Dimensionalities on monoids

Gejza Jenča

AAA 107, Bern, 2025

This research is supported by grants VEGA 2/0128/24 and 1/0036/23, APVV-20-0069.

Gejza Jenča Dimensionalities on monoids

・ロト ・ 四ト ・ ヨト ・ ヨト ・

- We are going to introduce a new type of an equivalence on a monoid.
- We call this type of equivalence *dimensionality*.
- We have many natural examples.
- It turns out that a quotient of a monoid by a dimensionality is a hypermonoid.
- Motivated by this, we study dimensionalities on monoids in **Rel**, find even more natural examples.

A (10) A (10)

Definition

Let (A, .., e) be a monoid. We say that an equivalence relation \sim on A is a *dimensionality* if the following conditions are satisfied.

- If $e \sim e'$, then e = e'.
- For all a, b, c ∈ A such that a.b ~ c, there exist a', b' ∈ A such that a ~ a', b ~ b' and a'.b' = c.

イロト イポト イヨト イヨト

Write $F_{mon}[x]$ for the set of all monic polynomials of one variable over a field *F*:

$$F_{mon}[x] = \{x^n + a_{n-1}x^{n-1} + \dots + a_0 : n \in \mathbb{N} \text{ and } a_{n-1}, \dots, a_0 \in F\}$$

Let ~ be an equivalence on $F_{mon}[x]$ given by the rule $\mathbf{p} \sim \mathbf{q}$ iff \mathbf{p} and \mathbf{q} have the same degree.

Then ~ is a dimensionality on the monoid $(F_{mon}[x], ., 1)$ iff *F* is algebraically complete.

- In this example, \sim is a congruence.
- But in general, it does not have to be one.

イロト イポト イヨト イヨト

Consider the monoid $(\mathbb{R}^2,+,(0,0)).$ The relation \sim on \mathbb{R}^2 given by the rule

$$\vec{x} \sim \vec{y}$$
 iff $\|\vec{x}\| = \|\vec{y}\|$

is a dimensionality.

イロト イヨト イヨト イヨト

æ

Consider the monoid $(\mathbb{R}^2,+,(0,0)).$ The relation \sim on \mathbb{R}^2 given by the rule

$$\vec{x} \sim \vec{y}$$
 iff $\|\vec{x}\| = \|\vec{y}\|$

is a dimensionality.

• Draw a picture of some board.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Consider the monoid $(\mathbb{R}^2,+,(0,0)).$ The relation \sim on \mathbb{R}^2 given by the rule

$$\vec{x} \sim \vec{y} \text{ iff } \|\vec{x}\| = \|\vec{y}\|$$

is a dimensionality.

- Draw a picture of some board.
- This example is not a congruence.

イロト イポト イヨト イヨト

Consider the monoid (\mathbb{R}^2 , +, (0, 0)). The relation ~ on \mathbb{R}^2 given by the rule

$$\vec{x} \sim \vec{y}$$
 iff $\|\vec{x}\| = \|\vec{y}\|$

is a dimensionality.

- Draw a picture of some board.
- This example is not a congruence.
- However, note that there is an action of ℝ on the monoid (ℝ², +, (0, 0)) such that the orbits of the action are exactly the equivalence classes of ~.

Theorem

Let (A, ., e) be a monoid, let Γ be a subgroup of Aut(A). Write

$$x \sim_{\Gamma} y \text{ iff } \exists f \in \Gamma : f(x) = y$$

Then \sim_{Γ} is a dimensionality on A.

イロト イポト イヨト イヨト

э

Theorem

Let (A, ., e) be a monoid, let Γ be a subgroup of Aut(A). Write

$$x \sim_{\Gamma} y$$
 iff $\exists f \in \Gamma : f(x) = y$

Then \sim_{Γ} is a dimensionality on A.

Proof.

$$ab \sim_{\Gamma} c \iff f(ab) = c \iff f(a)f(b) = c$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Not every dimensionality arises from an automorphism group

Example

Recall the monic polynomial example $\mathbb{C}_{mon}[x]$.

•
$$x^2 \sim x.(x+1)$$
 (same degree).

