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Vojtěch Havlena, Dana Hliněná
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Foreword

Regular seminar ‘Uncertainty Modelling’ was founded by Prof. B. Riečan and Prof. R. Mesiar in
1990. Since 1995 it is hosted by Department of Mathematics and Descriptive Geometry of the Faculty of
Civil Engineering, Slovak University of Technology in Bratislava. Talks used to be given either weekly
or at once in a single day by participants from STU Bratislava, MBU Banská Bystrica and visitors from
abroad, which was accompanied by fruitful mutual collaboration.

The present collection of scientific papers has raised from this collaboration and covers many inter-
esting topics from the area of uncertainty modelling including copulas, triangular norms, integrals, fuzzy
orders and relations.

All these papers were reviewed by independent reviewers and only its final accepted version is pub-
lished. Our gratitude goes to all authors, as well as to all reviewers whose work has significantly con-
tributed to the high quality of papers included in this collection.

Bratislava, January 2016 Tomáš Bacigál and Martin Kalina
editors
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Examples of Archimedean generators from the Williamson
transform and why to use a linear approximation

Tomáš Bacigál ∗† Mária Ždı́malová ∗‡

Abstract
We illustrate a construction method for obtaining additive generators of Archimedean copulas

proposed by McNeil and Nešlehová [7], the so-called Williamson n-transform. Then we use weighted
sum of Dirac functions to approximate generators of two-dimensional Archimedean copulas by linear
splines to circumvent the problem with the non-existence of explicit inverse.

Keywords: Archimedean copula, Williamson transform, approximation

1 Introduction

Copulas form an important class of multivariate dependence models. They have a lot of practical appli-
cations, including multivariate survival modelling. Recall that copulas aggregate 1-dimensional marginal
distribution functions into n-dimensional (n ≥ 2) joint distribution functions. For more details we rec-
ommend [12].

We first define a copula. A function C : [0, 1]n → [0, 1] is called a (n-dimensional) copula whenever
it satisfies the boundary conditions (C1) and it is an n-increasing function, see (C2), where:

(C1) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn}, i.e., 0 is an annihilator of C, andC(x1, . . . , xn) =
xi whenever xj = 1 for each j 6= i (i.e., 1 is a neutral element of C),

(C2) For any x,y ∈ [0, 1]n, x ≤ y, it holds

VC([x,y]) =
∑

ε∈{−1,1}n

(
C(zε)

n∏

i=1

εi

)
≥ 0,

where zε = (zε11 , . . . , z
εn
n ), z1i = yi, z−1i = xi.

Note that VC([x,y]) is called the C-volume of the n-dimensional interval (n-box) [x,y].
Due to Sklar’s theorem [15] for a random vector Z = (X1, . . . , Xn), a function FZ : Rn → [0, 1] is

a joint distribution function of Z if and only if there is a copula C : [0, 1]n → [0, 1] so that

FZ(x1, . . . , xn) = C (FX1(x1), . . . , FXn(xn)) , (1)

where FXi : R → [0, 1] is a distribution function related to the random variable Xi, i = 1, . . . , n. The
copula C in (1) is unique whenever random variables X1, . . . , Xn are continuous. For some other details
on copulas see [4] and [12].

Hereafter we will consider a class of copulas named Archimedean copulas. In the simplest case,
Archimedean 2-copulas are characterized by the associativity ofC and the diagonal inequalityC(x, x) <
x for all x ∈]0, 1[. They are necessarily symmetric, i.e., they can model the stochastic dependence of
exchangeable random variables (X,Y ) only, yet their popularity in practice (hydrology, financial, and
other applied areas) is indisputable, mainly due to the representation using one-dimensional functions
called generators as shown in the next result, attributed to Moynihan [11].
∗Slovak University of Technology in Bratislava
†tomas.bacigal@stuba.sk
‡maria.zdimalova@stuba.sk
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Theorem 1 A function C : [0, 1]2 → [0, 1] is an Archimedean copula if and only if there is a convex (i.e.
a 2-monotone) continuous strictly decreasing function f : [0, 1]→ [0,∞], f(1) = 0, so that

C(x, y) = f (−1)(f(x) + f(y)), (2)

where the pseudo-inverse f (−1) : [0,∞]→ [0, 1] is given by

f (−1)(u) = f−1
(

min(u, f(0))
)
.

The function f is called an additive generator of the copula C, and it is unique up to a positive multi-
plicative constant.

Let F2 be the class of all additive generators of binary copulas characterized in the above theorem.
More details about the generators can be found in [4, 5, 12] and about construction methods for additive
generators in [1, 2, 3, 6, 10].

Before we review several known facts for additive generators of copulas, let us briefly recall a link
between copula C and Spearman’s correlation coefficient ρ,

ρ = 12E[UV ]− 3 = 12

∫∫

[0,1]2
uvdC(u, v)− 3 = 12

∫∫

[0,1]2
C(u, v)dudv − 3 (3)

as well as Kendall’s correlation coefficient τ ,

τ = 4E[C(U, V )]− 1 = 4

∫∫

[0,1]2
C(u, v)dC(u, v)− 1 (4)

where U = FX(X) and V = FY (Y ) are uniformly distributed random variables, that are connected
by the same copula as are X and Y . Alternatively, Kendall’s tau can be computed directly from copula
generator,

τ = 1 + 4

∫ 1

0

f(t)

f ′(t)
dt = 1− 4

∫ ∞

0
t
(
f (−1)

′
(t)
)2
dt

which is far more convenient.
Any binary Archimedean copula C : [0, 1]2 → [0, 1] generated by an additive generator f : [0, 1] →

[0,∞], is also a triangular norm [5, 14] and thus, it can be univocally extended to an n-ary function (we
keep the original notation also for this extension) C : [0, 1]n → [0, 1] given by

C(x1, . . . , xn) = f (−1)
(

n∑

i=1

f(xi)

)
. (5)

Obviously, for any n ≥ 2, C satisfies the boundary conditions (C1). However, for n > 2, (C2) may fail.
For example, the smallest binary copula W : [0, 1]2 → [0, 1] given by W (x, y) = max(0, x + y − 1) is
generated by the additive generator fW : [0, 1] → [0,∞], fW (x) = 1 − x. Its n-ary extension is given
by

W (x1, . . . , xn) = 1−min

(
1,

n∑

i=1

(1− xi)
)

= max

(
0,

n∑

i=1

xi − (n− 1)

)
.

Consider x,y ∈ [0, 1]n, x = (12 , . . . ,
1
2), y = (1, . . . , 1). Then VW ([x,y]) = 1 − n

2 , i.e., this volume
is negative whenever n > 2, which shows that W is a copula only for n = 2. A complete description
of additive generators of binary copulas such that the corresponding generated n-ary function is also an
n-ary copula, n > 2, was given by McNeil and Nešlehová in [7] and is recalled in the next theorem.

Theorem 2 Let f : [0, 1] → [0,∞] be a continuous strictly decreasing function such that f(1) = 0
(i.e., f is an additive generator of a continuous Archimedean t-norm, see [5]). Then the n-ary function
C : [0, 1]n → [0, 1] given by (5) is an n-ary copula if and only if the function g : [−∞, 0]→ [0, 1] given
by g(u) = f (−1)(−u) is (n − 2)-times differentiable with non-negative derivatives g′, . . . , g(n−2) on
]−∞, 0[ (or equivalently, (−1)n(f (−1))(n)(u) ≥ 0), and g(n−2) is a convex function.
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T. Bacigál, M. Ždı́malová: Examples of Archimedean generators from the Williamson transform

We denote by Fn the class of all additive generators that generate n-ary copulas as characterized in
Theorem 2.

Additive generators, which generate an n-ary copula for any n ≥ 2, are called universal generators.
The class of all universal additive generators will be denoted by F∞. It is not difficult to check that
F2 ⊃ F3 ⊃ . . . ⊃ F∞.

The n-monotone Archimedean copula generators may be characterized using a little known integral
transform introduced by Williamson in 1956, see [17]. In McNeil and Nešlehová [7] there is a description
of this transform, which, for a fixed n ≥ 2, will be called the Williamson n-transform. In what follows,
we discuss the Williamson n-transform and illustrate it by examples.

2 The Williamson n-transform

An interesting link between additive generators of copulas and positive distance functions [8], i.e.,
distribution functions with support in ]0,∞[, was described in details in [7]. Based on the results of
Williamson [17], we recall the next important result.

Theorem 3 (McNeil & Nešlehová [7], Corollary 3.1.) The following claims are equivalent for an ar-
bitrary n ∈ {2, 3, . . .}:

(i) f ∈ Fn
(ii) Under the notation of Theorem 2, the function F : ]−∞,∞[→ [0, 1] given by F (x) = 0 if x ≤ 0,

and for x > 0,

F (x) = 1−
n−2∑

k=0

(−1)kxk(f (−1))(k)(x)

k!
− (−1)n−1xn−1(f (−1))(n−1)+ (x)

(n− 1)!
(6)

is a distribution function of a positive random variable X (i.e., P (X ≤ 0) = 0), where ·(n−1)+ denotes
the right-derivative of order n− 1.

Note that due to [17], if F is a positive distance function, i.e., a distribution function of a positive
random variable X , then for a fixed n ∈ {2, 3, . . .} the Williamson n-transform provides an inverse
transformation to (6),

f (−1)(x) =

∫ ∞

x

(
1− x

t

)n−1
dF (t) =

{
max

(
0, E

[
1− x

X

]n−1)
, x > 0

1− F (0), x = 0,
(7)

where x ∈ [0,∞[ and f (−1)(∞) = 0.
Note that a similar relationship can be shown between additive generators from F∞ and positive

distance functions, based on the Laplace transform, i.e

f (−1)(x) =

∫ ∞

0
e−xtdF (t). (8)

For more and interesting details we recommend [7].
Let F be a distance function related to a positive random variable X . For any c > 0, the random

variable c.X possesses the distance function Fc given by Fc(x) = F
(
x
c

)
. Then, for any n ∈ {2, 3, . . .},

f (−1)c (x) =

∫ ∞

x

(
1− x

t

)n−1
dFc(t) =

∫ ∞

x

(
1− x

t

)n−1
dF

(
t

c

)
=

∫ ∞
x
c

(
1− x

cu

)n−1
dF (u) = f (−1)

(x
c

)
.

Obviously, for the related additive generators it holds that fc = c.f , i.e., they generate the same copula.
Vice versa, clearly from (6) it follows that if two generators generate the same (n-ary) Archimedean
copula, the corresponding positive random variables differ only in a positive multiplicative constant. The
next result follows.
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Theorem 4 For each n ∈ {2, 3, . . .}, there is an one-to-one correspondence between the class Fn and
the class H of all factor classes of positive distance functions related to the equivalence F ∼ G if and
only if G(x) = F

(
x
c

)
for some c > 0.

In the following, we illustrate the construction method by few examples.

Example 1 Let F be equal to a Dirac function1 focused at point x0 = 1,

F (x) = δ1(x) =

{
0 x < 1

1 1 ≤ x
,

then, as is also shown in [7], by the Williamson n-transform we get generator fn(x) = 1− x 1
n−1 of the

weakest n-dimensional Archimedean copula, i.e., the non-strict Clayton copula with parameter λ = −1
n−1 ,

see Figure 1. By rescaling generator to f̃n(x) = f(x)
f(1/2) , x ∈ [0, 1], the copula would not change, yet

such a generator is fixed to the value f̃n(12) = 1, which we will use later to show convergence.

Figure 1: Dirac function F , the corresponding generators fn for different n and rescaled generators f̃n.

Example 2 Let F be a uniform probability distribution function

F (x) =





0 x < a
x−a
b−a a ≤ x < b

1 b ≤ x
with 0 ≤ a < b.

Then for dimension n = 2 we get

f
(−1)
2 (x) =

∫ ∞

x

(
1− x

t

)2−1
F ′(t)dt =





∫ b
a

(
1− x

t

)
1
b−adt x < a∫ b

x

(
1− x

t

)
1
b−adt a ≤ x < b∫∞

x

(
1− x

t

)
0dt b ≤ x

=

=





1
b−a [t− x log t]ba = 1

b−a(b− x log b− a+ x log a) = 1− x log( b
a)

b−a x < a

1
b−a [t− x log t]bx = 1

b−a(b− x log b− x+ x log x) = b
b−a −

x+x log( b
x)

b−a a ≤ x < b

0 b ≤ x

1Dirac function is defined as δx0(x) =

{
0 x < x0

1 x ≥ x0

10
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(where F ′ denotes a first derivative of F ) from which the corresponding generator can be obtained only
numerically, and so is the case also with the higher dimensions, e.g.,

f
(−1)
3 (x) =





1− 2x log( b
a)

b−a + x2

ab x < a
b

b−a − 2x log
(
b
x

)
− x2

(b−a)b a ≤ x < b

0 b ≤ x
,

displayed in Figure 2.

Figure 2: Uniform U(a,b) probability distribution function F and pseudo-inverses of the corresponding
generators fn.

Example 3 Consider a positive distance function F (x) = min(1, x2) and the corresponding density
F ′(x) = 2x on [0, 1]. Then

f
(−1)
2 (x) =

∫ ∞

x

(
1− x

t

)2−1
dF (t) =

{∫ 1
x (t− x)2tt dt =

[
(t− x)2

]1
x

= (1− x)2 0 ≤ x ≤ 1

0 1 < x
= max(1−x, 0)2.

Then the generator f2(x) = 1 − √x, x ∈ [0, 1], is the generator of Clayton copula for parameter
λ = −1

2 . Nevertheless, in higher dimensions, n ≥ 3, the generator has no closed form, e.g., f (−1)3 (x) =
1− 4x+ x2(3− 2 log x) for x ∈ [0, 1] and 0 otherwise.

Figure 3: Illustration of Example 3 with non-invertible case n = 3.

It is interesting to illustrate also the inverse Williamson n-transform.

Example 4 Take a generator of

• the Ali-Mikhail-Haq copula f(x) = 1
x − 1 corresponding to the parameter λ = 1 and denote by

Fn, n = 2, 3, . . ., a positive distance function related to f through (6). Then Fn(x) = 1− 1
1+x −

x
(1+x)2

− . . . − xn−1

(1+x)n =
(

x
1+x

)n
which can be viewed as a parametric subfamily of all positive

valued distribution functions Fp with any positive parameter p.

11
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• the product copula f(x) = −1
p log x with constant p > 0 and inverse f−1(x) = exp(−px).

From (6) for n = 2 we get F (x) = 1 − exp(−px)(1 − px). By comparing the density ∂F (x)
∂x =

p2x exp(−px) and the convolution of two exponential distribution Dλ densities with parameter
λ > 0,

∫ x
0 λ exp(−λt)λ exp(−λ(x − t))dt = λ2x exp(−λx) it becomes clear that the resulting

distribution is a distribution of the random variable Y = X1 + X2, where X1, X2 ∼ Dλ are
independent (and identically distributed) random variables. The relation holds for any n ≥ 2, thus
(6) yields a cumulative distribution function of the sum of i.i.d. random variables X1, . . . , Xn ∼
Dp, FX1+...+Xn(x) = 1− exp(−px)

∑n
i=1

(px)i−1

(i−1)! with p > 0.

To complete the examples, let us illustrate also the Laplace transform.

Example 5 Starting with positive distance function of

• discrete random variable with probability mass concentrated in λ > 0, i.e. Dirac function F (x) =
0 for x < λ and 1 otherwise, then the Laplace transform leads through g(x) = exp(λx) to the
product copula Π.

• exponential distribution F (x) = 1 − exp(−λx), λ > 0, we get f−1(x) = ( λ
x+λ) and f(x) =

λ( 1x − 1) which generates the same copula (Clayton copula with parameter equal to 1) regardless
of the choice of λ.

Now we focus on the Dirac function since it can be viewed as a building block for distribution
functions of a random variable with probability mass concentrated in l discrete points.

3 Approximation

In this section we are interested mainly in (n = 2)-dimensional case, since it is of most benefit in
practice. Therefore hereafter the subscript with generator f gains a different meaning: the number of
pieces f is approximated by.

Example 6 Let F (x) = min(1, x2) be the positive distance function from the Example 3 and function

F2(x) = F

(
1

2

)
δ 1

2
(x) +

(
F (1)− F

(
1

2

))
δ1(x) =





0 x < 1
2

1
4

1
2 ≤ x < 1

1 1 ≤ x

approximates F by means of a sum of m = 2 Dirac functions concentrated in respective points
(
1
2 ,

1
4

)
,(

1, 34
)
. Then the Williamson transform with n = 2 yields

f
(−1)
2 (x) =

1

4
max

(
0, 1− x

1
2

)
+

3

4
max

(
0, 1− x

1

)
=





1− 5
4x x < 1

2
3
4 − 3

4x
1
2 ≤ x < 1

0 1 ≤ x

From Example 6 illustrated on Figure 4 we see that for n = 2 the additive generator inverse f (−1)2 is
piecewise linear and does not coincide with f (−1) in the interval ]0, 1[.

