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We are going to introduce a new type of an equivalence on a
monoid.

We call this type of equivalence dimensionality.

We have many natural examples.

It turns out that a quotient of a monoid by a dimensionality is a
hypermonoid.

Motivated by this, we study dimensionalities on monoids in
Rel, find even more natural examples.
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The definition

Definition

Let (A , ., e) be a monoid. We say that an equivalence relation ∼ on
A is a dimensionality if the following conditions are satisfied.

If e ∼ e′, then e = e′.

For all a, b , c ∈ A such that a.b ∼ c, there exist a′, b ′ ∈ A
such that a ∼ a′, b ∼ b ′ and a′.b ′ = c.
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Examples
Same degree

Example

Write Fmon[x] for the set of all monic polynomials of one variable
over a field F :

Fmon[x] = {xn + an−1xn−1 + · · ·+ a0 : n ∈ N and an−1, . . . , a0 ∈ F}

Let ∼ be an equivalence on Fmon[x] given by the rule p ∼ q iff p
and q have the same degree.
Then ∼ is a dimensionality on the monoid (Fmon[x], ., 1) iff F is
algebraically complete.

In this example, ∼ is a congruence.

But in general, it does not have to be one.
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Examples
Same length

Example

Consider the monoid (R2,+, (0, 0)). The relation ∼ on R2 given by
the rule

x⃗ ∼ y⃗ iff ∥x⃗∥ = ∥y⃗∥

is a dimensionality.

Draw a picture of some board.

This example is not a congruence.

However, note that there is an action of R on the monoid
(R2,+, (0, 0)) such that the orbits of the action are exactly the
equivalence classes of ∼.
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Groups of automorphisms induce dimensionalities

Theorem

Let (A , ., e) be a monoid, let Γ be a subgroup of Aut(A). Write

x ∼Γ y iff ∃f ∈ Γ : f(x) = y

Then ∼Γ is a dimensionality on A.

Proof.

ab ∼Γ c ⇐⇒ f(ab) = c ⇐⇒ f(a)f(b) = c

□
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Not every dimensionality arises from an automorphism
group

Example

Recall the monic polynomial example Cmon[x].
1 x2 ∼ x.(x + 1) (same degree).
2 Assume that f ∈ Aut(Cmon[x]) is such that f(x2) = x.(x + 1).

We have
f(x2) = f(x.x) = f(x).f(x)

3 Observe that f(x).f(x) = x.(x + 1) is impossible.
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The lattice of dimensionalities

Write Dim(A) for the set of all dimensionalities on a monoid A .

Dim(A) is closed with respect to arbitrary joins taken in the
lattice of all equivalences Eq(A).

Therefore, Dim(A) is a complete lattice.

The dimensionalities arising from automorphism groups form
a complete join sub-semilattice of Dim(A).

Gejza Jenča Dimensionalities on monoids



The quotient hypermonoid

If a dimensionality is a congruence, the quotient is a monoid.

In general, we do not have an operation, just a
hyperoperation:

for X ,Y ∈ A/ ∼

X .Y = {[x.y]∼ : x ∈ X and y ∈ Y }

This hyperoperation is associative, and the singleton class {e}
is a unit.
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The quotient hypermonoid

Theorem

For every dimensionality ∼ on a monoid (A , ., e) the hyperalgebra

(A/ ∼, ., {e})

is a hypermonoid.

Gejza Jenča Dimensionalities on monoids



The quotient hypermonoid

This allows us to construct many hypermonoids for free!

Example

Define a hyperoperation + on R+0 by the rule

a + b = [|a − b |, a + b].

This is a hypermonoid R2/ ∼, where ∼ is the "same norm"
dimensionality.
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Conjugacy on a group

The conjugacy equivalence on a group Γ, given by

a ∼ b iff ∃c : b = c−1ac

is a dimensionality,

because it arises from an action of an automorphism group.

In particular, for Γ = Sn, ∼ means "to have the same cyclic
type".

Cyclic types are decompositions of n to a sum of positive
integers (integer partitions).

On S6, we have

[((12)(34)(5)(6))]∼ = 2 + 2 + 1 + 1

This hypermonoid is strange an I would like to know more
about it.