② Assume that $f \in Aut(\mathbb{C}_{mon}[x])$ is such that $f(x^2) = x.(x + 1)$. We have

$$f(x^2) = f(x.x) = f(x).f(x)$$

Observe that f(x).f(x) = x.(x + 1) is impossible.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

- Write Dim(A) for the set of all dimensionalities on a monoid A.
- Dim(*A*) is closed with respect to arbitrary joins taken in the lattice of all equivalences Eq(*A*).
- Therefore, Dim(A) is a complete lattice.
- The dimensionalities arising from automorphism groups form a complete join sub-semilattice of Dim(*A*).

<日</td>

• If a dimensionality is a congruence, the quotient is a monoid.

▲御▶ ▲臣▶ ★臣▶

- If a dimensionality is a congruence, the quotient is a monoid.
- In general, we do not have an operation, just a hyperoperation:

$$X.Y = \{[x.y]_{\sim} : x \in X \text{ and } y \in Y\}$$

▲御▶ ▲臣▶ ★臣▶

- If a dimensionality is a congruence, the quotient is a monoid.
- In general, we do not have an operation, just a hyperoperation:

$$X.Y = \{[x.y]_{\sim} : x \in X \text{ and } y \in Y\}$$

• This hyperoperation is associative, and the singleton class {*e*} is a unit.

(日本) (日本) (日本)

Theorem

For every dimensionality \sim on a monoid (A, ., e) the hyperalgebra

$$(A / \sim, ., \{e\})$$

is a hypermonoid.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

This allows us to construct many hypermonoids for free!

Example

Define a hyperoperation + on \mathbb{R}_0^+ by the rule

$$a+b=[|a-b|,a+b].$$

イロト イポト イヨト イヨト

This allows us to construct many hypermonoids for free!

Example

Define a hyperoperation + on \mathbb{R}^+_0 by the rule

$$a+b=[|a-b|,a+b].$$

This is a hypermonoid \mathbb{R}^2/\sim , where \sim is the "same norm" dimensionality.

(4月) キョン・チョン

Conjugacy on a group

• The conjugacy equivalence on a group Γ, given by

$$a \sim b$$
 iff $\exists c : b = c^{-1}ac$

- is a dimensionality,
- because it arises from an action of an automorphism group.
- In particular, for Γ = S_n, ~ means "to have the same cyclic type".
- Cyclic types are decompositions of *n* to a sum of positive integers (integer partitions).
- On S₆, we have

$$[((12)(34)(5)(6))]_{\sim}=2+2+1+1$$

• This hypermonoid is strange an I would like to know more about it.

Multiplication by $(2 + 1 + \dots + 1)$ (a single transposition cyclic type) either merges two cycles or splits one into two:

 $(2+3+1).(2+1+1+1+1) = \{1+1+3+1,5+1,2+2+1+1,2+4,3+3\}$

(日本) (日本) (日本)

Monoids in a monoidal category

Recall, that a *monoid* is a monoidal category $(C, \otimes, 1)$ is a triple (M, ∇, e) , where *M* is an object of $C, \nabla \colon M \otimes M \to M$ and $e \colon 1 \to M$ are arrows such that the diagrams

• Monoids in $(Set, \times, 1)$ are ordinary monoids.

ヘロト 人間 ト 人間 ト 人間 トー

- Monoids in $(Set, \times, 1)$ are ordinary monoids.
- Monoids in the monoidal category of Abelian groups (Ab, ⊗, ℤ) are rings.

▲冊▶ ▲屋▶ ▲屋▶

- Monoids in $(Set, \times, 1)$ are ordinary monoids.
- Monoids in the monoidal category of Abelian groups (Ab, ⊗, ℤ) are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, ⊗, 2) are quantales.

伺下 イヨト イヨト

- Monoids in $(Set, \times, 1)$ are ordinary monoids.
- Monoids in the monoidal category of Abelian groups (Ab, ⊗, ℤ) are rings.
- Monoids in the monoidal category of complete join semilattices (Sup, ⊗, 2) are quantales.
- Monoids in the monoidal category of ordinary monoids (Mon, ×, 1) are commutative monoids.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

イロト イヨト イヨト イヨト

æ

• Objects: sets.

イロト イポト イヨト イヨト

- Objects: sets.
- Morphisms: binary relations; $f : A \rightarrow B$ in **Rel** is a set of pairs $f \subseteq A \times B$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Objects: sets.
- Morphisms: binary relations; $f : A \rightarrow B$ in **Rel** is a set of pairs $f \subseteq A \times B$.
- Identities: $id_A : A \rightarrow A$ is the identity relation.
- Composition: if f: A → B and g: B → C, then (a, c) ∈ g ∘ f iff there exists b ∈ B such that (a, b) ∈ f and (b, c) ∈ g.