Dividing an interval [a0, am] by points {ai}i=1,...m, a0 < a1 < . . . am, with concentration of proba-
bility given by some probability mass function p(x), the approximate positive distance function

Fm(x) =
m∑

i=1

p(ai)δai(x)

is then transformed by (7) to the generator inverse (related to some n-dimensional Archimedean copula)

f (−1)m (x) =
∑

x<ai

p(ai)

(
1− x

ai

)n−1
=

m∑

i=1

p(ai) max

(
0, 1− x

ai

)n−1
. (9)

12
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Figure 4: Approximation by the sum of m = 2 Dirac functions

Observe that the function f (−1)m (9) is a (n − 1)-dimensional spline. For n = 2, both f (−1)m and
the corresponding additive generator fm are linear splines, and the related Archimedean copula Cm
is piece-wise linear, as shown in Example 8. In the opposite direction, denote bi = f

(−1)
m (ai) and

pi = p(ai) for i = 1, 2 . . .m with b0 = 1 corresponding to a0 = 0 and, clearly, bm = 0. Having
points {(ai, bi)}i=1,...m, their corresponding probabilities can be found by solving exquations (9) with
x = a1, . . . , am−1 written in the form (for n = 2)




1− a1
a2

1− a1
a3
· · · 1− a1

am
0 1− a2

a3
· · · 1− a2

am
...

...
. . .

...
0 0 · · · 1− am−1

am







p2
p3
...
pm


 =




b1
b2
...

bm−1


 .

The solution is p1 = 1− (p2 + . . .+ pm) and

pi =
ai [bi−1(ai+1 − ai)− bi(ai+1 − ai−1 + bi+1(ai − ai−1))]

(ai+1 − ai)(ai − ai−1)
for i = 2, . . .m,

with auxiliary point (am+1, bm+1), where am+1 ≥ am and thus bm+1 = 0.
In the following examples we exercise pointwise convergence and show a piecewise linear copula

corresponding to the simplest non-trivial case n = m = 2.

Example 7 For the simplest case, n = 2, ai = i
m and p(ai) = 1

m , i = 1, . . .m (evenly spaced and

uniformly distributed), we get f (−1)m (x) =
∑m

i=1
1
m max

(
0, 1− mx

i

)
. If f (−1)m (x) is to converge to

f (−1)(x) = 1 − x + x log x for x < 1 and 0 elsewhere, it needs to converge in any point x ∈]0, 1[. Let
us examine the convergence, say, in x = 1

2 , where

f (−1)m

(
1

2

)
=

1

m

m∑

i=1

max

(
0, 1− m1

2

i

)
=

1

m

m∑

i=bm
2
c+1

(
1− m

2i

)
=

1

m

m
2∑

i=1

i

i+ m
2

=

1

m

m
2∑

i=1

(
1−

m
2

i+ m
2

)
=

1

2
− 1

2

m∑

i=bm
2
c+1

1

i
.

Then indeed

lim
m→∞

f (−1)m

(
1

2

)
=

1

2
− 1

2

∫ m

m
2

1

x
dx =

1

2
− 1

2
[lnx]mm

2
=

1

2
− 1

2
ln 2 = f (−1)

(
1

2

)
.

Example 8 Following Example 7, it might help to picture the approximation copula on a simple setting.
Due to Example 1 we already know that the trivial case m = 1 leads to the weakest copula W . With
m = 2 we get

F2(x) =





0 x < 1
2

1
2

1
2 ≤ x < 1

1 1 ≤ x
, thus f (−1)2 (x) =





1− 3
2x x < 1

2
1
2 − 1

2x
1
2 ≤ x < 1

0 1 ≤ x
and f2(x) =

{
1− 2x 0 ≤ x ≤ 1

4
2
3(1− x) 1

4 < x ≤ 1
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Figure 5: a) Distance function, generator (inverse) and b) copula, that correspond to uniform distribution
approximated in m = 2 equally spaced points. c) Probability mass concentrated on copula support.

shown on Figure 5 a), which leads to copula C2 expressed on Figure 5 b).
To compute measures of dependence (concordance) such as Spearman’s rho and Kendall’s tau cor-

responding to singular copula it is generally a challenge, yet for this simple settings it might be an
interesting exercise. Since the copula C2 is piecewise linear, the whole probability mass is concentrated
on its support, thus to evaluate the expected values (especially in (4)) one need to find out distribution
of the probability. In our case, it is depicted on Figure 5 c). By expressing variable v in terms of u the
double integral reduces to one-dimensional integral, then

E[UV ] = 2

∫ 1/4

0
u(1− 3u)

1
4
1
4

du+

∫ 1

1/4
u

(
5

4
− u
) 1

2
3
4

du =
2

64
+

11

64
= −13

64

and

E[C(U, V )] = 2

∫ 1/4

0
max

(
0, u+

1− 3u− 1

3

) 1
4
1
4

du+

+

∫ 1

1/4
max

(
1

3
(u+

5

4
− u− 1

2
), u+

5

4
− u− 1

) 1
2
3
4

du = 0 +
1

8

thus ρ2 = 1213
64 − 3 = − 9

16 and τ2 = 41
8 − 1 = −1

2 , where the subscript 2 conforms the notation of
generator. Although we cannot find explicit form of the original generator f (that corresponds to uniform
distribution U[0,1]) and analytically calculate ρ, we still can get τ = 1 −

∫ 1
0 t((1 − t + x ln t)′)2dt =

1− 4
∫ 1
0 t ln2 tdt = 0 to measure accuracy of our m = 2 approximation.

4 Conclusion

We have discussed a new construction method for obtaining additive generators proposed by McNeil and
Nešlehová [7], the so-called Williamson n-transform, and illustrated it by some examples. Some of the
generators were shown to not have an explicit form due to non-invertability. Thus a natural approach
to utilize any such parametric family is to approximate it by piecewise linear functions with sufficiently
dense breakpoints. We showed some simple examples, including calculation of correlation coefficients
related to a singular copula.
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Transitivity of interval-valued fuzzy relations

Bernard De Baets ∗ Barbara Pȩkala †‡ Urszula Bentkowska †§

Abstract: In this contribution a new relation for the set of interval-valued fuzzy relations is introduced.
This relation is more suitable for the epistemic setting of these relations. This is an interval order for the
family of intervals and consequences of considering such order are studied in the context of operations
on interval-valued fuzzy relations. Moreover, the new transitivity property, namely pos-T -transitivity is
studied. This transitivity property is connected with the new relation proposed here.

Keywords: partial order, interval order, T -transitivity, pos-T -transitivity, interval-valued fuzzy relation

1 Introduction

Interval-valued fuzzy relations were introduced by L. A. Zadeh [17] as a generalization of the concept of
a fuzzy relation [16]. Interval valued fuzzy sets and relations have applications in diverse types of areas,
for example in classification, image processing and multicriteria decision making.

In [13], a comparative study of the existing definitions of order relations between intervals, analyzing
the level of acceptability and shortcomings from different points of view were presented. Orders used
for interval-valued fuzzy relations may be connected with ontic and epistemic setting ([5, 6]). Epistemic
uncertainty represents the idea of partial or incomplete information. Simply, it may be described by
means of a set of possible values of some quantity of interest, one of which is the right one. A fuzzy
set represents in such approach incomplete information, so it may be called disjunctive [5]. On the other
hand, fuzzy sets may be conjunctive and can be called ontic fuzzy sets [5]. In this situation the fuzzy set
is used as representing some precise gradual entity consisting of a collection of items.

The aim of this work is to examine dependencies between the natural (partial) order and the here
introduced relation in the set of interval-valued fuzzy relations. Moreover, consequences of considering
such relation are studied in the context of operations on interval-valued fuzzy relations, among others the
new transitivity property called pos-T -transitivity is discussed.

The paper is structured as follows. Firstly, some concepts and results useful in further considera-
tions are recalled (Section 2). Next, results connected with the interval order are presented (Section 3).
Moreover, some properties of operations on interval-valued fuzzy relations are studied (Section 4). To
finish, in Section 5 pos-T -transitivity, based on the definition of the given new relation, is presented and
its preservation by basic operations is considered.

2 Interval-valued fuzzy relations

First, we recall definition of the lattice operations and the order for interval-valued fuzzy relations. Let
X,Y, Z be non-empty sets.

Definition 2.1 (cf. [15, 17]). An interval-valued fuzzy relation R between universes X,Y is a mapping
R : X × Y → LI such that

R(x, y) = [R(x, y), R(x, y)] ∈ LI ,

for all couples (x, y) ∈ (X × Y ), where LI = {[x1, x2] : x1, x2 ∈ [0, 1], x1 ≤ x2}.
∗KERMIT, Research Unit Knowledge-based Systems, Ghent University, Belgium, Bernard.DeBaets@UGent.be
†Interdisciplinary Centre for Computational Modelling, University of Rzeszów, Poland
‡bpekala@ur.edu.pl
§ududziak@ur.edu.pl
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The class of all interval-valued fuzzy relations between universesX,Y will be denoted by IVFR(X×
Y ) or IVFR(X) for X = Y .
We use the following partial order for intervals:

[x1, y1] ≤ [x2, y2]⇔ x1 ≤ x2, y1 ≤ y2. (1)

For every (x, y) ∈ (X × Y ), P = [P , P ], R = [R,R] ∈ IV FR(X) we have

P (x, y) ≤ R(x, y)⇔ P (x, y) ≤ R(x, y), P (x, y) ≤ R(x, y).

The boundary elements in IVFR(X × Y ) are 1 = [1, 1] and 0 = [0, 0].
Let P,R ∈ IVFR(X × Y ), then

(P ∨R)(x, y) = [max(P (x, y), R(x, y)),max(P (x, y), R(x, y))],

(P ∧R)(x, y) = [min(P (x, y), R(x, y)),min(P (x, y), R(x, y))].

The structure (IVFR(X × Y ),≤) is a partially ordered set, i.e. the relation ≤ is:
reflexive, R(x, y) ≤ R(x, y),
antisymmetric, R(x, y) ≤ P (x, y) and P (x, y) ≤ R(x, y)⇒ R(x, y) = P (x, y),
transitive, R(x, y) ≤ P (x, y) and P (x, y) ≤ Q(x, y)⇒ R(x, y) ≤ Q(x, y)
for every (x, y) ∈ (X × Y ) and P,Q,R ∈ IVFR(X × Y ).

For an arbitrary index set D 6= ∅ it holds that

(
∨

d∈D
Rd)(x, y) = [sup

d∈D
Rd(x, y), sup

d∈D
Rd(x, y)],

(
∧

d∈D
Rd)(x, y) = [ inf

d∈D
Rd(x, y), inf

d∈D
Rd(x, y)].

More general classes of operations are triangular norms.

Definition 2.2 ([2]). A triangular norm T on a bounded poset P = (P,≤, 0, 1) is an increasing, com-
mutative, associative operation T : P2 → P with a neutral element 1.

One construction method for triangular norms is presented below.
An operation T : (LI)2 → LI is called a representable triangular norm if there exist triangular norms

T1, T2 : [0, 1]2 → [0, 1] such that for all x = [x1, x2], y = [y1, y2] ∈ LI and T1 ≤ T2:

T (x, y) = [T1(x1, y1), T2(x2, y2)].

Many authors, for example in [12, 14], used the following definition of transitivity.

Definition 2.3. Let T = [T1, T2] and T1 ≤ T2, R ∈ IVFR(X). Relation R is called T -transitive if

T1(R(x, y), R(y, z)) ≤ R(x, z)

and

T2(R(x, y), R(y, z)) ≤ R(x, z).

In the next part of the paper we will introduce another type of transitivity.
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3 Interval order in LI

To begin with, we recall the definition of an interval order for crisp relations. The name ’interval order’
first appeared in print in Fishburn [7, 8, 9].

Definition 3.1 ([10], p. 42). A relation R ⊂ X × X is an interval order if it is complete and has the
Ferrers property, i.e.:
R(x, y) or R(y, x), for x, y ∈ X ,
R(x, y) and R(z, w)⇒ R(x,w) or R(z, y), for x, y, z, w ∈ X ,
respectively.

Now we consider the following relation between intervals:

[x1, y1] � [x2, y2]⇔ x1 ≤ y2. (2)

This relation is more adequate in the epistemic setting of the interval-valued fuzzy relations. If
[x1, y1] is an unprecise description of a variable x and [x2, y2] is an unprecise description of a variable y,
then [x1, y1] � [x2, y2] denotes that it is possible that the true value of x is smaller than or equal to the
true value of y. The relation � thus has a possibilistic interpretation [4].

Theorem 3.2. In the structure (LI ,�), the relation � is an interval order.

Proof. Let [a1, b1] � [a2, b2] and [a3, b3] � [a4, b4] for [ai, bi] ∈ LI , i ∈ {1, 2, 3, 4}, so a1 ≤ b2,
a3 ≤ b4.
If a1 > b4, then a3 ≤ a1, i.e. a3 ≤ b2.
If a3 > b2, then a1 ≤ a3, i.e. a1 ≤ b4.
So � has the Ferrers property, i.e.

[a1, b1] � [a2, b2] and [a3, b3] � [a4, b4]⇒ [a1, b1] � [a4, b4] or [a3, b3] � [a2, b2],

If a1 ≤ b2, then [a1, b1] � [a2, b2].
If a1 ≥ b2, then [a2, b2] � [a1, b1].
So � is complete, i.e.

[a1, b1] � [a2, b2] or [a2, b2] � [a1, b1].

Directly from (1) and (2), we note the following connection between the natural (partial) order≤ and
the interval order �.

Corollary 3.3. If the natural order (1) holds, then also the interval order holds (2).

The converse implication does not hold, as can be seen from the following example.

Example 3.4. For intervals A = [0.2, 0.8] and B = [0.1, 1] we observe that A � B but it is not true
that A ≤ B.

We would like to use the new relation on the class IVFR(X × Y ) and examine the consequences
of this choice. Thus, for every (x, y) ∈ (X × Y ), P = [P , P ], R = [R,R] ∈ IVFR(X × Y ) we have

P (x, y) � R(x, y)⇔ P (x, y) ≤ R(x, y).

Let us notice that the relation � in the family IVFR(X) has the reflexivity property only. Thus it is
not an order relation in this family.
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4 Dependencies between operations on IVFR(X × Y )

Firstly, we consider connections between basic operations on IVFR(X×Y ) and the considered relation
�. For (x, y) ∈ (X × Y ), P = [P , P ], R = [R,R] ∈ IVFR(X × Y ) we have

P ∧R � P � P ∨R,
P ∧R � R � P ∨R.

Moreover, if P ≥ R, then R � P ∧R and if P ≤ R, then P � P ∧R.
Interesting differences between the considered relation � and the natural (partial) order present the fol-
lowing conditions

P � R⇐ (P ∧R = P, P ∨R = R)

and
if P ≤ R, then P � R⇒ (P ∧R = P, P ∨R = R).

Moreover, we have the implication

(R � P, P � R)⇐ (R = P , R = P ),

but the converse implication we obtain if the relation � is replaced with the natural order ≤. If we
consider the converse operation Rt(x, y) = R(y, x), then it holds

P � R⇔ P t � Rt.

Another interesting properties for here considered relation �, we present in the following result.

Theorem 4.1. Let (x, y) ∈ (X × Y ), P = [P , P ], Q = [Q,Q], R = [R,R] ∈ IVFR(X × Y ). Then
we have

•P (x, y) � R(x, y), P (x, y) � Q(x, y)⇔ P (x, y) � R(x, y) ∧Q(x, y),

•R(x, y) � P (x, y), Q(x, y) � P (x, y)⇔ R(x, y) ∨Q(x, y) � P (x, y),

•P (x, y) � R(x, y) and W (x, y) � Q(x, y)⇒
P (x, y) ∨W (x, y) � R(x, y) ∨Q(x, y) and P (x, y) ∧W (x, y) � R(x, y) ∧Q(x, y).

Proof. Let P (x, y) � R(x, y) and P (x, y) � Q(x, y), so P ≤ R and P ≤ Q, then
P ≤ R ∧ Q because ∧ is the infimum in the lattice ([0, 1],∧,∨). Similarly, we obtain the second
condition by the property of supremum ∨. Moreover, by isotonicity of these operations we obtain the
third condition.

Lets us now recall the notion of the composition for interval-valued fuzzy relations.

Definition 4.2 (cf. [1, 11]). Let P ∈ IVFR(X × Y ), R ∈ IVFR(Y × Z). The sup−T composition
of the relations P and R is called the relation P ◦R ∈ IVFR(X × Z),

(P ◦R)(x, z) =
∨

y∈Y
T(P (x, y), R(y, z)).

Especially, if T is a representable triangular norm T we have sup−T1T2 composition,

(P ◦R)(x, z) = [(P ◦T1 R)(x, z), (P ◦T2 R)(x, z)],

where T1 ≤ T2 and

(P ◦T1 R)(x, z) = sup
y∈Y

T1(P (x, y), R(y, z)), (P ◦T2 R)(x, z) = sup
y∈Y

T2(P (x, y), R(y, z)).
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In our further considerations in the whole paper we will use the composition with a representable
triangular norm and the symbol ◦ will mean sup−T1T2 composition. For simplicity of notations we
present the results for composition in the class IVFR(X).

Theorem 4.3. If T1, T2, T1 ≤ T2 are triangular norms, then

P � R⇒ P ◦Q � R ◦Q, Q ◦ P � Q ◦R,

P ◦ (Q ∨R) = P ◦Q ∨ P ◦R.

Moreover, if T1, T2, T1 ≤ T2 are supremum preserving then

P ◦ (Q ◦R) = (P ◦Q) ◦R.

Proof. Let P � R, i.e. P ≤ R and T1 ≤ T2, then by Theorem 4.1 we have for x, y ∈ X∨
z∈X T1(P (x, z), Q(z, y)) ≤ ∨z∈X T2(P (x, z), Q(z, y)), so P ◦Q � R ◦Q. The second inequality in

the first condition can be proven similarly. By distributivity of a triangular norm with respect to maximum
we obtain the second condition. Moreover, since triangular norms T1, T2 are supremum preserving, we
have associativity.