Gejza Jenča Dimensionalities on monoids



The hypermonoid of partitions

Multiplication by (2 + 1 + · · ·+ 1) (a single transposition cyclic
type) either merges two cycles or splits one into two:

(2+3+1).(2+1+1+1+1) = {1+1+3+1, 5+1, 2+2+1+1, 2+4, 3+3}
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Monoids in a monoidal category

Recall, that a monoid is a monoidal category (C,⊗, 1) is a triple
(M,∇, e), where M is an object of C, ∇ : M ⊗M → M and
e : 1→ M are arrows such that the diagrams

1 ⊗M
e⊗idM //

≃
%%

M ⊗M

∇

��

M ⊗ 1
idM⊗eoo

≃
yy

M

(M ⊗M) ⊗M ≃ //

∇⊗idM
��

M ⊗ (M ⊗M)

idM⊗∇

��
M ⊗M

∇
&&

M ⊗M

∇
xx

M
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Examples of monoids

Monoids in (Set,×, 1) are ordinary monoids.

Monoids in the monoidal category of Abelian groups
(Ab,⊗,Z) are rings.

Monoids in the monoidal category of complete join
semilattices (Sup,⊗, 2) are quantales.

Monoids in the monoidal category of ordinary monoids
(Mon,×, 1) are commutative monoids.

Gejza Jenča Dimensionalities on monoids



Examples of monoids

Monoids in (Set,×, 1) are ordinary monoids.

Monoids in the monoidal category of Abelian groups
(Ab,⊗,Z) are rings.

Monoids in the monoidal category of complete join
semilattices (Sup,⊗, 2) are quantales.

Monoids in the monoidal category of ordinary monoids
(Mon,×, 1) are commutative monoids.
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The category of sets and relations

...denoted by Rel.

Objects: sets.

Morphisms: binary relations; f : A → B in Rel is a set of pairs
f ⊆ A × B.

Identities: idA : A → A is the identity relation.

Composition: if f : A → B and g : B → C, then (a, c) ∈ g ◦ f iff
there exists b ∈ B such that (a, b) ∈ f and (b , c) ∈ g.
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Rel is a monoidal category

The usual direct product of sets × : Rel × Rel→ Rel is a
bifunctor...

...so (Rel,×, 1) is a monoidal category...

...because (Set,×, 1) is one.

However, × is not the product in Rel, because...

...disjoint union ⊔ is product and, at the same time, coproduct
in Rel.

Gejza Jenča Dimensionalities on monoids



Rel is a monoidal category

The usual direct product of sets × : Rel × Rel→ Rel is a
bifunctor...

...so (Rel,×, 1) is a monoidal category...

...because (Set,×, 1) is one.

However, × is not the product in Rel, because...

...disjoint union ⊔ is product and, at the same time, coproduct
in Rel.

Gejza Jenča Dimensionalities on monoids



Rel is a monoidal category

The usual direct product of sets × : Rel × Rel→ Rel is a
bifunctor...

...so (Rel,×, 1) is a monoidal category...

...because (Set,×, 1) is one.

However, × is not the product in Rel, because...

...disjoint union ⊔ is product and, at the same time, coproduct
in Rel.
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Monoids in Rel

Hypermonoids should be viewed as a particular type of
monoids in the category of sets and relations, denoted by Rel.

We call these relational monoids.

A mapping ∇ : A × A → P(A) in Set is the same thing as a
relation ∇ : A × A → A .

A relation e : 1→ A is the same thing as a selection of a
subset of A .

Unlike in a hypermonoid, a relational monoid allows for a set
of units, instead of a single one.

Unlike in a hypermonoid, a relational monoid allows for the
operation to be undefined.
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Examples of classes of monoids in Rel

Ordinary monoids are monoids in Rel.

Hypergroups/hypermonoids are monoids in Rel.

Partial monoids (including effect algebras and some of their
generalizations) are monoids in Rel.
Small categories are monoids in Rel:

elements are arrows,
the e : 1→ M is the selection of identity arrows.
the operation is the composition of arrows
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Gejza Jenča Dimensionalities on monoids



Examples of classes of monoids in Rel

Ordinary monoids are monoids in Rel.

Hypergroups/hypermonoids are monoids in Rel.

Partial monoids (including effect algebras and some of their
generalizations) are monoids in Rel.

Small categories are monoids in Rel:
elements are arrows,
the e : 1→ M is the selection of identity arrows.
the operation is the composition of arrows
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Rel as a 2-category

A relation f ⊆ A × B is a set of pairs, so

every homset Rel(A ,B) is a poset under ⊆.

That means, that Rel is enriched in Pos, in other words

Rel a (locally posetal/thin) 2-category.
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Rel as a dagger category

For every relation f : A → B there is an opposite relation
f† : B → A given by

(b , a) ∈ f† ⇐⇒ (a, b) ∈ f

This makes Rel to a dagger category.
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Morphisms of monoids in Rel

There are at least two meaningful notions of morphisms of
monoids in Rel.