▲御▶ ▲ 陸▶ ▲ 陸▶

The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...

ヘロト ヘヨト ヘヨト ヘヨト

- The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...
- ...so (**Rel**, ×, 1) is a monoidal category...

▲御▶ ▲臣▶ ★臣▶

- The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...
- ...so (**Rel**, ×, 1) is a monoidal category...
- ...because (Set, \times , 1) is one.

• (1) • (

- The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...
- ...so (**Rel**, \times , 1) is a monoidal category...
- ...because (Set, \times , 1) is one.
- However, × is not the product in **ReI**, because...

同下 《日下《日

- The usual direct product of sets × : Rel × Rel → Rel is a bifunctor...
- ...so (**Rel**, ×, 1) is a monoidal category...
- ...because (Set, \times , 1) is one.
- However, × is not the product in Rel, because...
- ...disjoint union ⊔ is product and, at the same time, coproduct in **Rel**.

周下 イヨト イヨト

- Hypermonoids should be viewed as a particular type of monoids in the category of sets and relations, denoted by Rel.
- We call these relational monoids.
- A mapping ∇: A × A → P(A) in Set is the same thing as a relation ∇: A × A → A.
- A relation e: 1 → A is the same thing as a selection of a subset of A.
- Unlike in a hypermonoid, a relational monoid allows for a set of units, instead of a single one.
- Unlike in a hypermonoid, a relational monoid allows for the operation to be undefined.

• Ordinary monoids are monoids in Rel.

▲掃▶ ▲ 国▶ ▲ 国▶

æ

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Ordinary monoids are monoids in **Rel**.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.

伺下 イヨト イヨト

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.
- Small categories are monoids in ReI:

同ト・モト・モト

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.
- Small categories are monoids in ReI:
 - elements are arrows,

おとく ヨト くヨト

- Ordinary monoids are monoids in Rel.
- Hypergroups/hypermonoids are monoids in Rel.
- Partial monoids (including effect algebras and some of their generalizations) are monoids in **Rel**.
- Small categories are monoids in Rel:
 - elements are arrows,
 - the $e: 1 \rightarrow M$ is the selection of identity arrows.
 - the operation is the composition of arrows

・ 戸 ト ・ ヨ ト ・ ヨ ト

- A relation $f \subseteq A \times B$ is a set of pairs, so
- every homset **Rel**(A, B) is a poset under \subseteq .
- That means, that **Rel** is enriched in **Pos**, in other words
- Rel a (locally posetal/thin) 2-category.

伺 ト イ ヨ ト イ ヨ

For every relation $f: A \to B$ there is an opposite relation $f^{\dagger}: B \to A$ given by

$$(b,a) \in f^{\dagger} \iff (a,b) \in f$$

This makes **Rel** to a *dagger category*.

▲御▶ ▲臣▶ ★臣▶

There are at least two meaningful notions of morphisms of monoids in **Rel**.

イロト イポト イヨト イヨト

- Mappings, equivalence relations, partial orders are different types of things in **Set**-world.
- In **Rel** all of those things are just morphisms.
- An equivalence on A is just $\sim : A \rightarrow A$ such that

<日</td>

If (M, ∇, e) is an ordinary monoid in **Set**, we obtain the notions of dimensionality and congruence.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

3

Theorem

For every dimensionality \sim on a relational monoid (A, ∇, e) ,

$$(A/\sim, \nabla, e)$$

is a relational monoid.

- Let us remark that we studied dimensionalities in [1].
- However, at that time we focused on dimensionalities that are *congruences*.
- We did not know that we do not need the congruence property in order for the quatient to be associative.

・ 戸 ト ・ ヨ ト ・ ヨ ト

• Of course, bounded lattices are monoids in the usual sense, so we may use automorphisms to create dimensionalities.