In a semigroup (IVFR(X), ◦) we can consider the powers of its elements, i.e. relations Rn for
R ∈ IVFR(X), n ∈ N.

Definition 4.4. Let R ∈ IVFR(X). The powers of R are defined in the following way

R1 = R, Rn+1 = Rn ◦R, n ∈ N.

The upper operation R∨ and the lower operation R∧ of R are defined in the following way

R∨ =
∞∨

k=1

Rk, R∧ =
∞∧

k=1

Rk,

where Rk = [Rk, R
k
]. Now we will examine connections between powers and upper (lower) operations

and operations ∨ and ∧.

Theorem 4.5. Let T1, T2, T1 ≤ T2 be supremum preserving and P,R ∈ IVFR(X).

If R � P, then Rn � Pn, R∨ � P∨, R∧ � P∧, n ∈ N.

Moreover,

(P ∨R)∨ � P∨ ∨R∨,

(P ∧R)∨ � P∨ ∧R∨,

(P ∨R)∧ � P∧ ∨R∧,

(P ∧R)∧ � P∧ ∧R∧.

Proof. By isotonicity of composition we obtain isotonicity of powers, moreover by isotonicity of supre-
mum and infimum we have dependencies for lower and upper operations. By Theorem 4.1 and the above
conditions we obtain the rest of results.
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5 Possible T -transitivity

Now we will consider the transitivity property connected with the introduced relation � in the epistemic
setting. This definition of transitivity naturally follows from the introduced relation �, namely replacing
the natural order ≤ with the relation � we get by Definition 2.3 for a representable triangular norm T
the formula T (R(x, y), R(y, z)) � R(x, z). As a result, applying definition of the relation � we get the
following notion.

Definition 5.1 ([3]). Let T : [0, 1]2 → [0, 1] be a triangular norm. A relationR ∈ IVFR(X) is possibly
T -transitive (pos-T -transitive), if

T (R(x, y), R(y, z)) ≤ R(x, z). (3)

This transitivity property is called possible T -transitivity which follows from the interpretation of the
relation �. Again, if R(x, y) is an imprecise description of the relation between x and y, and similarly
for R(y, z) and R(x, z), then formula (3) expresses that it is possible to choose values in these intervals
such that usual T -transitivity holds.

Theorem 5.2. Let D 6= ∅ and Rd ∈ IVFR(X), d ∈ D. If (Rd) is a family of pos-T-transitive relations,
then the fuzzy relation

∧
d∈D Rd is pos-T -transitive.

Proof. IfRd are pos-T -transitive relations, i.e., T (Rd(x, y), Rd(y, z)) ≤ Rd(x, z), then by isotonicity of
triangular norms, we know that min dominates any triangular norm T , i.e. T (

∧
d∈D Rd(x, y),

∧
d∈D Rd(y, z)) ≤∧

d∈D T (Rd(x, y), Rd(y, z)) ≤ ∧d∈D Rd(x, z).

Theorem 5.3. Let R ∈ IVFR(X). If R is pos-T -transitive, then Rt is also pos-T -transitive.

Proof. For an arbitrary R ∈ IVFR(X) which is pos-T -transitive and by commutativity of a triangular
norm we have
T (Rt(x, y), Rt(y, z)) = T (R(y, x), R(z, y)) = T (R(z, y), R(y, x)) ≤ R(z, x) = Rt(x, z).

In the following theorems we use the fact (which follows from definition of pos-T -transitivity and
definition of composition) that

Lemma 5.4. Let R ∈ IVFR(X). R is pos-T -transitive if and only if R2 ≤ R, where R2 = R ◦T R.

Theorem 5.5. Let P,R ∈ IVFR(X). If P,R are pos-T -transitive relations and
R ◦T P ∨ P ◦T R ≤ R ∨ P , then R ∨ S is pos-T -transitive.

Proof. Let P,R be interval-valued fuzzy pos-T -transitive relations. By Lemma 5.4, and the assumption
R ◦T P ∨ P ◦T R ≤ R ∨ P and by Theorem 4.3 we have

(R ∨ P )2 = (R ∨ P ) ◦T (R ∨ P ) = R2 ∨R ◦ P ∨ P ◦R ∨ P 2 ≤ R ∨R ∨ P ∨ P = R ∨ P ,

so R ∨ S is pos-T -transitive.

Theorem 5.6. Let T1,T2, T1 ≤ T2 be supremum preserving P,R ∈ IVFR(X). If P,R are pos-T1-
transitive and R ◦T1 P = P ◦T1 R, then R ◦ P is pos-T1-transitive.

Proof. Let P,R be interval-valued fuzzy pos-T -transitive relations. By associativity of composition and
the assumption R ◦T1 P = P ◦T1 R, by Lemma 5.4 we have
(R ◦T1 P )2 = (R ◦T1 P )2 = R ◦T1 (P ◦T1 R) ◦T1 P = R2 ◦T1 P

2 ≤ R ◦T1 P ≤ R ◦T2 P = P ◦T2 R.
Thus, R ◦ P is a pos-T1-transitive relation.

Corollary 5.7. Let T1, T2, T1 ≤ T2 be supremum preserving and R ∈ IVFR(X). If R is pos-T1-
transitive, then Rn is also pos-T1-transitive.

Proof. By isotonicity of composition and powers, we obtain Rn ≤ R
n−1, so Rn preserves pos-T1-

transitivity.
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Theorem 5.8. Let R ∈ IVFR(X). If R is T -transitive, then R is pos-T -transitive.

Proof. Let R be T -transitive. Then R2 ≤ R ≤ R. Thus by Lemma 5.4, we obtain pos-T -transitivity of
R.

We also notice the connection between T -transitivity and pos-T -transitivity.

Proposition 5.9. Let R ∈ IVFR(X). If R is T -transitive, then R is pos-T1-transitive.

Moreover, we know directly by definitions of T -transitivity and composition, that

Proposition 5.10. Let R ∈ IVFR(X), T1, T2, T1 ≤ T2 be triangular norms. R is T -transitive if and
only if R is T1-transitive and R is T2-transitive.

Moreover, we have the following property.

Theorem 5.11. Let T1, T2 be triangular norms and T1 ≤ T2. If R ∈ IVFR(X) is pos-T2-transitive,
then R is pos-T1-transitive.

Proof. Let R be pos-T2-transitive. Then T2(R(x, y), R(y, z)) ≤ R(x, z) and by the fact that T1 ≤ T2
we have T1(R(x, y), R(y, z)) ≤ T2(R(x, y), R(y, z)) ≤ R(x, z) for x, y, z ∈ X . As a result R is
pos-T1-transitive.

6 Conclusion

In future work other operations and some properties for interval-valued fuzzy relations for the relation�
may be considered. Next, generalization of the here considered composition, i.e. sup−A composition
(where A is an aggregation function), may be discussed. Moreover, other types of transitivity and other
relations between interval-valued fuzzy relations may be studied.
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Fuzzy interval orders and aggregation process

Urszula Bentkowska ∗† Bernard De Baets ‡ Anna Król ∗§

Abstract: In this contribution, conditions for n-argument functions to preserve fuzzy interval orders
during aggregation process are presented. The considered properties of a fuzzy interval order (Ferrers
property and connectedness) depend on binary operations including t-norms and t-conorms and, more
generally, fuzzy conjunctions and disjunctions. Moreover, some existing results on Ferrers property are
generalized and applied for fuzzy interval orders.

Keywords: fuzzy relation, fuzzy connective, aggregation function, Ferrers property, fuzzy interval order

1 Introduction

Fuzzy order structures, such as linear orders, semi-orders and interval orders are often used to model
preferences in decision making problems. In this contribution we pay attention to fuzzy interval orders
which definitions are based on the notions of Ferrers property and total connectedness. Ferrers property
is less demanding than transitivity property used in the most of orders, so it is worthy do examine Ferrers
property and fuzzy interval orders from the application point of view.

We will consider fuzzy interval orders in the context of their preservation in aggregation process
(cf. [6, 8, 11, 12, 15, 17]) which is due to the possible applications, e.g. in fuzzy preference modelling,
multicriteria decision making problems and solving other issues related to imprecise and uncertain infor-
mation. In decision making problems a set X = {x1, ..., xm} represents a set of objects, where m ∈ N.
There is also considered a set K = {k1, ..., kn} of criteria under which the objects are supposed to be
evaluated. Fuzzy relationsR1, ..., Rn reflect judgements of decision makers. The considered aggregation
process involves also an n-argument function F . With the use of given fuzzy relations R1, . . . , Rn and
the function F , we consider a new fuzzy relation RF = F (R1, . . . , Rn) representing a final decision on
evaluated objects (after considering the involved criteria). Although we focus on aggregation functions,
the aim of this paper is to give the results under the weakest assumptions on F used for the aggregation
process. Therefore, we start our considerations with an arbitrary n-ary function.

The notions of fuzzy relation properties, in their simplest forms, may involve functions min and
max. These ones were generalized by the use of a t-norm and t-conorm, respectively [11, Chapter 2.5].
In particular, the following properties were examined: T -asymmetry, T -antisymmetry, S-connectedness,
T -transitivity, negative S-transitivity, T -S-semitransitivity, and T -S-Ferrers property of fuzzy relations,
where T is a t-norm and S a t-conorm, also with regard to their preservation in aggregation process
[9]. However, the assumptions put on widely used t-norms are not always necessary or desired. This
is why a lot of definitions of binary operations which can play a role of weaker fuzzy connectives were
introduced and studied, for example fuzzy conjunctions: weak t-norms, overlap functions, t-seminorms
(or semicopulas, or conjunctors), and pseudo-t-norms, sometimes along with their dual disjunctions.

In this article, we consider the properties of fuzzy relations which definitions are based on fuzzy
conjunctions and disjunctions including t-norms and t-conorms. In order to obtain the most general
results we start with binary operations in the unit interval without any additional assumptions. As a
result we examine fuzzy interval orders which are totallyB-connected and fulfilB1-B2-Ferrers property,
where B,B1, B2 : [0, 1]

2 → [0, 1] are binary operations.
∗Interdisciplinary Centre for Computational Modelling, University of Rzeszów, Poland
†ududziak@ur.edu.pl
‡KERMIT, Research Unit Knowledge-based Systems, Ghent University, Belgium, Bernard.DeBaets@UGent.be
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In Section 2, we provide basic definitions and results concerning n-ary functions in [0, 1] including
fuzzy connectives and dominance between functions. Next, in Section 3, we present basic information
about fuzzy relations and some useful results related to preservation of fuzzy relation properties in ag-
gregation process. Finally, in Section 4 we put the main results of this contribution connected with fuzzy
interval orders in aggregation process.

2 Preliminaries

In this section we present the notions useful in further considerations, i.e. properties of n-ary functions
in [0, 1], fuzzy connectives, dominance between operations.

Definition 2.1 ([5]). Let n ∈ N. A function A : [0, 1]n → [0, 1] which is increasing, i.e.

A(x1, . . . , xn) 6 A(y1, . . . , yn) for xi, yi ∈ [0, 1], xi 6 yi, i = 1, . . . , n

is called an aggregation function if A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Example 2.2. Aggregation functions are:

• median

med(t1, . . . , tn) =

{
sk+sk+1

2 , for n = 2k

sk+1, for n = 2k + 1
,

where (s1, . . . , sn) is the increasingly ordered sequence of the values t1, . . . , tn, which means that
s1 6 . . . 6 sn.

• a weighted arithmetic mean

Aw(x1, . . . , xn) =

n∑

k=1

wkxk, for wk > 0,

n∑

k=1

wk = 1,

• a quasi-linear mean

F (x1, ..., xn) = ϕ−1(
n∑

k=1

wkϕ(xk)), for wk > 0,

n∑

k=1

wk = 1,

where x1, . . . , xn ∈ [0, 1], ϕ : [0, 1]→ R is a continuous, strictly increasing function.

Definition 2.3. Let n ∈ N. We say that a function F : [0, 1]n → [0, 1]:
• has a zero element z ∈ [0, 1] if for each k ∈ {1, . . . , n} and each
x1, ..., xk−1, xk+1, ..., xn ∈ [0, 1] one has

F (x1, ..., xk−1, z, xk+1, ..., xn) = z,

• is without zero divisors if it has a zero element z and

∀
x1,...,xn∈[0,1]

(F (x1, ..., xn) = z ⇒ ( ∃
16k6n

xk = z)).

Definition 2.4 ([10]). An operation C : [0, 1]2 → [0, 1] is called a fuzzy conjunction if it is increasing
with respect to each variable and C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0. An operation
D : [0, 1]2 → [0, 1] is called a fuzzy disjunction if it is increasing with respect to each variable and
D(0, 0) = 0, D(1, 1) = D(0, 1) = D(1, 0) = 1.

Corollary 2.5. A fuzzy conjunction has a zero element 0. A fuzzy disjunction has a zero element 1.

Definition 2.6. An operation C : [0, 1]2 → [0, 1] is called:
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• an overlap function [3] if it is a commutative, continuous fuzzy conjunction without zero divisors,
fulfilling condition C(x, y) = 1 if and only if xy = 1,

• a t-norm [18] if it is a commutative, associative, increasing operation with neutral element 1.

Definition 2.7. An operation D : [0, 1]2 → [0, 1] is called:

• a grouping function [4] if it is a commutative, continuous fuzzy disjunction without zero divisors,
fulfilling condition D(x, y) = 0 if and only if x = y = 0,

• a t-conorm [14] if it is a commutative, associative, increasing operation with neutral element 0,

• a strict t-conorm S : [0, 1]2 → [0, 1] if it is a t-conorm which is continuous and strictly increasing
in [0, 1)2.

Example 2.8 ([14]). The Łukasiewicz t-norm and t-conorm are described in the following way TL(s, t) =
max(s+ t− 1, 0) and SL(s, t) = min(s+ t, 1), respectively.

Definition 2.9. A t-norm T is called nilpotent if it is continuous and each x ∈ (0, 1) is a nilpotent
element of T , i.e. for each x ∈ (0, 1) there exists n ∈ N such that x(n)T = 0.

Theorem 2.10. Any nilpotent t-norm is isomorphic to the Łukasiewicz t-norm TL, i.e.

T (x, y) = ϕ−1(TL(ϕ(x), ϕ(y))), x, y ∈ [0, 1],

where ϕ : [0, 1]→ [0, 1] is an increasing bijection.

Definition 2.11 ([13]). A rotation invariant t-norm is a t-norm T that verifies for all x, y, z ∈ [0, 1]

T (x, y) 6 z ⇔ T (x, 1− z) 6 1− y.

Definition 2.12 ([5]). Let F : [0, 1]n → [0, 1]. A function F d is called a dual function to F , if for all
x1, . . . , xn ∈ [0, 1]

F d(x1, . . . , xn) = 1− F (1− x1, . . . , 1− xn).
F is called a self-dual function, if it holds F = F d.

Fuzzy disjunctions are dual to fuzzy conjunctions, grouping functions are dual to overlap functions,
t-conorms are dual functions to t-norms, in particular SL is dual to TL, max is dual to min. Now, we
recall the notion of dominance.

Definition 2.13 ([19]). Let m, n ∈ N. A function F : [0, 1]m → [0, 1] dominates function G : [0, 1]n →
[0, 1] ( F � G) if for an arbitrary matrix [aik] = A ∈ [0, 1]m×n the following inequality holds

F (G(a11, ..., a1n), ..., G(am1, ..., amn)) > G(F (a11, ..., am1), ..., F (a1n, ..., amn)).

Example 2.14 ([1]). Any weighted arithmetic mean dominates t-norm TL and any weighted arithmetic
mean is dominated by SL. Minimum dominates any fuzzy conjunction. Fuzzy disjunctions dominate
maximum.

3 Fuzzy relations

Here we recall the notion of a fuzzy relation, some properties of fuzzy relations and their preservation in
aggregation process.

Definition 3.1 ([20]). A fuzzy relation in a set X 6= ∅ is an arbitrary function R : X ×X → [0, 1]. The
family of all fuzzy relations in X is denoted by FR(X).
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Definition 3.2 (cf. [11, 16]). Let B,B1, B2 : [0, 1]2 → [0, 1] be binary operations. Relation R ∈
FR(X) is:
• reflexive, if ∀

x∈X
R(x, x) = 1,

• totally B-connected, if
∀

x,y∈X
B(R(x, y), R(y, x)) = 1,

• B1-B2-Ferrers, if
∀

x,y,z,w∈X
B1(R(x, y), R(z, w)) 6 B2(R(x,w), R(z, y)),

• a B-B1-B2-fuzzy interval order, if it is totally B-connected and B1-B2-Ferrers,
• a B1-B2-fuzzy interval order, if it is totally B2-connected and B1-B2-Ferrers.

We present the notions of the given properties in the most general version, i.e. with operations
B,B1, B2 : [0, 1]2 → [0, 1]. However, the natural approach is to consider a fuzzy disjunction B in
definition ofB-connectedness, a fuzzy conjunctionB1 and a fuzzy disjunctionB2 in the Ferrers property.

Let F : [0, 1]n → [0, 1], R1, . . . , Rn ∈ FR(X). An aggregated fuzzy relation RF ∈ FR(X) is
described by the formula RF (x, y) = F (R1(x, y), . . . , Rn(x, y)), x, y ∈ X . A function F preserves
a property of fuzzy relations if for every R1, . . . , Rn ∈ FR(X) having this property, RF also has this
property. Preservation of the properties listed above and also other properties of this kind was considered
in [1]. We will recall here only the results for the properties that will be useful in the sequel.