M ×M h×h //

∇

��

M′ ×M′

∇

��

t

M h // M′

Lax morphism

(h ◦ ∇) ⊆ (∇ ◦ (h × h))

h ◦ e ⊆ e

M ×M h×h //

∇

��

M′ ×M′

∇

��

w

M h // M′

Oplax morphism

(h ◦ ∇) ⊇ (∇ ◦ (h × h))

e ⊆ h ◦ e
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Equivalences as morphisms in Rel

Mappings, equivalence relations, partial orders are different
types of things in Set-world.

In Rel all of those things are just morphisms.
An equivalence on A is just ∼ : A → A such that

idA ⊆∼

∼†=∼
∼ ◦ ∼=∼

Gejza Jenča Dimensionalities on monoids



Equivalences as endomorphisms of monoids in Rel

If (M,∇, e) is an ordinary monoid in Set, we obtain the notions of
dimensionality and congruence.

M ×M ∼×∼ //

∇

��

M ×M

∇

��

t

M ∼ // M

Dimensionality

(∼ ◦∇) ⊆ (∇ ◦ (∼ × ∼))

∼ ◦e ⊆ e

M ×M ∼×∼ //

∇

��

M ×M

∇

��

w

M ∼ // M

Congruence

(∼ ◦∇) ⊇ (∇ ◦ (∼ × ∼))

e ⊆∼ ◦e
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The quotient relational monoid

Theorem

For every dimensionality ∼ on a relational monoid (A ,∇, e),

(A/ ∼,∇, e)

is a relational monoid.

Let us remark that we studied dimensionalities in [1].

However, at that time we focused on dimensionalities that are
congruences.

We did not know that we do not need the congruence
property in order for the quatient to be associative.
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Dimensionality on lattices

Of course, bounded lattices are monoids in the usual sense,
so we may use automorphisms to create dimensionalities.

On the other hand, lattices are posets, so they are categories,
so they are relational monoids:

For a lattice L , I(L) is the set of all a, b ∈ L with a ≤ b.
Define (partial) operation as

[b ≤ c] ◦ [a ≤ b] = [a ≤ c]

and select the units as a subset {[a ≤ a] : a ∈ L}.

Then I(L) is a relational monoid.

Write [x ≤ y] ∼ [z ≤ w] iff the intervals [x, y]L and [z,w]L are
isomorphic as lattices.

Then ∼ is dimensionality of I(L).

Except for very simple cases, I(L)/ ∼ is a genuine
hypermonoid.
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Dimensionality in rings

Let A be an involutive ring with unit, in which

x∗x + y∗y = 0 =⇒ x = y = 0.

Let P(A) be the set of all self-adjoint idempotents in A . For
e, f ∈ P(A), write e ⊕ f = e + f iff ef = 0, otherwise let e ⊕ f
be undefined. Then (P(A);⊕, 0, 1) is an effect algebra (a
particular type of a partial monoid)

For e, f in P(A), write e ∼ f iff there is w ∈ A such that
e = w∗w and f = ww∗.

Then this is a dimensionality.
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Frobenius monoids

A Frobenius monoid S is a structure

(S,∇,∆, e, c)

such that

(S,∇, e) is a monoid

(S,∆, c) is a comonoid

(∇ ⊗ idS) ◦ (idS ⊗∆) = ∆ ◦ ∇ = (idS ⊗ ∇) ◦ (∆ ⊗ idS)
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Dagger Frobenius monoids

A Frobenius monoid S in a dagger monoidal category is a monoid
(S,∇, e) such that

(S,∇,∇†, e, e†)

is a Frobenius monoid.
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Theorem

For every dagger Frobenius monoid (S,∇, e) in Rel and a
dimensionality ∼ on S, S/ ∼ is a dagger Frobenius monoid.

Corollary

For every group Γ and a dimensionality ∼ on Γ, Γ/ ∼ is a
hypergroup.
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Finally, let us mention another definition, from the classical paper
[2].

Definition (Loomis 1955)
Let A be a complete orthomodular lattice. A dimension
equivalence on A is a equivalence relation on A such that

(A) If a ∼ 0, then a = 0.

(B) If a1 ⊥ a2 and a1 ∨ a2 ∼ b, then there exists an orthogonal
decomposition of b, b = b1 ∨ b2, such that b1 ∼ a1 and
b2 ∼ a2.

(C) If {aα} and {bα} are pairwise orthogonal families of elements,
such that aα ∼ bα for all α, then

∨
α aα =

∨
α bα.

(D) If a and b are not orthogonal in A then there are nonzero
a1, b1 in A such that a ≥ a1, b ≥ b1 and a1 ∼ b1.

Note that (A) and (B) match exactly the definition of dimensionality.
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