伺 ト イ ヨ ト イ ヨ ト

- Of course, bounded lattices are monoids in the usual sense, so we may use automorphisms to create dimensionalities.
- On the other hand, lattices are posets, so they are categories, so they are relational monoids:

周下 イヨト イヨト

- Of course, bounded lattices are monoids in the usual sense, so we may use automorphisms to create dimensionalities.
- On the other hand, lattices are posets, so they are categories, so they are relational monoids:
 - For a lattice L, I(L) is the set of all $a, b \in L$ with $a \leq b$.
 - Define (partial) operation as

$$[b \leq c] \circ [a \leq b] = [a \leq c]$$

and select the units as a subset {[a ≤ a]: a ∈ L}.
Then I(L) is a relational monoid.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Of course, bounded lattices are monoids in the usual sense, so we may use automorphisms to create dimensionalities.
- On the other hand, lattices are posets, so they are categories, so they are relational monoids:
 - For a lattice L, I(L) is the set of all $a, b \in L$ with $a \leq b$.
 - Define (partial) operation as

$$[b \leq c] \circ [a \leq b] = [a \leq c]$$

• and select the units as a subset $\{[a \le a] : a \in L\}$.

Then I(L) is a relational monoid.

- Write [x ≤ y] ~ [z ≤ w] iff the intervals [x, y]_L and [z, w]_L are isomorphic as lattices.
- Then ~ is dimensionality of I(L).
- Except for very simple cases, I(L)/ ~ is a genuine hypermonoid.

• Let A be an involutive ring with unit, in which

$$x^*x + y^*y = 0 \implies x = y = 0.$$

- Let P(A) be the set of all self-adjoint idempotents in A. For e, f ∈ P(A), write e ⊕ f = e + f iff ef = 0, otherwise let e ⊕ f be undefined. Then (P(A); ⊕, 0, 1) is an effect algebra (a particular type of a partial monoid)
- For e, f in P(A), write $e \sim f$ iff there is $w \in A$ such that $e = w^*w$ and $f = ww^*$.
- Then this is a dimensionality.

おとく ヨト くヨト

A Frobenius monoid S is a structure

$$(S, \nabla, \Delta, e, c)$$

such that

- (S, ∇, e) is a monoid
- (S, Δ, c) is a comonoid

•
$$(\nabla \otimes \mathrm{id}_S) \circ (\mathrm{id}_S \otimes \Delta) = \Delta \circ \nabla = (\mathrm{id}_S \otimes \nabla) \circ (\Delta \otimes \mathrm{id}_S)$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

A Frobenius monoid S in a dagger monoidal category is a monoid (S, ∇, e) such that

$$(S, \nabla, \nabla^{\dagger}, e, e^{\dagger})$$

is a Frobenius monoid.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem

For every dagger Frobenius monoid (S, ∇, e) in **Rel** and a dimensionality \sim on $S, S / \sim$ is a dagger Frobenius monoid.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

Theorem

For every dagger Frobenius monoid (S, ∇, e) in **Rel** and a dimensionality \sim on $S, S/ \sim$ is a dagger Frobenius monoid.

Corollary

For every group Γ and a dimensionality \sim on $\Gamma,$ $\Gamma/$ \sim is a hypergroup.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

Finally, let us mention another definition, from the classical paper [2].

Definition (Loomis 1955)

Let A be a complete orthomodular lattice. A *dimension* equivalence on A is a equivalence relation on A such that

- (A) If $a \sim 0$, then a = 0.
- (B) If $a_1 \perp a_2$ and $a_1 \lor a_2 \sim b$, then there exists an orthogonal decomposition of b, $b = b_1 \lor b_2$, such that $b_1 \sim a_1$ and $b_2 \sim a_2$.
- (C) If $\{a_{\alpha}\}$ and $\{b_{\alpha}\}$ are pairwise orthogonal families of elements, such that $a_{\alpha} \sim b_{\alpha}$ for all α , then $\bigvee_{\alpha} a_{\alpha} = \bigvee_{\alpha} b_{\alpha}$.
- (D) If a and b are not orthogonal in A then there are nonzero a_1, b_1 in A such that $a \ge a_1, b \ge b_1$ and $a_1 \sim b_1$.

Note that (A) and (B) match exactly the definition of dimensionality.

(日)

Anna Jenčová and Gejza Jenča.

On monoids in the category of sets and relations. International Journal of Theoretical Physics, 56:3757–3769, 2017.

Lynn H Loomis.

The lattice theoretic background of the dimension theory of operator algebras.

Memoirs of the AMS, 18, 1955.

.