Theorem 3.3. Let R1, . . . , Rn ∈ FR(X) be reflexive. The relation RF is reflexive, if and only if the
function F satisfies the condition F (1, . . . , 1) = 1.

Theorem 3.4. Let card X > 2, B have a zero element 1 and be without zero divisors. A function F
preserves total B-connectedness (B-connectedness) if and only if it satisfies the following condition for
all s, t ∈ [0, 1]n

∀
16k6n

max(sk, tk) = 1⇒ max(F (s), F (t)) = 1. (1)

Example 3.5. Let B be a fuzzy disjunction without zero divisors (e.g. a strict t-conorm or a grouping
function). Examples of functions fulfilling (1) for all s, t ∈ [0, 1]n are F = max, F =med or functions
F with the zero element z = 1 with respect to a certain coordinate, i.e.

∃
16k6n

∀
i 6=k

∀
ti∈[0,1]

F (t1, . . . , tk−1, 1, tk+1, . . . , tn) = 1.

Theorem 3.6. If a function F : [0, 1]n → [0, 1], which is increasing in each of its arguments fulfils
F � B1 and B2 � F , then it preserves B1-B2-Ferrers property.

Lemma 3.7. Let B : [0, 1]2 → [0, 1] and Bd be a corresponding dual operation. If F : [0, 1]n → [0, 1]
is a self-dual function, then F � B implies Bd � F .

The condition given in Lemma 3.7 is only the sufficient one. Let us consider projections F = Pk,
B = T being a t-norm, S = T d. Then S � Pk and Pk � T , but F 6= F d.

Example 3.8. Any weighted arithmetic mean preserves B1-B2-Ferrers property for t-norm TL = B1

and t-conorm SL = B2.

Corollary 3.9. Any quasi-linear mean preserves T -S-Ferrers property for a nilpotent t-norm T and
S = T d.

Conditions given in Theorem 3.6 are only the sufficient ones. Let us consider function F (s, t) = st
(so F = TP ) and fuzzy relations presented by the matrices

R1 =

[
0 1
0 0

]
, R2 =

[
0 0
1 0

]
.

Relations R1, R2 are min-max-Ferrers ([11]). Moreover R = F (R1, R2) is min-max-Ferrers, where
R ≡ 0. However, it is not true that F � min (the only t-norm that dominates minimum is minimum
itself).
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4 Aggregation of fuzzy interval orders

Now, we will consider fuzzy interval orders and their properties in the process of aggregation. In this
section B,B1, B2 denote binary operations on unit interval, i.e. B,B1, B2 : [0, 1]

2 → [0, 1].

Theorem 4.1. Let B1 have an idempotent element 1. A reflexive B1-B2-Ferrers relation is totally B2-
connected.

Proof. If R is a reflexive, B1-B2-Ferrers fuzzy relation, then we get

1 = B1(1, 1) = B1(R(x, x), R(y, y)) 6 B2(R(x, y), R(y, x)),

which means that B2(R(x, y), R(y, x)) = 1 and R is totally B2-connected.

Corollary 4.2. Let T be a t-norm and S a t-conorm. A reflexive T -S-Ferrers relation is totally S-
connected.

Theorem 4.3. Let B1 have a zero element 0, an idempotent element 1 and for each x, y ∈ [0, 1] such
that x + y > 1 fulfil B1(x, y) = B1(y, x) and let B2 be dual to B1 such that B1 6 B2. The following
assertions are equivalent:
(1) A reflexive B1-B2-Ferrers relation is totally SL-connected.
(2) Operation B1 : [0, 1]

2 → [0, 1] fulfils B1(x, y) > 0 for any pair (x, y) ∈ [0, 1]2 such that x+ y > 1.

Proof. (1) ⇒ (2) Let us consider an operation B1 such that there exists a pair (x, y) ∈ [0, 1]2 fulfilling
x+y > 1 andB1(x, y) = 0. Then a reflexive relation that isB1-B2-Ferrers but not totally SL-connected
may be build. For example, let X = {x1, x2} and R(x1, x2) = 1− x, R(x2, x1) = 1− y.
(2) ⇒ (1) Let R ∈ FR(X), x, y ∈ X and R be reflexive and B1-B2-Ferrers. Applying these assump-
tions we obtain

1 = B1(R(x, x), R(y, y)) 6 B2(R(x, y), R(y, x)) = 1−B1(1−R(x, y), 1−R(y, x)),

which implies that B1(1−R(x, y), 1−R(y, x)) = 0. As a result from (2) it follows that 1−R(x, y) +
1−R(y, x) 6 1, which means that R is totally SL-connected.

Corollary 4.4 ([7]). Let us consider a t-norm T and its dual t-conorm S. The following assertions are
equivalent:
(1) A reflexive T -S-Ferrers relation is totally SL-connected.
(2) The t-norm T fulfils T (x, y) > 0 for any pair (x, y) ∈ [0, 1]2 such that x+ y > 1.

In particular, the above corollary applies to all rotation invariant t-norms ([7]). The next results
concern total max-connectedness. Let us observe that this notion is also named as strong completeness
(cf. [11]).

Theorem 4.5. Let B have a zero element 1 and have no zero divisors. Then total B-connectedness is
equivalent to total max-connectedness.

Proof. Let R ∈ FR(X), B have a zero element 1 and have no zero divisors. Total B-connectedness is
equivalent to

B(R(x, y), R(y, x)) = 1⇔ R(x, y) = 1 ∨R(y, x) = 1⇔ max(R(x, y), R(y, x)) = 1,

which is equivalent to the fact that R is totally max-connected.

Corollary 4.6 ([2]). Let S be a t-conorm without zero divisors. Then total S-connectedness is equivalent
to total max-connectedness.

Theorem 4.7. Let a commutative operation B1 have a zero element 0, an idempotent element 1 and let
B2 be dual to B1 such that B1 6 B2. The following assertions are equivalent:
(1) A reflexive B1-B2-Ferrers relation is totally max-connected.
(2) B1 has no zero divisors.
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Proof. (1) ⇒ (2) Let us suppose, to the contrary, that B1 is not without zero divisors. Then there
exist x, y ∈ (0, 1] such that B1(x, y) = 0. Let us now consider the relation R ∈ FR(X), where
X = {x1, x2} and R(x1, x2) = 1 − x, R(x2, x1) = 1 − y. R is B1-B2-Ferrers relation but it is not
totally max-connected which contradicts to (1).
(2)⇒ (1) Let R be a reflexive, B1-B2-Ferrers relation. By Theorem 4.1 it is also totally B2-connected.
From (2) and the assumption that B2 is dual to B1 it follows that B2 has a zero element 1 and has no
zero divisors. By Theorem 4.5 we obtain that R is totally max-connected.

Corollary 4.8 ([7]). Let T be a t-norm and S its dual t-conorm. Then the following conditions are
equivalent:
(1) A reflexive T -S- Ferrers relation is totally max-connected.
(2) The t-norm T has no zero divisors.

The above results from Section 4 simplify the considerations on aggregation of fuzzy interval orders
(condition on F for preservation of reflexivity is much easier than the one for total connectedness).
Applying these results and results of Section 3 we get for example the following statements.

Theorem 4.9. Let T be a rotation invariant t-norm,R1, ..., Rn ∈ FR(X) be reflexive and T -SL-Ferrers.
If a function F : [0, 1]n → [0, 1], which is increasing in each of its arguments, fulfils F (1, ..., 1) = 1,
F � T and SL � F , then RF = F (R1, ..., Rn) is a T -SL fuzzy interval order.

Since TL is an example of a rotation invariant t-norm, in particular we get the following results.

Theorem 4.10. Let R1, ..., Rn ∈ FR(X) be reflexive and TL-SL-Ferrers. If a function F : [0, 1]n →
[0, 1], which is increasing in each of its arguments fulfils F (1, ..., 1) = 1, F � TL and SL � F , then
RF = F (R1, ..., Rn) is a TL-SL fuzzy interval order.

Corollary 4.11. Let R1, ..., Rn ∈ FR(X) be reflexive and TL-SL-Ferrers. Then fuzzy relation RF =
F (R1, ..., Rn) is a TL-SL fuzzy interval order, where F is a weighted arithmetic mean. Moreover, fuzzy
relation RF is a T -S fuzzy interval order, where F is a quasi-linear mean and T is a nilpotent t-norm,
S = T d.

Theorem 4.12. Let R1, ..., Rn ∈ FR(X) be reflexive and min-max-Ferrers. If a function F : [0, 1]n →
[0, 1], which is increasing in each of its arguments fulfils F (1, ..., 1) = 1, F � min and max� F , then
RF = F (R1, ..., Rn) is a min-max fuzzy interval order.

Examples of increasing functions which dominate minimum and are dominated by maximum are
projections ([1]), so they fulfil assumptions on F in the above theorem.

5 Conclusion

In this paper fuzzy interval orders were considered in the context of aggregation process. In future work
it would be interesting to consider other orders and their preservation in aggregation process, in particular
total preorder, total order, strict total order, partial preorder, partial order, strict partial order, or semiorder
and their preservation in aggregation process.
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On Constructing Ordinal Sums of Fuzzy Implications

Paweł Drygaś ∗†‡ Anna Król ∗§

Abstract: In this contribution, new ways of constructing of ordinal sum of fuzzy implications are
indicated. Sufficient properties of fuzzy implications as summands for obtaining a fuzzy implication as a
result are presented.

Keywords: fuzzy implication, ordinal sum, R-implication, triangular norm

1 Introduction

Fuzzy implications are one of the most important fuzzy connectives in many applications such as fuzzy
reasoning and fuzzy control. For that reason new families of these connectives are the subject of investi-
gation. One of the directions of such research is considering an ordinal sum of fuzzy implications on the
pattern of the ordinal sum of t-norms. Some interesting results connected to representation of the resid-
ual implication corresponding to a fuzzy conjunction (for example continuous or at least left-continuous
t-norm) given by an ordinal sum were obtained in [2, 3, 6]. In [8] Su et al. introduced a concept of
ordinal sum of fuzzy implications similar to the construction of the ordinal sum of t-norms.

In this contribution, some of the ideas are recalled and new possibilities of defining ordinal sums of
fuzzy implications are proposed. The operations obtained by the presented methods are not necessar-
ily fuzzy implications. Sufficient properties for fuzzy implications as summands for obtaining a fuzzy
implication are presented.

Firstly, in Section 2, we recall basic definitions and results concerning t-norms and fuzzy implications
including constructions of ordinal sums of these fuzzy connectives. Then, in Section 3, we indicate new
methods of constructing ordinal sums of fuzzy implications. At the end we suggest further research
directions for the ordinal sums of fuzzy implications.

2 Preliminaries

Here we recall the notions of a t-norm and a fuzzy implication, as well as some of the constructions of
ordinal sums of these fuzzy connectives.

2.1 Triangular norms

First, we put some very basic information about triangular norms (t-norms).

Definition 2.1 ([5], p. 4). A triangular norm is an increasing, commutative and associative operation
T : [0, 1]2 → [0, 1] with neutral element 1.

Definition 2.2 ([5], p. 27). A triangular norm T is called Archimedean, if for each (x, y) ∈ (0, 1)2 there
is an n ∈ N such that x(n)T < y.

∗Interdisciplinary Centre for Computational Modelling, Faculty of Mathematics and Natural Sciences, University of
Rzeszów, Poland
†System Research Institute of Polish Academy of Sciences, Warsaw, Poland
‡paweldrs@ur.edu.pl
§annakrol@ur.edu.pl
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Example 2.3 ([5], p. 4, [4], p. 7). Here, we list well-known basic t-norms, from which TM , TP , TL are
continuous, and TP , TL are both continuous and Archimedean.
TM (x, y) = min(x, y), TP (x, y) = xy,

TL(x, y) = max(x+ y − 1, 0), TD(x, y) =





x, if y = 1

y, if x = 1

0, otherwise

,

TnM (x, y) =

{
0, if x+ y ≤ 1

min(x, y), otherwise
.

Now, let us recall a representation of continuous t-norms by means of ordinal sums.

Theorem 2.4 ([5], p. 128). For an operation T : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) T is a continuous t-norm.

(ii) T is uniquely representable as an ordinal sum of continuous Archimedean t-norms, i.e., there ex-
ists a uniquely determined (finite or countably infinite) index set I , a family of uniquely determined
pairwise disjoint open subintervals (ak, bk) of [0, 1] and a family of uniquely determined continu-
ous Archimedean t-norms (Tk)k∈A such that

T (x, y) =

{
ak + (bk − ak)Tk

(
x−ak
bk−ak ,

y−ak
bk−ak

)
if (x, y) ∈ [ak, bk]

2

min(x, y) otherwise
.

The above representation is based on the ordinal sum of arbitrary t-norms ([5], p. 82).

0 1

1

bk

bk

ai

ai

bi

bi = ak

Ti

Tk

aj

aj

bj

bj

Tjmin

Figure 1: The structure of an ordinal sum of t-norms

2.2 Fuzzy Implications

Now, we focus on fuzzy implications, their possible properties, as well as the class of R-implications.

Definition 2.5 ([1], p. 2, [4], p. 21). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies the following conditions:
(I1) decreasing in its first variable,
(I2) increasing in its second variable,
(I3) I(0, 0) = 1,
(I4) I(1, 1) = 1,
(I5) I(1, 0) = 0.
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There are many potential properties of fuzzy implications (see, e.g., [1], p. 9). We recall here only
one which will be important in the sequel.

Definition 2.6 ([7]). We say that a fuzzy implication I fulfils the consequent boundary property (CB) if

I(x, y) ≥ y, x, y ∈ [0, 1]. (CB)

Example 2.7 ([1], pp. 4,5). The following are very known examples of fuzzy implications. Almost all of
them, except for IRS fulfil property (CB).

IŁK(x, y) = min(1− x+ y, 1), IGG(x, y) =

{
1, if x ≤ y
y
x , if x > y

,

IGD(x, y) =

{
1, if x ≤ y
y, if x > y

, IRS(x, y) =

{
1, if x ≤ y
0, if x > y

,

IRC(x, y) = 1− x+ xy, IYG(x, y) =

{
1, if x = 0 and y = 0

yx, if else
,

IDN(x, y) = max(1− x, y), IFD(x, y) =

{
1, if x ≤ y
max(1− x, y), if x > y

,

IWB(x, y) =

{
1, if x ≤ 1

y, if x = 1
, IDP(x, y) =





y, if x = 1

1− x, if y = 0

1, if x < 1, y > 0

.

Definition 2.8. A function I : [0, 1]2 → [0, 1] is called a residual implication (an R-implication) if there
exists a t-norm T such that

I(x, y) = IT (x, y) = sup{t ∈ [0, 1] : T (x, t) ≤ y}, x, y ∈ [0, 1]. (1)

Example 2.9. Table 1 shows R-implications obtained by formula (1) from basic t-norms presented in
Example 2.3.

t-norm T R-implication IT
TM IGD

TP IGG

TL ILK
TD IWB

TnM IFD

Table 1: Examples of basic R-implications

Theorem 2.10 ([1], p. 83). If T is a continuous t-norm with an ordinal sum structure (see Theorem 2.4),
then the corresponding R-implication IT is given by

IT (x, y) =





1, if x ≤ y
ak + (bk − ak)ITk

(
x−ak
bk−ak ,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk], x > y

y, otherwise

. (2)

Now, let us recall a recent approach to the construction of ordinal sum of fuzzy implications [8]. This
construction method is based on the construction of the ordinal sum of t-norms.
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Figure 2: The structures of an ordinal sum of t-norms and R-implication IT given by (2)

Definition 2.11 ([8]). Let {Ik}k∈A be a family of implications and {[ak, bk]}k∈A be a family of pairwise
disjoint close subintervals of [0, 1] with 0 < ak < bk for all k ∈ A, where A is a finite or infinite index
set. The mapping I : [0, 1]2 → [0, 1] given by

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak
bk−ak ,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk]

IGD(x, y), otherwise
(3)

we call an ordinal sum of fuzzy implications {Ik}k∈A.

0 1

1

ai

ai

bi

bi

Ii

aj

aj

bj

bj

IjIGD

Figure 3: The structure of an ordinal sum of fuzzy implications given by (3)

It may be that I given by (3) is not an implication.

Example 2.12 ([8]). Let

I(x, y) =

{
1
4 +

(
1
2 − 1

4

)
IRS

(
x− 1

4
1
2
− 1

4

,
x− 1

4
1
2
− 1

4

)
if (x, y) ∈ [14 ,

1
2 ]

2,

IGD(x, y) otherwise.

It is easy to see that I
(
1
2 ,

1
3

)
= 1

4 <
1
3 = I

(
3
4 ,

1
3

)
, i.e. I does not satisfy (I1).

The next theorem gives out the conditions that I given by (3) satisfies (I1).

Theorem 2.13 ([8]). Let {Ik}k∈A be a family of implications. Then ordinal sum of implication given by
(3) satisfies (I1) if and only if Ik satisfies (CB) whenever k ∈ A and bk < 1.

Let us notice, that the construction in Definition 2.11 involves intervals [ai, bi] which are necessarily
disjoint. However, in the construction of t-norms the intervals can have a common point. It is still an
open problem, whether we can add some additional assumptions on the construction for the intervals do
not have to be disjoint.
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3 Main results

Here, we propose tree ways of generating a new fuzzy implication from given ones. Let start with the
first method, which is a kind of generalization of the results obtained e.g. in [6] for residual implications.

