapsto x^{--}$  is an automorphism.

#### Theorem

1. There is an action of  $\mathbb{Z}$  on every PEA E such that  $x \mapsto x^{--}$  is the action of  $1 \in \mathbb{Z}$ .

- 1. There is an action of  $\mathbb{Z}$  on every PEA E such that  $x \mapsto x^{--}$  is the action of  $1 \in \mathbb{Z}$ .
- 2. The orbits of this action determine a (strong) congruence  $\equiv$  on E such that  $E/\equiv$  is symmetric.

- 1. There is an action of  $\mathbb{Z}$  on every PEA E such that  $x \mapsto x^{--}$  is the action of  $1 \in \mathbb{Z}$ .
- 2. The orbits of this action determine a (strong) congruence  $\equiv$  on E such that  $E/\equiv$  is symmetric.
- 3. The correspondence  $E \mapsto E/\equiv$  determines a functor S from **PEA** to the category of symmetric pseudo effect algebras (**SPEA**) called symmetrization.

- 1. There is an action of  $\mathbb{Z}$  on every PEA E such that  $x \mapsto x^{--}$  is the action of  $1 \in \mathbb{Z}$ .
- 2. The orbits of this action determine a (strong) congruence  $\equiv$  on E such that  $E/\equiv$  is symmetric.
- 3. The correspondence  $E \mapsto E/\equiv$  determines a functor S from **PEA** to the category of symmetric pseudo effect algebras (**SPEA**) called symmetrization.
- 4. This functor is left adjoint to the inclusion of symmetric pseudo effect into **PEA**.

- 1. There is an action of  $\mathbb{Z}$  on every PEA E such that  $x \mapsto x^{--}$  is the action of  $1 \in \mathbb{Z}$ .
- 2. The orbits of this action determine a (strong) congruence  $\equiv$  on E such that  $E/\equiv$  is symmetric.
- 3. The correspondence  $E \mapsto E/\equiv$  determines a functor S from **PEA** to the category of symmetric pseudo effect algebras (**SPEA**) called symmetrization.
- 4. This functor is left adjoint to the inclusion of symmetric pseudo effect into **PEA**.
- 5. It is an idempotent functor:  $S^2 \simeq S$ .

- 1. There is an action of  $\mathbb{Z}$  on every PEA E such that  $x \mapsto x^{--}$  is the action of  $1 \in \mathbb{Z}$ .
- 2. The orbits of this action determine a (strong) congruence  $\equiv$  on E such that  $E/\equiv$  is symmetric.
- 3. The correspondence  $E \mapsto E/\equiv$  determines a functor S from **PEA** to the category of symmetric pseudo effect algebras (**SPEA**) called symmetrization.
- 4. This functor is left adjoint to the inclusion of symmetric pseudo effect into **PEA**.
- 5. It is an idempotent functor:  $S^2 \simeq S$ .
- 6. **SPEA** is a reflexive subcategory of **PEA**, S being the reflection.



### References I

- Anatolij Dvurečenskij and Thomas Vetterlein. Pseudoeffect algebras. i. basic properties. *International Journal of Theoretical Physics*, 40(3):685–701, 2001a.
- Anatolij Dvurečenskij and Thomas Vetterlein. Pseudoeffect algebras. ii. group representations. *International journal of theoretical physics*, 40(3):703–726, 2001b.
- David J Foulis and Sylvia Pulmannová. Unitizing a generalized pseudo effect algebra. *Order*, pages 1–16, 2014.
- D.J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. *Found. Phys.*, 24:1325–1346, 1994.
- R. Giuntini and H. Greuling. Toward a formal language for unsharp properties. *Found. Phys.*, 19:931–945, 1989.
- J Hedlíková and S Pulmannová. Generalized difference posets and orthoalgebras. *Acta Math. Univ. Comenianae*, 65(2): 247–279, 1996.
- F. Kôpka and F. Chovanec. D-posets. *Math. Slovaca*, 44:21–34, 1994.