Let {Ik}k∈A be a family of implications and {(ak, bk)}k∈A be a family of pairwise disjoint subin-
tervals of [0, 1] with ak < bk for all k ∈ A, where A is a finite or infinite index set. Let us consider an
operation I : [0, 1]2 → [0, 1] given by the following formula

I(x, y) =





1, if x ≤ y
ak + (bk − ak)Ik

(
x−ak
bk−ak ,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk], x > y

y, otherwise

. (4)

ai

ai

bi aj

aj

bj

bj

6

-
0 1

1

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Ii

Ij1

y

bk

bk
bi = ak

Ik

Figure 4: The structure of an operation given by (4)

Remark 3.1. Let us observe, that the operation I given by (4) can be noted as

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak
bk−ak ,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk], y < x

IGD(x, y), otherwise
.

Lemma 3.2. Let {Ik}k∈A be a family of fuzzy implications. Then I given by (4) satisfies (I2), (I3), (I4)
and (I5).

Proof. First, let us consider the condition (I2). Let y1 < y2, x, y1, y2 ∈ [0, 1].
If x ∈ [ak, bk] for some k ∈ A, then we obtain the following cases
1. y2 < ak or x ≤ y1 or both y1 < ak and x ≤ y2. Then I(x, y1) = IGD(x, y1) ≤ IGD(x, y2) =
I(x, y2).
2. y1 < ak ≤ y2 ≤ x. Then I(x, y1) = y1 < a ≤ ak + (bk − ak)Ik

(
x−ak
bk−ak ,

y2−ak
bk−ak

)
= I(x, y2).

3. ak ≤ y1 ≤ y2 ≤ x. Then using monotonicity of Ik we have I(x, y1) = ak+(bk−ak)Ik
(

x−ak
bk−ak ,

y1−ak
bk−ak

)
≤

ak + (bk − ak)Ik
(

x−ak
bk−ak ,

y2−ak
bk−ak

)
= I(x, y2).

4. ak ≤ y1 < x ≤ y2. Then I(x, y1) = ak + (bk − ak)Ik
(

x−ak
bk−ak ,

y1−ak
bk−ak

)
≤ 1 = I(x, y2).

In other cases we have similar situation as in 1.
Directly from (4) we have I(0, 0) = I(1, 1) = 1. So I fulfils (I3) and (I4). To prove (I5) let us consider
two cases. If there exists k ∈ A such that [ak, bk] = [0, 1], then I(1, 0) = Ik(1, 0) = 0. Otherwise
I(1, 0) = y = 0.

Example 3.3. Let

I(x, y) =





1, if x ≤ y
0.5IRS(2x, 2y), if x, y ∈ [0, 0.5]
y, otherwise
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I does not fulfill (I1).

The following result can be proved in a similar way to Theorem 2.13.

Theorem 3.4. The operation I given by (4) satisfies (I1) if and only if Ik satisfies (CB) whenever k ∈ A
and bk < 1.

As we can see, not every fuzzy implication can be used in constructions (3) and (4). Below we
present a structure in which any fuzzy implications can be used.

Now, let {Ik}k∈A be a family of implications and {[ak, bk]}k∈A be a family of pairwise disjoint close
subintervals of [0, 1] with 0 < ak < bk for all k ∈ A, where A is a finite or infinite index set. Let us
consider an operation I : [0, 1]2 → [0, 1] given by the following formula

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak
bk−ak ,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk]

IRS(x, y), otherwise
. (5)
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Figure 5: The structure of an operation given by (5)

Theorem 3.5. The operation I given by (5) is a fuzzy implication.

Proof. First, let us consider the condition (I1). Let x1 < x2, x1, x2, y ∈ [0, 1].
If y ∈ [ak, bk] for some k ∈ A, then we consider the following cases
1. x1 < ak. Then I(x1, y) = IRS(x, y1) = 1 ≥ I(x2, y).
2. x1, x2 ∈ [ak, bk]. Then using monotonicity of Ik we have I(x1, y) = ak+(bk−ak)Ik

(
x1−ak
bk−ak ,

y−ak
bk−ak

)
≥

ak + (bk − ak)Ik
(
x2−ak
bk−ak ,

y−ak
bk−ak

)
= I(x2, y).

3. bk < x2. Then I(x1, y) ≥ 0 = I(x2, y).
In other cases values of I are the same as values of IRS , which give the condition (I1).
To prove (I2) let us take y1 < y2, x, y1, y2 ∈ [0, 1].
If x ∈ [ak, bk] for some k ∈ A, then we obtain the following cases
1. y1 < ak. Then I(x, y1) = IRS(x, y1) = 0 ≤ I(x, y2).
2. y1, y2 ∈ [ak, bk]. Then using monotonicity of Ik we have I(x, y1) = ak+(bk−ak)Ik

(
x−ak
bk−ak ,

y1−ak
bk−ak

)
≤

ak + (bk − ak)Ik
(

x−ak
bk−ak ,

y2−ak
bk−ak

)
= I(x, y2).

3. bk < y2. Then I(x, y1) ≤ 1 = I(x, y2).
In other cases values of I are the same as values of IRS . So, we obtain (I2).
Directly from (6) we have I(0, 0) = I(1, 1) = 1. So I fulfils (I3) and (I4). To prove (I5) let us consider
two cases. If there exists k ∈ A such that [ak, bk] = [0, 1], then I(1, 0) = Ik(1, 0) = 0. Otherwise
I(1, 0) = 0. So, operation given by (6) is an implication.
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In both constructions (3) and (5) the intervals [ak, bk] must be separable. This means that we are un-
able to construct fuzzy implications in which the values I(x, x) for x ∈ (0, 1) depend on the component
implications Ik. Below we present a construction that solves this problem.

Let {Ik}k∈A be a family of implications and {(ak, bk)}k∈A be a family of pairwise disjoint subin-
tervals of [0, 1] with ak < bk for all k ∈ A, where A is a finite or infinite index set. Let us consider an
operation I : [0, 1]2 → [0, 1] given by the following formula

I(x, y) =





ak + (bk − ak)Ik
(

x−ak
bk−ak ,

y−ak
bk−ak

)
, if x, y ∈ (ak, bk]

1, if x ≤ y
0, otherwise

. (6)
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Figure 6: The structure of an operation given by (6)

Example 3.6. Let

I(x, y) =





1, if x ≤ y
0.5IRC(2x, 2y), if x, y ∈ (0, 0.5]
0.5 + 0.1ILK(10x− 5, 10y − 5), if x, y ∈ (0.5, 0.6]
0, otherwise

I is an implication.

The following result can be proved in a similar way to Theorem 3.5.

Theorem 3.7. The operation I given by (6) is a fuzzy implication.

4 Conclusion

In this paper we indicate three methods of constructing ordinal sum of fuzzy implications. In future
research, it would be useful to examine the properties of these ordinal sums. Another problem is whether
the proposed ordinal sums preserve properties of its summands.
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Invariants of ϕ-transformations of uninorms and t-norms

Vojtěch Havlena ∗† Dana Hliněná ∗‡

Abstract: The paper deals with triangular norms and uninorms, and their constructions. Specifically,
we study ϕ−transformations and their invariants. The work contains selected results of author’s work
in the student competition SVOČ.

Keywords: t-norm, uninorm, ϕ−transformation, invariant

1 Preliminaries

The main topic of this article is a special type of constructions of triangular norms and uninorms. First
we recall some important definitions and statements.

Definition 1.1. [3] A triangular norm T (t-norm for short) is a commutative, associative, monotone
binary operator on the unit interval [0, 1], fulfilling the boundary condition T (x, 1) = x, for all x ∈
[0, 1].

Uninorms were introduced by Yager and Rybalov in 1996 as a generalization of triangular norms and
conorms [7].

Definition 1.2. [7] An associative, commutative and increasing operation U : [0, 1]2 → [0, 1] is called
a uninorm, if there exists e ∈ [0, 1], called the neutral element of U , such that

U(e, x) = U(x, e) = x for all x ∈ [0, 1].

There exist various constructions of t-norms, and we will deal with a method of constructing t-norms
which gives the new t-norm from a previously known t-norm and a unary function ϕ.

Proposition 1.3. [3] Let ϕ : [0, 1] → [0, 1] be a non-decreasing function and T : [0, 1]2 → [0, 1] be a
t-norm. Then the function defined by

Tϕ(x, y) =

{
min{x, y}, if max{x, y} = 1,

ϕ(−1)[T (ϕ(x), ϕ(y))], otherwise,

is a t-norm. Note, that ϕ(−1) is a pseudo-inverse, which is a monotone extension of the ordinary inverse
function and ϕ(−1)(x) = sup{z ∈ [0, 1];ϕ(z) < x}.

We can similarly construct uninorms:

Proposition 1.4. [2] Let ϕ : [0, 1]→ [0, 1] be a continuous, bijective function, and let there exist e′ such
that e′ = ϕ−1(e), where e is the neutral element of a given uninorm U. Then the function

Uϕ(x, y) = ϕ−1[Ue(ϕ(x), ϕ(y))]

is a uninorm with the neutral element e′.
∗Brno University of Technology, Faculty of Information Technology, Brno, Czech Republic
†xhavle03@stud.fit.vutbr.cz
‡hlinena@feec.vutbr.cz
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In this paper we will discuss the invariants of ϕ−transformation of t-norms and uninorms. It means,
we will look for the uninorms and the bijective functions ϕ such that

ϕ(U(x, y)) = U(ϕ(x), ϕ(y)).

Finally, we include some necessary notions.

Definition 1.5. [3] Let T : [0, 1]2 → [0, 1] be a t-norm. Then a function δn : [0, 1]→ [0, 1] defined as

δ1(x) = x, δn+1(x) = T (δn(x), x), for x ∈ [0, 1], n ∈ N,

is called the diagonal function of a t-norm T . The set of all diagonal functions of given t-norm T is
denoted as ∆T = {δn : n ∈ N}.

Definition 1.6. A t-norm T is called Archimedean if it has the Archimedean property, i.e., if for each x, y
in the open interval (0, 1) there is a natural number n such that δn ≤ y.

In this paper we deal with a specific class of uninorms, called simple uninorms.

Definition 1.7. [2] A uninorm U : [0, 1]2 → [0, 1] is called simple, if there exists left or right neighbor-
hood of y for every (x, y) ∈ [0, e)× (e, 1], where uninorm U has constant values, i.e.

∀(x, y) ∈ [0, e)× (e, 1],∀y1, y2 ∈ U+
ε (y) : U(x, y1) = U(x, y2) (U−ε (y)).

2 Invariants of transformation on the set [0, e)× (e, 1]

In our investigation of invariants of uninorm transformations we start with the set [0, e)× (e, 1].

Definition 2.1. [2] Let U : [0, 1]2 → [0, 1] be a uninorm with the neutral element e. Then we define
S(U) = {(ai, bi)× (ci, di); i = 1, · · · , n;n ∈ N} as a system of the sets, such that

∀J ∈ S(U) and ∀(x1, y1), (x2, y2) ∈ J : U(x1, y1) = U(x2, y2).

Moreover for every J must exists αJ ∈ H(J), such that

∀p ∈ D(J) : U(p, αJ) 6= U(x, αJ), where x ∈ [0, e) \D(J).

Definition 2.2. [2] Let U : [0, 1]2 → [0, 1] be a uninorm with the neutral element e. Then we define
the set Mx(U) = {(a1, b1), . . . , (an, bn)} as a set of x-coordinate discontinuities of uninorm U on
[0, e)× (e, 1]. Similarly we define the set of y-coordinate discontinuities as My(U).

The following theorem deals with the properties of transformation function ϕ in the discontinuity
points of given uninorm.

Theorem 2.3. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm andMx(U) be a finite set of x-coordinate
discontinuities of uninorm U . Further we consider nondecreasing bijection ϕ : [0, 1] → [0, 1]. Then if
the original uninorm is formed by the ϕ-transformation, then ∀(ai, bi) ∈Mx(U) : ϕ(ai) = ai.

The proof is based on an examination of the cases ϕ(ai) > ai and ϕ(ai) < ai. Note that in a very
similar way we can prove this statement for the set My(U), i.e, that ∀(x, y) ∈ My(U) : ϕ(y) = y. The
following example shows the importance of finiteness of the set Mx(U) from the previous theorem.

Example 2.4. Let us consider continuous bijective function f : [0, 1]→ [0, 1] given by following formula

f(x) =

{
3
√

x
4 if x ≤ 1

2 ,
x otherwise.
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Further more consider a uninorm U∗ : [0, 1]2 → [0, 1] with neutral element e = 1
2 given as:

U∗(x, y) =





1 if min{x, y} > 1
2 ,

min{x, y} if max{x, y} = 1
2 ,

max{x, y} if min{x, y} = 1
2 ,

f i+1
(
1
4

)
if max{x, y} > 1

2 and
min{x, y} ∈ (f i

(
1
4

)
, f i+1

(
1
4

)
] for i ∈ Z,

0 otherwise.

We study transformation given by the function ϕ = f . Here we show only the most interesting case of
proving the invariance. Therefore we assume x ∈

(
ϕi(14), ϕi+1(14)

]
, y ∈

(
1
2 , 1
]
. Then

U∗(ϕ(x), ϕ(y)) = ϕi+2

(
1

4

)
= ϕ ◦ ϕi+1

(
1

4

)
= ϕ(U∗(x, y)).

Other cases could be proved similarly. The uninorm U∗ with the function ϕ give us an example of a
ϕ-transformation, in which the fixed points of the function ϕ in discontinuities of U∗ are not necessary
for invariant.

Theorem 2.5. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm and ϕ : [0, 1] → [0, 1] be a continuous
bijective function. If the original uninorm is formed by the ϕ-transformation, then

∀J ∈ S(U) : ϕ(sup Jx) = sup Jx and ϕ(inf Jx) = inf Jx.

Proof. The proof is based on generating the set M(U) using an iteration of the function ϕ. Since the set
S(U) is finite, the set M(U) is finite as well and hence there exists a fixed point of the function ϕ at the
points inf Jx and sup Jx for J ∈ S(U).

Corollary 2.6. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm, ϕ : [0, 1] → [0, 1] be a continuous
bijective function and My(U) be a finite set. If the original uninorm is formed by the ϕ-transformation,
then the interval (e, 1] can be divided into subintervals Ii = (yi, yi+1] for which ϕ(yi) = yi holds.

Theorem 2.7. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm, Ii = (yi, yi+1] be sub-intervals from
Corollary 2.6 and a function ϕ : [0, 1] → [0, 1] be a continuous bijection for which ϕ(yi) = yi holds.
Further we assume a function ψi(x) = U(x, yi) for x ∈ [0, e) and y ∈ Ii. Then the original uninorm on
the set [0, e)× (e, 1] is formed by the ϕ-transformation iff

ϕ ◦ ψi(x) = ψi ◦ ϕ(x), ∀x ∈ [0, e), i ≤ n, (1)

where n is the number of intervals.

Proof. We use the definition of a ϕ-tranformation and the previous corollary. In short we get

ϕ ◦ ψi(x) = ψi ◦ ϕ(x)⇔ ϕ(U(x, y)) = U(ϕ(x), y)⇔ ϕ(U(x, y)) = U(ϕ(x), ϕ(y))

for x < e, y ∈ Ii.

If we denote a set of all functions ϕ, satisfying equation (1) as Fi, then a set of all functions Fϕ
forming the original uninorm by the ϕ-transformation on the set [0, e)× (e, 1] is given as follows

ϕ ∈ Fi ⇔ ϕ ◦ ψi(x) = ψi ◦ ϕ(x) and Fϕ =
n⋂

i=0

Fi.

In the following text we deal with solving the functional equation (1). Functions satisfying this equation
are called as permutable functions.
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2.1 Chebyshev polynomials

The first partial solution of equation (1) is composed of Chebyshev polynomials.

Definition 2.8. [6] Chebyshev polynomials of the first kind Tn are defined by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), for n > 0.

Chebyshev polynomials of the second kind Un are defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x), for n > 0.

Theorem 2.9. [5] Let Tn be the Chebyshev polynomial of the first kind, then for x ≥ 0, x ∈ R and
α = arccos(x) is Tn(cosα) = cos(nα).

Theorem 2.10. [5] The roots of the polynomial Tn (Un) are given by

xk = cos

(
π

2

2k − 1

n

)
,

(
xk = cos

(
π

k

n+ 1

))
, for k ∈ {1, . . . , n}.

Theorem 2.11. [5] Let Tn be the Chebyshev polynomial of the first kind. Then its derivative is as follows

T ′n(x) = nUn−1(x),

where Un−1 is Chebyshev polynomial of the second kind .

We will now look for such Chebyshev polynomials which are continuous and increasing on [0, e] and
Tn(0) = 0, Tn(e) = e, for e ∈ (0, 1) and Tn(x) ≥ x for x ∈ [0, e].

Investigation. From Tn(0) = 0 we get Tn(0) = −Tn−2(0) = 0. More, 4|(n − 1). From Tn(e) =
e ∈ (0, 1) we get

e = cos(n arccos(e))⇔ n arccos(e) = 2kπ ± arccos(e)⇔

n =
2kπ ± arccos(e)

arccos(e)
=

2kπ

arccos(e)
± 1, for k ∈ Z.

Therefore
π

arccos(e)
∈ Q.

For fulfillment of other conditions we will look for xe1 , which is the smallest positive nonzero point at
which the polynomial Tn attains its local maximum and xe1 > e and Tn(xe1) = 1. Directly from the
previous theorem we get:

Theorem 2.12. Let Tn be Chebyshev polynomial of the first kind. Then the local extremes are in the
points xe which are given by:

xe = cos

(
kπ

n

)
, k ∈ {1, . . . , n}.

Remark: If we consider only polynomials that satisfy the above conditions, then the smallest positive
point giving a local maximum is:

xe0 = cos

(
n− 1

2n
π

)
.

And now we find the smallest point e ∈ (0, 1) such that Tn(e) = e. Then

e = cos(n arccos(e))⇔ n arccos(e) = 2kπ ± arccos(e)⇔ e = cos

(
2kπ

n± 1

)
.
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This equality is satisfied for k ∈ {1, . . . , bn2 c} and for higher k it s the same up to sign. Summarizing
the previous we get:

cos

(
n− 1

2n
π

)
>

∣∣∣∣cos

(
2kπ

n± 1

)∣∣∣∣ .

Since the cosine function is decreasing in the interval (0, π2 ], we get

∣∣∣∣
π

2
− n− 1

2n
π

∣∣∣∣ >
∣∣∣∣
π

2
− 2kπ

n± 1

∣∣∣∣⇔
n− 1

2n
π <

2kπ

n± 1
.

From the previous investigation we have k = bn4 c and

n− 1

2n
π <

2π

n+ 1

⌊n
4

⌋
⇔ (n− 1)(n+ 1) < 4n

⌊n
4

⌋
= 4n

n− 1

4
.

This inequality is satisfied only for n = 1. There are no Chebyshev polynomials of the first kind, which
would suit our conditions.

2.2 Function iteration

Other particular solution of functional equation (1) is closely related to the iteration of functions [4]. In
the following text we denote by F the set of all nondecreasing functions f : [0, e]→ [0, e] satisfying the
conditions f(x) ≥ x, f(0) = 0 and f(e) = e.

The following lemma and corollaries explain methods of construction permutable functions.

Lemma 2.13. [2] Let g and f : X → X be permutable functions (i.e. f ◦ g(x) = g ◦ f(x) for all
x ∈ X). We further assume nondecreasing (nonincreasing) surjective function λ : X → X . Then the
functions

Φ(x) = λ(−1) ◦ f ◦ λ(x) and Ψ(x) = λ(−1) ◦ g ◦ λ(x),

where λ(−1) is pseudoinverse function to λ, form a pair of permutable functions.

Proof. Since the function λ is a nondecreasing (nonincreasing) surjection, the equality λ ◦λ(−1)(x) = x
is satisfied. Which means that

Φ ◦Ψ(x) = λ(−1) ◦ f ◦ λ ◦ λ(−1) ◦ g ◦ λ(x) = λ(−1) ◦ f ◦ g ◦ λ(x)

= λ(−1) ◦ g ◦ f ◦ λ(x) = λ(−1) ◦ g ◦ λ ◦ λ(−1) ◦ f ◦ λ(x) = Ψ ◦ Φ(x).

Note. Although the function λ can be in general nonincreasing as well, in the following text we consider
only the nondecreasing case due to our restrictions to permutable functions.

Corollary 2.14. [2] Let f and g be permutable functions and moreover f, g ∈ F . Further we assume a
nondecreasing surjective function λ : [0, e]→ [0, e]. Then the functions

Φ(x) = λ(−1) ◦ f ◦ λ(x), Ψ(x) = λ(−1) ◦ g ◦ λ(x)

form a pair of permutable functions, and moreover Φ,Ψ ∈ F .

Corollary 2.15. [2] Let f be a function such that f ∈ F . We further assume a nondecreasing surjective
function λ : [0, e]→ [0, e], and functions Φn(x) = λ(−1) ◦ fn ◦ λ(x) for n ∈ N0. Then the functions Φi

and Φj , for i, j ∈ N0 form a pair of permutable functions and moreover Φi,Φj ∈ F .

The proof of the current and previous corollary is based on certain properties of function iteration
and on properties of pseudoinverse functions.

In a search for permutable functions we can as well draw from existing functions as it is shown in
the following example.
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Example 2.16. Consider a t-conorm restricted to the set [0, e]2, i.e.

Se(x, y) = eS
(x
e
,
y

e

)
, for (x, y) ∈ [0, e]2,

and its diagonal functions δ∗n. Then δ∗m ◦ δ∗n = δ∗n ◦ δ∗m for m,n ∈ N [1]. More specifically, consider
restriction of t-conorm probabilistic sum

Se(x, y) = x+ y − xy

e
, for (x, y) ∈ [0, e]2,

and the diagonal functions δ∗2 and δ∗3 given by

δ∗2(x) = x
(

2− x

e

)
, δ∗3(x) = x

(
3− 3x

e
+
x2

e2

)
.

Then δ∗2(x) ◦ δ∗3(x) = δ∗3(x) ◦ δ∗2(x) for all x ∈ [0, e].

3 Invariant transformation of t-norms

As mentioned before, uninorms are generalizations of t-norms. Hence in this section we deal with an
invariant transformation of t-norms. Before we introduce the necessary condition for invariant transfor-
mations, we demonstrate a ϕ-transfomation via the diagonal function δn of Frank t-norms.

Example 3.1. Frank t-norms are defined by [3]:

TFp (x, y) =





TM (x, y) if p = 0,
TP (x, y) if p = 1,
TL(x, y) if p = +∞,
logp

(
1 + (px−1)(py−1)

p−1

)
otherwise.

The diagonal function for minimum t-norm is given by δn,0(x) = x. Invariance is thus apparent in
this case. The diagonal function for product t-norm TP (x, y) = xy is defined by δn,1(x) = xn. After
transformation we obtain (xy)n = xnyn. Invariance is thus again maintained.

The diagonal function for Łukasiewicz t-norm TL(x, y) = max{0, x + y − 1} is δn,∞ given by
δn,∞(x) = ϕ(x) = max{0, nx−n+1}. Invariance is again maintained, as can be seen by substitution.

For the other cases the diagonal functions δn,p are as follows:

δn,p(x) = ϕ(x) = logp

(
1 +

(px − 1)n

(p− 1)n−1

)
.

Then the transformation looks as follows

TFp (ϕ(x), ϕ(y)) = logp

(
1 +

(px − 1)n(py − 1)n

(p− 1)2n−1

)
,

ϕ(TFp (x, y)) = logp


1 +

(
(px−1)(py−1)

p−1

)n

(p− 1)n−1


 = logp

(
1 +

(px − 1)n(py − 1)n

(p− 1)2n−1

)
,

and thus TFp (ϕ(x), ϕ(y)) = ϕ(TFp (x, y)). This altgother means, that the invariance towards transfor-
mation by the diagonal functions, is maintained for the class of Frank t-norms.

Now we can introduce the aforementioned necessary condition of invariance.

Theorem 3.2. [2] (Necessary condition of invariance) Let T : [0, 1]2 → [0, 1] be a t-norm, δn be
diagonal functions of T and ϕ : [0, 1] → [0, 1] be a nondecreasing surjective function. If ϕ is an
invariant of the transformation of the t-norm T , then ϕ ◦ δn(x) = δn ◦ ϕ(x) for all x ∈ [0, 1], n ∈ N.
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Proof. Since the function ϕ is a nondecreasing surjection, the original t-norm is formed by the transfor-
mation iff ϕ(T (x, y)) = T (ϕ(x), ϕ(y)). Hence ϕ ◦ δn(x) = δn ◦ ϕ(x) for all x ∈ [0, 1] and n ∈ N.

The following theorems show a further relation between diagonal functions, actually additive gener-
ators of t-norms, and invariant transformation.

Theorem 3.3. [2] Let T : [0, 1]2 → [0, 1] be a strict t-norm. We further assume a function ϕ : [0, 1] →
[0, 1]. If ϕ ∈ ∆T , then the original t-norm is formed by the ϕ-transformation.

Proof. Since the function ϕ is bijective, equation ϕ(Tϕ(x, y)) = T (ϕ(x), ϕ(y)) is fulfilled. By the
assumption ϕ ∈ ∆T , we will further write only δn(Tϕ(x, y)) = T (δn(x), δn(y)), for n ∈ N. The proof
of the equation Tϕ = T will proceed by induction on n.

1. For n = 1, the equation holds trivially. For n = 2, we assume that there exists some (x0, y0) ∈
[0, 1]2 such that T (x0, y0) 6= Tϕ(x0, y0). However, then

T (T (x0, y0), T (x0, y0)) = δ2(T (x0, y0)) 6= T (δ2(x0), δ2(y0)) = T (T (x0, y0), T (x0, y0)),

which is a contradiction (in the previous step we use associativity of T and the fact that the function
δ−1n is increasing). Thus Tϕ = T for the transformation by the function δ2.

2. Now we assume that the equation holds for δ1, . . . , δn and we prove that it holds also for δn+1. We
get

Tϕ(x, y) = δ−1n+1(T (δn+1(x), δn+1(y)))⇒ δn+1(Tϕ(x, y)) = T (δn+1(x), δn+1(y))⇒
T (δn(Tϕ(x, y)), Tϕ(x, y)) = T (T (δn(x), x), T (δn(y), y)).

From the induction assumption and associativity of the t-norm T it follows

T (T (δn(x), δn(y)), Tϕ(x, y)) = T (T (δn(x), δn(y)), T (x, y)).

Since the t-norm T is strict, equation Tϕ = T holds true.

The original t-norm is thus formed by the transformation via diagonal functions.

Theorem 3.4. [2] Let T : [0, 1]2 → [0, 1] be a continuous Archimedean t-norm and f : [0, 1] → [0,∞]
be additive the generator of this t-norm. Further let us consider a bijective function ϕ : [0, 1] → [0, 1].
Then the original t-norm is formed by the ϕ-transformation iff there exists α > 0 such as αf(x) =
f ◦ ϕ(x) (Schröder’s equation).

Proof. (⇐) The transformed t-norm Tϕ is given by

Tϕ(x, y) = ϕ−1[T (ϕ(x), ϕ(y))] = ϕ−1 ◦ f−1(min{f ◦ ϕ(x) + f ◦ ϕ(y), f(0)}).

Since the t-norm Tϕ is a continuous Archimedean t-norm, its additive generator g is given by g(x) =
f ◦ ϕ(x). There exists α > 0, such that g(x) = αf(x), and hence f and g differ only by a positive
multiplicative constant. The generator g is thus also a generator of the t-norm T, and consequently
Tϕ = T .

(⇒) Now we assume Tϕ(x, y) = T (x, y) for all (x, y) ∈ [0, 1]2, thus

Tϕ(x, y) = ϕ−1[T (ϕ(x), ϕ(y))] = T (x, y).

The additive generator of the t-norm Tϕ is given by g(x) = f ◦ ϕ(x), but since both the t-norms are
equal, there exists some α > 0 such that f ◦ ϕ(x) = αf(x).

All bijective functions ϕ on the unit interval, whose transformation form the original t-norm, deter-
mine a group of automorphisms Aut(T ). This group for archimedean t-norms is described by Theorem
3.4.
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4 Conclusion

This paper shows some conditions under which the ϕ-transformations of the t-norms and uninorms are
invariant. Due to restricted space we skip most of the proofs. But we plan to generalize these results and
write a more detailed article.
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Generalization of the discrete Choquet integral

L’ubomı́ra Horanská ∗ Alexandra Šipošová †

Abstract: In this paper, we present an approach to generalization of the discrete Choquet integral. We
replace the product operator joining capacity m of criteria sets and values of score vector by a fusion
function F satisfying some constraints, similarly as was already done for another form of the discrete
Choquet integral in [2]. The properties of obtained functional Cm

F are studied and some examples for
particular capacities m are given.

Keywords: Choquet integral, fusion function

1 Introduction

The evaluation of a score vector achieved in some set of criteria is a long-term point of interest in
multicriteria decision making theory. One of the useful tools used for that purpose is the Choquet integral
[1], which was generalized in several ways, see, for instance, [3], [4].

Our generalization was inspired by that of Mesiar et al. in [2], where the authors generalized one of
the two usually used discrete forms of the Choquet integral (see below, the formula (1)) replacing the
product operator by fusion function satisfying certain conditions. Using the same idea, we generalize the
other formula (see the formula (2)) for the discrete Choquet integral. Note that, in general, the resulting
functional differs from that obtained in [2].

We recall the definition of the Choquet integral on a general monotone measure space (X,S,m),
whereX is a non-empty setX , S is a σ-algebra of its subsets andm : S→ [0,∞] a monotone measure,
i.e., a set function satisfying the properties m(∅) = 0 and m(A) ≤ m(B) for all A,B ∈ S, A ⊆ B.

Definition 1.1. Let (X,S,m) be a monotone measure space. For any S-measurable function f : X →
[0, 1] the Choquet integral Chm(f) is given by

Chm(f) =

∫ 1

0
m({x ∈ X|f(x) ≥ t}) dt,

where the integral on the right-hand side is the Riemann integral.

In this paper we will only deal with finite spaces X = {1, . . . , n} for some n ∈ N , n ≥ 2, S = 2X

and normalized monotone measures m : 2X → [0, 1], i.e., monotone measures with m(X) = 1, calling
them capacities [5]. The set of all capacities m : 2X → [0, 1] will be denoted by Mn. Any 2X -
measurable function f : X → [0, 1] will be identified with a vector x = (x1, . . . , xn) ∈ [0, 1]n, where
xi = f(i), i = 1, . . . , n.

A discrete form of the Choquet integral is of a great importance in decision making theory, regarding
a finite set X = {1, . . . , n} as some criteria set, a vector x ∈ [0, 1]n as a score vector and a capacity
m : 2X → [0, 1] as the weights of particular sets of criteria.

∗Institute of Information Engineering, Automation nad Mathematics, Faculty of Chemical and Food Technology, Slovak
University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia, lubomira.horanska@stuba.sk
†Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology in

Bratislava, Radlinského 11, 810 05 Bratislava, Slovakia, alexandra.siposova@stuba.sk
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Proposition 1.2. Let X = {1, . . . , n} and let m : 2X → [0, 1] be a capacity. Then for any x ∈ [0, 1]n

the discrete Choquet integral is given by

Chm(x) =

n∑

i=1

(x(i) − x(i−1)) ·m(E(i)), (1)

where (·) : X → X is a permutation such that x(1) ≤ · · · ≤ x(n), E(i) = {(i), . . . , (n)} for i =
1, . . . , n, and x(0) = 0,

or, equivalently, by

Chm(x) =
n∑

i=1

x(i) · (m(E(i))−m(E(i+1))), (2)

with x(i) and E(i), i = 1, . . . , n, as above, and E(n+1) = ∅.

Observe that information contained in a score vector and that in a capacity are joined by the standard
product operator. Replacing the product in formulae (1) and (2) by a function F : [0, 1]2 → [0, 1] (a
binary fusion function), we obtain the formulae:

CF
m(x) =

n∑

i=1

F (x(i) − x(i−1),m(E(i))) (3)

and

Cm
F (x) =

n∑

i=1

F (x(i),m(E(i))−m(E(i+1))), (4)

respectively.
The functionals Cm

F defined by (3) were deeply studied in [2] including a complete characterization
of functionals CF

m as aggregation functions.
In this paper, we will analyse the functionals defined by (4). The paper is organized as follows. In the

next section, we provide the conditions under which a functionalCm
F is correctly defined for any capacity

m ∈ Mn and any x ∈ [0, 1]n and, for suitable fusion functions, we exemplify Cm
F for several particular

capacities. In Section 3, we provide several properties of functionals Cm
F and show their connection with

the discrete Choquet integral. Finally, some concluding remarks are added.

2 Operators Cm
F

Let us first analyse conditions under which the functionals Cm
F introduced in (4) are well defined.

Evidently, for a score vector x ∈ [0, 1]n with card {x1, . . . , xn} = n there is a unique permutation
(·) : X → X such that x(1) ≤ · · · ≤ x(n) (in fact, all inequalities are strict). Thus Cm

F is correctly
defined by formula (4). If some ties occure, i.e., if card {x1, . . . , xn} < n, we have to analyse the
following two cases.
Case 1: Let n = 2. Consider x = (x1, x2) = (x, x), and a capacity ma,b ∈M2 defined by ma,b({1}) =
a and ma,b({2}) = b, where a, b ∈ [0, 1]. Then Cma,b

F (x, x) is well defined only if formula (4) gives
back the same value for both possible permutations (1,2) and (2,1) ordering the vector x increasingly,
i.e., if it holds

F (x, 1− a) + F (x, a) = F (x, 1− b) + F (x, b)

for all a, b ∈ [0, 1].
Consequently, we obtain the following proposition.

Proposition 2.1. Let n = 2. Then Cm
F : [0, 1]2 → [0, 2] introduced in (4) is well defined if and only if

F (x, y) + F (x, 1− y) = 2F (x, 1/2), for any x, y ∈ [0, 1] .
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L’. Horanská, A. Šipošová: Generalization of the discrete Choquet integral

We can immediately characterize all well defined functionals Cma,b

F :

C
ma,b

F (x, y) =





F (x, 1− b) + F (y, b) if x < y,
2F (x, 1/2) if x = y,
F (x, a) + F (y, 1− a) if x > y.

Example 2.2. Consider F : [0, 1]2 → [0, 1] defined by F (x, y) = x
2 ((2y − 1)3 + 1), see Fig. 1. Then F

satisfies the constraints of Proposition 2.1. and thus Cm
F is correctly defined for any ma,b ∈ M2. Note

that then

C
ma,b

F (x, y) =

{
x+y
2 + (y−x)

2 (2b− 1)3 if x ≤ y,
x+y
2 + (x−y)

2 (2a− 1)3 otherwise,

see Fig. 2.
If a = b, i.e., ma,a is a symetric capacity, then

C
ma,a

F (x, y) =
x+ y

2
+
|x− y|

2
(2a− 1)3 for all x, y ∈ [0, 1] .

0.0
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Figure 1: F (x, y) = x
2 ((2y − 1)3 + 1) Figure 2: Cma,b

F , a = 0.85, b = 0.95

Case 2: Now, consider n > 2 and a vector x = (x1, · · · , xn) ∈ [0, 1]n such that
card{x1, · · · , xn} < n. Without loss of generality we can suppose that card{x1, · · · , xn} = n− 1 and
x1 = x2 = min{x1, · · · , xn} = x. Then, similarly as before, we find out that Cm

F (x) is well defined
only if

F (x, 1−m({2, 3, · · · , n})) + F (x,m({2, 3, · · · , n})−m({3, · · · , n})) =
F (x, 1−m({1, 3, · · · , n})) + F (x,m({1, 3, · · · , n})−m({3, · · · , n})) .

The last equality has to be satisfied for any capacity m ∈ Mn, i.e., for any α, β, γ, δ ∈ [0, 1] such
that α+ β = γ + δ ∈ [0, 1] it should hold that

F (x, α) + F (x, β) = F (x, γ) + F (x, δ).

The only solution of this Cauchy’s equation is of the form

F (x, y) = f(x) · y, (5)

where f : [0, 1] → [0, 1] is an arbitrary function. On the other hand, any function F of the form (5)
yields a well defined functional Cm

F : [0, 1]n → [0, n].

Proposition 2.3. Let n > 2. The functional Cm
F : [0, 1]n → [0, n] is well defined for any m ∈ Mn if

and only if F (x, y) = f(x) · y for all x, y ∈ [0, 1] and some function f : [0, 1]→ [0, 1]. In that case

Cm
F (x) =

n∑

i=1

f(x(i)) · (m(E(i))−m(E(i+1))). (6)

51



Uncertainty modelling 2015

Example 2.4. Consider F : [0, 1]2 → [0, 1] given by F (x, y) = (1 − x)y, which satisfies Proposition
2.3. Then for each m ∈Mn and x ∈ [0, 1]n it holds:

Cm
F (x) = 1− Chm(x) = Chmd(1− x),

wheremd is a dual capacity tom, given bymd(E) = 1−m(Ec). Note thatCm
F is a decreasing operator,

Cm
F (0, . . . , 0) = 1 and Cm

F (1, . . . , 1) = 0.

Using (6), for a fixed suitable fusion function F given by (5), we can derive Cm
F for some particular

capacities m ∈Mn, see the following table.

m ∈Mn Cm
F ; F (x, y) = f(x) · y

m∗(E) =

{
1 if E 6= ∅,
0 if E = ∅ Cm∗

F (x) = f(x(n)) = f( max
1≤i≤n

xi)

m∗(E) =

{
1 if E = {1, · · · , n},
0 otherwise

Cm∗
F (x) = f(x(1)) = f( min

1≤i≤n
xi)

CmH
F (x) = f(xi), where

mH(E) =

{
1 if H ⊆ E,
0 otherwise

{j ∈ {1, · · · , n}|xj ≥ xi} ⊇ H but

{j ∈ {1, · · · , n}|xj > xi} ⊇ H does not hold
∅ 6= H ⊆ X

m(E) = card E
n Cm

F (x) = 1
n

n∑
i=1

f(xi)

Note that m∗ and m∗ are the greatest and the smallest elements ofMn, respectively, and that m∗ =
mH for H = X .

3 Cm
F with some particular properties

In this section, we formulate several properties of functionals Cm
F and also show the connection Cm

F with
the discrete Choquet integral.

At first, we recall that the functional Cm
F is:

• an aggregation function, if Cm
F is monotone increasing and Cm

F (0) = 0, Cm
F (1) = 1;

• a mean, if for each x ∈ [0, 1]n it holds Min(x) ≤ Cm
F (x) ≤ Max(x), where Min(x) =

min{x1, . . . , xn}, Max(x) = max{x1, . . . , xn};

• translation invariant, if Cm
F (x1 + c, . . . , xn + c) = c + Cm

F (x1, . . . , xn) for all c ∈]0, 1] and
(x1, . . . , xn) ∈ [0, 1]n such that (x1 + c, . . . , xn + c) ∈ [0, 1]n;

• idempotent, if Cm
F (x, . . . , x) = x for each x ∈ [0, 1].

For the functionals Cm
F of the form (6) with F satisfying (5), the following properties can be directly

derived.
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Proposition 3.1. Let F : [0, 1]2 → [0, 1], F (x, y) = f(x) · y, where f : [0, 1] → [0, 1]. Then for any
fixed n ≥ 2 it holds that

(i) Cm
F is an aggregation function for each m ∈ Mn if and only if f is an increasing function

satisfying f(0) = 0 and f(1) = 1.

(ii) Cm
F ≥ Min for each m ∈ Mn if and only if f is an increasing function satisfying f(x) ≥ x for

all x ∈ [0, 1].

(iii) Cm
F ≤ Max for each m ∈ Mn if and only if f is an increasing function satisfying f(x) ≤ x for

all x ∈ [0, 1].

(iv) Cm
F is a mean for each m ∈Mn if and only if F is the product operator.

(v) Cm
F is translantion invariant for each m ∈Mn if and only if F is the product operator.

(vi) Cm
F is idempotent for each m ∈Mn, if and only if F is the product operator.

Note that for the standard product F (x, y) = x.y the functional Cm
F coincides with Chm, therefore

the properties (iv), (v), (vi) hold only for the Choquet integral itself.

Since an increasing function preserves ordering of an input vector and a decreasing one inverts it,
we obtain the following propositions that show the connection between Cm

F and the discrete Choquet
integral.

Proposition 3.2. Let F : [0, 1]2 → [0, 1], F (x, y) = f(x) · y, where f : [0, 1] → [0, 1] is an increasing
function. Then, for each m ∈Mn and x ∈ [0, 1]n,

Cm
F (x) = Chm(f(x)),

where f(x) = (f(x1), · · · , f(xn)).

Proposition 3.3. Let F : [0, 1]2 → [0, 1], F (x, y) = f(x) · y, where f : [0, 1] → [0, 1] is a decreasing
function. Then, for each m ∈Mn and x ∈ [0, 1]n,

Cm
F (x) = 1− Chm(1− f(x)) = Chmd(f(x))

where md ∈Mn is a capacity dual to m.

Note that the last property was already ilustrated for a special function F in Example 2.4.

4 Concluding remarks

We have generalized the formula (2) for the discrete Choquet integral, replacing the standard product
operator by a function F : [0, 1]2 → [0, 1]. Several particular operators Cm

F were discussed, based
either on a fixed capacity m ∈ Mn or on a fixed function F . We expect applications of our results in
all domains where the generalizations of the discrete Choquet integral are considered, for example in
medicine.
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On a preorder relation induced by uninorms

Martin Kalina ∗

Abstract: In this paper we study a pre-order �U induced by uninorms U . We will be interested
especially in cases when �U is not an ordering. We will also study algebraic properties of equivalence
classes ∼U . We will show examples of uninorms when the uninorm restricted to an equivalence class
A is an Abelian subgroup of the monoid ([0, 1], U, e), examples when this is an Abelian group but not
a subgroup of ([0, 1], U, e), as well as examples when an equivalence class A cannot be organized into
a group. We will further see that the Abelian groups occurring in the monoid ([0, 1], U, e), may have
non-trivial subgroups.

Keywords: uninorm, pre-order, partition

1 Introduction and known facts

Uninorms since their introduction by Dombi [2] under the name aggregative operator, and later re-
introduction by Yager and Rybalov [10], have found broad interest among researchers, and also broad
applicability in many areas, such as decision making, fuzzy control, etc. Uninorms were proposed by
Yager and Rybalov as a natural generalization of both, t-norms and t-conorms. Because of lack of space,
for basic properties on t-norms and t-conorms we refer readers to [7, 9].

1.1 Uninorms

The definition of uninorm proposed by Yager and Rybalov [10] is the following.

Definition 1.1. A uninormU is a functionU : [0, 1]2 → [0, 1] that is increasing, commutative, associative
and has a neutral element e ∈ [0, 1].

An overview of basic properties of uninorms is in [1]. For an overview of known classes of uninorms
see [8].

A uninorm U is said to be conjunctive if U(x, 0) = 0, and U is said to be disjunctive if U(1, x) = 1,
for all x ∈ [0, 1].

A uninorm U is called representable if it can be written in the form

U(x, y) = g−1(g(x) + g(y)) ,

where g : [0, 1]→ [−∞,∞] is a continuous strictly increasing function with g(0) = −∞ and g(1) =∞.
Note yet that for each generator g there exist two different uninorms depending on convention we take
∞−∞ = ∞, or∞−∞ = −∞. In the former case we get a disjunctive uninorm, in the latter case a
conjunctive uninorm.

Representable uninorms are “almost continuous”, i.e., they are continuous everywhere on [0, 1]2

except of points (0, 1) and (1, 0).
Conjunctive and disjunctive uninorms are dual in the following way

Ud(x, y) = 1− Uc(1− x, 1− y) ,
∗Slovak University of Technology in Bratislava, Faculty of Civil Engineering, RadlinskÃl’ho 11, Sk-810 05 Bratislava,

Slovakia, kalina@math.sk
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where Uc is an arbitrary conjunctive uninorm and Ud its dual disjunctive uninorm. Assuming Uc has a
neutral element e, the neutral element of Ud is 1− e.

For an arbitrary uninorm U and arbitrary (x, y) ∈ ]0, e[× ]e, 1]∪ ]e, 1]× ]0, e[ we have

min{x, y} ≤ U(x, y) ≤ max{x, y} . (1)

We say that a uninorm U contains a homomorphic image of a representable uninorm in ]a, b[2 for
0 ≤ a < e < b ≤ 1 (where a 6= 0 and/or b 6= 1), if there exists a continuous strictly increasing function
g̃ : [a, b]→ [−∞,∞] such that g̃(a) = −∞, g̃(b) =∞, g̃(e) = 0 and

U(x, y) = g̃−1(g̃(x) + g̃(y)) for x, y ∈ ]a, b[ . (2)

1.2 Orders induced by t-norms

In [6] t-norms on bounded lattices were introduced.

Definition 1.2. Let L be a bounded lattice. A function T : L2 → L is said to be a t-norm if T is
commutative, associative, monotone and 1L is its neutral element.

Each uninorm U with a neutral element 0 < e < 1, when restricted to the square [0, e]2, is a t-norm
(on the lattice L = [0, e] equipped with meet and join) and when restricted to the square [e, 1]2, is a
t-conorm (on the lattice L = [e, 1] equipped with meet and join). We will denote this t-norm by TU and
the t-conorm by SU .

In [5], for a given t-norm T on a bounded lattice L a relation �T generated by T was introduced.
The definition is as follows

Definition 1.3. Let T : L2 → L be a given t-norm. For arbitrary x, y ∈ L we denote x �T y if there
exists ` ∈ L such that T (y, `) = x.

Proposition 1.4. ([5]) Let T be an arbitrary t-norm. The relation �T is a partial order. Moreover, if
x �T y holds for x, y ∈ L then x ≤ y, where ≤ is the order generated by lattice operations.

Dually, we can introduce a partial order �S for arbitrary t-conorm S by

x �S y if there exists ` ∈ [0, 1] such that S(y, `) = x .

However, in this case we have
x �S y ⇒ x ≥ y .

1.3 Relation �U

As a generalization of the relation �T , Hliněná, Kalina and Král’ in [3] introduced relation �U .

Definition 1.5 ([3]). Let U be arbitrary uninorm. By �U we denote the following relation

x �U y if there exists ` ∈ [0, 1] such that U(y, `) = x .

Associativity of U implies transitivity of �U . Existence of a neutral element e implies reflexivity of
�U . However, anti-symmetry of �U is rather problematic.

Since for representable uninorm U and for arbitrary x ∈ ]0, 1[ and y ∈ [0, 1] there exists `y such that
U(x, `y) = y, the relation �U is not necessarily anti-symmetric.

Lemma 1.6 ([3]). Let U be arbitrary uninorm. The relation �U is a pre-order.

We introduce a relation ∼U .

Definition 1.7 ([3]). Let U be arbitrary uninorm. We say that x, y ∈ [0, 1] are U -indifferent if

x �U y and y �U x .

If x, y are U -indifferent, we write x ∼U y.

Lemma 1.8 ([3]). For arbitrary uninorm U the relation ∼U is an equivalence relation.
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2 Properties of uninorms induced by the relation �U
For arbitrary uninorm U with neutral element e the uninorm can be considered to be a binary operation
on [0, 1]. Thus ([0, 1], U, e) becomes a commutative (i.e., Abelian) monoid which is moreover isotone
with respect to the standard ordering of reals.

Lemma 2.1. Let U : [0, 1]2 → [0, 1] be an arbitrary uninorm and x1, x2 ∈ [0, 1] such that x1 ∼U x2.
Then

U(x1, x1) ∼U U(x2, x2) ∼U U(x1, x2). (3)

A direct corollary to Lemma 2.1 is the next assertion.

Proposition 2.2. Let U : [0, 1]2 → [0, 1] be an arbitrary uninorm and e ∈ ]0, 1[ be its neutral element.
Assume there exists x ∈ [0, 1], x 6= e and y ∈ [0, 1] such that U(x, y) = e. Then there exists a set
Ae ⊂ [0, 1] such that for all x ∈ Ae, x ∼U e. Moreover, if we denote by � the binary operation on
Ae defined by x � y = U(x, y) for all x, y ∈ Ae, then (Ae,�, e) is a non-trivial Abelian subgroup of
([0, 1], U, e).

Lemma 2.1 can be further generalized.

Proposition 2.3. Let U : [0, 1]2 → [0, 1] be an arbitrary uninorm and x1, x2, y ∈ [0, 1]. Then the
following holds

(x1 ∼U x2) ⇒ (U(x1, y) ∼U U(x2, y)) . (4)

As Proposition 2.3 shows, the set Ae of all elements of [0, 1] which are indifferent from e generates
classes of indifferent elements. In general, we have the following possibilities.

Proposition 2.4. Let U be a fixed uninorm and e its neutral element. For arbitrary x ∈ [0, 1] denote the
set Ax = {y ∈ [0, 1];x ∼U y}. Then Ax is either a singleton or an infinite set.
Further, assume that for a fixed x the set Ax is infinite and denote by �x the binary operation on Ax

defined by x� y = U(x, y) for all x, y ∈ Ax. Then there are the following possibilities.

• Ax = Ae and (Ax,�x, e) is a non-trivial Abelian subgroup of ([0, 1], U, e).

• Ax 6= Ae and (Ax,�x, ẽ) is a non-trivial Abelian group with a neutral element ẽ 6= e. In this case
(Ax,�x, ẽ) is not a subgroup of ([0, 1], U, e).

• x 6∼U U(x, x), i.e., �x is an operation on Ax but into [0, 1] \Ax. Moreover, there exists y ∈ [0, 1]
such that (Ay,�y, ẽ) is a non-trivial Abelian group and for all z ∈ Ay we have U(x, z) ∼U x.

3 Illustrative examples

In this section we provide illustrative examples. The first example shows uninorm U1 which generates
two infinite indifference classes with respect to ∼U1 . One indifference class is Ae such that (Ae,�e, e)
is a non-trivial subgroup of ([0, 1], U1, e). The other indifference class A 1

8
is such that for all x ∈ A 1

8

and all y ∈ Ae we have U(x, y) ∈ A 1
8
. The set A 1

8
cannot be organized into a group.

Example 3.1 ([3]). We recall the construction of a conjunctive uninorm which contains a homomorphic
image of a representable uninorm Ur on ]14 ,

3
4 [

2. Further, on the rectangle [0, 1
4 [×[14 , 3

4 ] the values of U1

57



Uncertainty modelling 2015

are given by the partial function U 1
8
(z) =

z− 1
4

2 . The explicit formula for the uninorm U1 is the following

U1(x, y) =





0 if min{x, y} = 0

or if max{x, y} ≤ 1
4 ,

1 if min{x, y} ≥ 3
4 ,

1
4 if 0 < min{x, y} ≤ 1

4

and if max{x, y} ≥ 3
4 ,

or if min{x, y} = 1
4

and max{x, y} > 1
4 ,

Ur(x, y) if (x, y) ∈ ]14 , 3
4 [

2,
max{x, y} if 1

4 < min{x, y} < 3
4

and max{x, y} ≥ 3
4 ,

and values on ]0, 1
4 [× ]14 ,

3
4 [ and ]14 ,

3
4 [× ]0, 1

4 [ are given by the partial function U 1
8

by formula (5) show-

ing the computation of the value at a point (x2, y2) ∈
]
0, 1

4

[
×
]

1
4 ,

3
4

[
. Assume that x2 = U(1

8 , y1).
Then

U(x2, y2) = U

(
1

8
, U(y1, y2)

)
. (5)

The uninorm U1 and its level-set functions of levels 1
16 ,

1
8 ,

3
16 are sketched on Fig. 1.

Ur

0

11
4

1
4

max

max

1
4 e = 1

2
3
4

1
4

3
4

1
2

Figure 1: Uninorm U1

The next example shows a uninorm U2 which generates two infinite indifference classes with respect
to ∼U2 . One indifference class is Ae such that (Ae,�e, e) is a non-trivial subgroup of the monoid
([0, 1], U2, e). The other indifference class A equipped with operation �A = U2 � A is also an Abelian
group, but not a subgroup of the monoid ([0, 1], U2, e).

Example 3.2. The construction of the uninorm U2 we are going to present in this example, is based on
the idea of paving that was introduced in [4]. The idea is the following. We split the unit interval into
countably many disjoint subintervals {Ii}i∈Z (in such a way we split the unit square into countably many
disjoint sub-rectangles Ii × Ij). Then we choose an operation ⊗ : [0, 1]2 → [0, 1] we want to use for
paving, choose increasing bijective transformations ϕi : Ii → [0, 1] and we "pave" the whole unit square
(see Fig. 2 for a graphical schema of paving) by

ϕ−1
i+j(ϕi(x)⊗ ϕj(y)). (6)
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ai−3 ai−2 ai−1 ai ai+1Ii−2 Ii−1 Ii Ii+1 Ii+2

ai−2

ai−1

ai

ai+1

Ii−2

Ii−1

Ii

Ii+1

Ii+2

I2i−4

I2i−3

I2i−2

I2i−1

I2i

I2i−3

I2i−2

I2i−1

I2i

I2i+1

I2i−2

I2i−1

I2i

I2i+1

I2i+2
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I2i

I2i+1

I2i+2

I2i+3
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I2i+1

I2i+2

I2i+3

I2i+4

Figure 2: Graphical schema of paving

To make each point (x, y) ∈ [0, 1]2 uniquely identifiable with a rectangle Ii × Ij , we will use left-
open intervals. Then the operation ⊗ used for paving must be without zero-divisors. In this case we
choose a representable uninorm Ur as the operation ⊗, and the following partition of ]0, 1[:

Ii =





]14 ,
3
4 ] if i = 0,

]2
i+1−1
2i+1 , 2i+2−1

2i+2 ] if i > 0,
] 1
22−i ,

1
21−i ] if i < 0.

(7)

The uninorm U2 is defined by

U2(x, y) =





ϕ−1
i+j (Ur (ϕi(x), ϕj(y))) if x ∈ Ii, y ∈ Ij ,

0 if min{x, y} = 0,
1 if max{x, y} = 1 and min{x, y} 6= 0.

Let us remark that the increasing bijective transformations ϕi : Ii → [0, 1] are chosen arbitrarily (and
for every choice we get a different uninorm). The relation �U2 generates two indifference classes –
A 3

4
= {2i+1−1

2i+1 ; i ∈ N} ∪ { 1
21+i ; i ∈ N}, where N is the set of positive integers, and Ae = ]0, 1[ \A 3

4
.

Then (Ae,�e, e) is a non-trivial subgroup of ([0, 1], U2, e) and
(
A 3

4
,� 3

4
, 3

4

)
is an Abelian group that is

not a subgroup of ([0, 1], U2, e).

Remark 3.3. If we look at the two Abelian groups induced by the uninorm U2 (Example 3.2), they are
in some sense different. While

(
A 3

4
,� 3

4
, 3

4

)
has no non-trivial subgroups, (Ae,�e, e) has a non-trivial

subgroup, namely
( ]

1
4 ,

3
4

[
, (�e �

]
1
4 ,

3
4

[
), e
)
.

In the last example we modify the uninorm U2 from Example 3.2 in two ways.

Example 3.4. We take the product t-norm TΠ for the operation ⊗ used for paving. We split the interval
]0, 1[ in the same way as in Example 3.2, i.e., the partition is given by formula (7). As the result of paving
we get uninorm U3 defined by the following

U3(x, y) =





ϕ−1
i+j (TΠ (ϕi(x), ϕj(y))) if x ∈ Ii, y ∈ Ij ,

0 if min{x, y} = 0,
1 if max{x, y} = 1 and min{x, y} 6= 0.

(8)

Also in this case we can choose arbitrarily the increasing bijective transformations ϕi : Ii → [0, 1]. I.e.,
correctly speaking, we have got a system of uninorms. But they all induce the same pre-order �U3 .
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Denote ai and bi the left- and right-end-points of the interval Ii, respectively. Then for xi ∈ Ii and
xj ∈ Ij we have xi ∼U3 xj if and only if xi−ai

bi−ai =
xj−aj
bj−aj . The set Ax0 for x0 ∈ I0, x0 6= 3

4 , cannot be

organized into a group, and
(
A 3

4
,� 3

4
, 3

4

)
is a subgroup of

(
[0, 1], U3,

3
4

)
.

If we choose the minimum t-norm, TM , instead of the product in the formula (8), and use the same
partition given by formula (7), we get again the same system of equivalence classes. But in this case for
all x0 ∈ I0 the algebraic system (Ax0 ,�x0 , x0) is an Abelian group, and for x0 = 3

4 it is a subgroup of(
[0, 1], U3,

3
4

)
.

Remark 3.5. We have seen in Example 3.4 that uninorms U3, U4 induce the same pre-order, i.e.,
�U3=�U4 . If we look at algebraic properties of equivalence classes got by the pre-orders �U3 and
�U4 , they are different. This means, in some cases, when different uninorms induce the same pre-order
the underlying algebraic properties of equivalence classes may help to distinguish types of uninorms in
question.
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Fuzzy Bags

Fateme Kouchakinejad ∗ Mashaallah Mashinchi † Radko Mesiar ‡

Abstract: This study introduces a revised definition for fuzzy bags. It is based on the definition of
bags given by Delgado et al. 2009 in which each bag has two parts, function and summary information.
Furthermore, the concept of α-cuts and related theorems is given. By some examples, the new concepts
are illustrated.

Keywords: α-cut of fuzzy bags; bags; fuzzy bags

1 Introduction

The initial notion of bags was introduced by Yager [1] as an algebraic set-like structure where an element
can appear more than once. So far, several works have been done using this new concept. Also, bags have
been employed in practice, for instance; in flexible querying, representation of relational information,
decision problem analysis, criminal career analysis, and even in fields such as biology.

However, due to some existing drawbacks in the first definition of bags [1], the necessity of a revision
of this notion reveals. The proposed definition by Delgado et al. [2] has improved these drawbacks. By
some examples, they showed that Yager’s definition for bags has some deficiencies and it was not well
suited for representing and reasoning with real-world information. Then, they proposed new definitions
for bags and fuzzy bags.

As it is shown in [3], the lattice of all fuzzy bags defined by Delgado et al. [2] is a complete Boolean
algebra which is not compatible with the nature of fuzziness. Improving this incompatibility, in this
paper, we introduce a revised definition for fuzzy bags based on the proposed definition of bags in [2].

2 Preliminaries

In this section, some basic concepts which are needed in the sequel are given. For more details, see [2].

Definition 1. [2] Let P and O be two universes (sets) called "properties" and "objects", respectively. A
(crisp) bag Bf is a pair (f,Bf ), where f : P → P(O) is a function and Bf is the following subset of
P ×N

Bf = {(p, card(f(p)))|p ∈ P}.
Here, N is the set of natural numbers, P(O) is the power set of O, card(X) is the cardinality of set X .

We will use the convention here that card(∅) = 0.
In this characterization, a bag Bf consists of two parts. The first one is the function f that can be

seen as an information source about the relation between objects and properties. The second part Bf is
a summary of the information in f obtained by means of the count operation card(.). This summary
corresponds to the classical view of bags in the sense of [1].

Notation 1. We set B(P,O) as the set of all bags Bf = (f,Bf ) defined in Definition 1.
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Definition 2. Define B0 = (0, B0) and B1 = (1, B1) where, 0(p) = ∅, 1(p) = O for all p ∈ P ,
B0 = {(p, 0), p ∈ P} and B1 = {(p, card(O)), p ∈ P}. Clearly, B0,B1 ∈ B(P,O).

Example 1. [2] Let O = {John, Ana, Bill, Tom, Sue, Stan, Ben} and P = {17, 21, 27, 35} be the set
of objects and the set of properties, respectively. Let f : P → P(O) be the function in Table 1 with
f(p) ⊆ O for all p ∈ P .

Table 1: Function: age-people.
p 17 21 27 35

f(p) {Bill,Sue} {John,Tom,Stan} ∅ {Ben}

So, we can define bag Bf = (f,Bf ) where, Bf = {(17, 2), (21, 3), (27, 0), (35, 1)}.
In the next section, we introduce the concept of fuzzy bags and give some results about them.

3 Fuzzy Bags

In what follows, O is the set of all objects, and F(O) = {A|A : O → [0, 1]} is the set of all fuzzy
subsets of O. Also, i ∈ In = {1, 2, . . . , n}, where n ∈ N and N is the set of natural numbers.

Definition 3. A fuzzy bag B̃f̃ is a pair (f̃ , Bf̃ ), where f̃ : P → F(O) is a function and Bf is the
following subset of P × [0, 1]×N

Bf̃ = {(p, δ, card(Opδ ))|p ∈ P, δ ∈ [0, 1]}.

Where, Opδ = {o ∈ O|f̃(p)(o) = δ}.
Clearly, a crisp bag is a particular case of fuzzy bag where, for all p ∈ P , f̃(p) is a crisp subset of O.
Here, the concept of fuzzy bag is illustrated by an example.

Example 2. LetO = {Ben,Sue,Tom, John,Stan,Bill,Kim,Ana,Sara} andP = {young,middle age, old}
is the set of some linguistic descriptions of age. Let the degrees of membership of all o ∈ O in the set of
each property p ∈ P are given as in Table 2.

Table 2: The degrees of memberships for Example 2
HHHHHHp

o
Ben Sue Tom John Stan Bill Kim Ana Sara

young 0.7 0.2 0.4 0.0 0.7 0.4 0.2 0.7 0.1
middle age 0.3 0.8 0.7 0.3 0.3 0.7 0.8 0.3 0.5

old 0.1 0.2 0.1 0.9 0.1 0.1 0.2 0.1 0.5

So, by Definition 3, we can define fuzzy bag B̃f̃ = (f̃ , Bf̃ ) where,

f̃(young) = { 0.7

Ben
,

0.2

Sue
,

0.4

Tom
,

0.0

John
,

0.7

Stan
,

0.4

Bill
,

0.2

Kim
,

0.7

Ana
,

0.1

Sara
},

f̃(middle age) = { 0.3

Ben
,

0.8

Sue
,

0.7

Tom
,

0.3

John
,

0.3

Stan
,

0.7

Bill
,

0.8

Kim
,

0.3

Ana
,

0.5

Sara
},

f̃(old) = { 0.1

Ben
,

0.2

Sue
,

0.1

Tom
,

0.9

John
,

0.1

Stan
,

0.1

Bill
,

0.2

Kim
,

0.1

Ana
,

0.5

Sara
},

and

Bf̃ = {(young, 0.7, 3), (young, 0.4, 2), (young, 0.2, 2), (young, 0.1, 1), (young, 0.0, 1),

(middle age, 0.8, 2), (middle age, 0.7, 2), (middle age, 0.5, 1), (middle age, 0.3, 4),

(old, 0.9, 1), (old, 0.5, 1), (old, 0.2, 2), (old, 0.1, 5)}.

62



F. Kouchakinejad, M. Mashinchi, R. Mesiar: Fuzzy Bags

Remark 1. As it can be seen, the more important part of an fuzzy bag is information function f̃ . There-
fore, it is possible to study the properties of fuzzy bags just by considering their information functions.

Notation 2. We set B̃(P,O) as the set of all fuzzy bags B̃f̃ = (f̃ , Bf̃ ). Where, f̃ : P → F(O) and Bf̃

are as defined in Definition 3. Clearly, B(P,O) ⊆ B̃(P,O).

Here, we can define intersection and union of fuzzy bags.

Definition 4. Let B̃f̃i ∈ B̃(Pi, Oi) for all i ∈ In be given fuzzy bags and O = ∪i∈InOi. Then, their
intersection is fuzzy bag

∩i∈InB̃f̃i = (∩i∈In f̃i, B∩i∈In f̃i).

Where, ∩i∈In f̃i : Πi∈InPi → F(O) such that (∩i∈In f̃i)(p1, p2, . . . , pn) = ∩i∈In f̃i(pi) for all pi ∈ Pi.

Note that by Definition 3, ∩i∈InB̃f̃i = B̃∩i∈In f̃i , where

B∩i∈In f̃i = {((p1, p2, . . . , pn), δ, card(Op1,p2,...,pnδ ))|pi ∈ Pi, δ ∈ [0, 1]},

where Op1,p2,...,pnδ = {o ∈ O|(∩i∈In f̃i)(p1, p2, . . . , pn)(o) = δ}.

Definition 5. Let B̃f̃i ∈ B̃(Pi, Oi) for all i ∈ In be given fuzzy bags and O = ∪i∈InOi. Then, their
union is fuzzy bag

∪i∈InB̃f̃i = (∪i∈In f̃i, B∪i∈In f̃i),

where ∪i∈In f̃i : Πi∈InPi → F(O) such that (∪i∈In f̃i)(p1, p2, . . . , pn) = ∪i∈In f̃i(pi) for all pi ∈ Pi.

Note that by Definition 3, ∪i∈InB̃f̃i = B̃∪i∈In f̃i , where

B∪i∈In f̃i = {((p1, p2, . . . , pn), δ, card(Op1,p2,...,pnδ ))|pi ∈ Pi, δ ∈ [0, 1]},

where Op1,p2,...,pnδ = {o ∈ O|(∪i∈In f̃i)(p1, p2, . . . , pn)(o) = δ}.

Definition 6. A fuzzy bag B̃f̃ is a fuzzy sub bag of B̃g̃, denoted by B̃f̃ ṽB̃g̃ if and only if f̃(p)⊆̃g̃(p) for
all p ∈ P . That means B̃f̃ ṽB̃g̃ if and only if for all p ∈ P , f̃(p) be a fuzzy subset of g̃(p).

Definition 7. Two fuzzy bags B̃f̃ and B̃g̃ are equal, denoted by B̃f̃ ∼= B̃g̃ if B̃f̃ ṽB̃g̃ and B̃g̃ṽB̃f̃ that
means if f̃ = g̃.

The next theorem gives some useful results about fuzzy bags.

Theorem 1. Operations ∪ and ∩ in B̃(P,O) satisfy the laws of idempotency, commutativity, associativity
and distributivity.

In the following definition, we introduce the concept of complement of a fuzzy bag.

Definition 8. Let η : [0, 1] → [0, 1] be a fixed strong negation [4], this means an involutive decreasing
bijection. Consider B̃f̃ = (f̃ , Bf̃ ). Then, the η−complement of B̃f̃ is fuzzy bag (B̃f̃ )c = (f̃ c, Bf̃c),
where f̃ c : P → F(O) such that f̃ c(p)(o) = η(f̃(p)(o)) for all p ∈ P and o ∈ O.

Note that by Definition 3, (B̃f̃ )c = B̃f̃c .

Note 1. In Definition 8, if η is the standard negation, η(x) = 1 − x for all x ∈ [0, 1] [4], then B̃f̃c is
called complement of B̃f̃ .
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Example 3. Consider the fuzzy bag of Example 2. The complement of this fuzzy bag is B̃f̃c = (f̃ c, Bf̃c)
where,

f̃ c(young) = { 0.3

Ben
,

0.8

Sue
,

0.6

Tom
,

1.0

John
,

0.3

Stan
,

0.6

Bill
,

0.8

Kim
,

0.3

Ana
,

0.9

Sara
},

f̃ c(middle age) = { 0.7

Ben
,

0.2

Sue
,

0.3

Tom
,

0.7

John
,

0.7

Stan
,

0.3

Bill
,

0.2

Kim
,

0.7

Ana
,

0.5

Sara
},

f̃ c(old) = { 0.9

Ben
,

0.8

Sue
,

0.9

Tom
,

0.1

John
,

0.9

Stan
,

0.9

Bill
,

0.8

Kim
,

0.9

Ana
,

0.5

Sara
},

and

Bf̃c = {(young, 1.0, 1), (young, 0.9, 1), (young, 0.8, 2), (young, 0.6, 2), (young, 0.3, 3),

(middle age, 0.7, 4), (middle age, 0.5, 1), (middle age, 0.3, 2), (middle age, 0.2, 2),

(old, 0.9, 5), (old, 0.8, 2), (old, 0.5, 1), (old, 0.1, 1)}.

4 Alpha-Cuts of Fuzzy Bags

The notion of α-cut plays a fairly big role in the fuzzy theory. So, here, we define this notion for the
fuzzy bags.

Definition 9. Let α ∈ [0, 1]. Then, α-cut of fuzzy bag B̃f̃ ∈ B̃(P,O) is the crisp bag (B̃f̃ )α = (f̃α, B
f̃α)

where, f̃α : P → P(O) is a function in which for all p ∈ P , f̃α(p) = {o ∈ O|f̃(p)(o) > α} and

Bf̃α = {(p, card(f̃α(p)))|p ∈ P}.

Definition 10. Let α ∈ [0, 1]. Then, strong α-cut of fuzzy bag B̃f̃ ∈ B̃(P,O) is the crisp bag (B̃f̃ )α� =

(f̃α� , Bf̃α� ) where, f̃α� : P → P(O) is a function which for all p ∈ P , f̃α�(p) = {o ∈ O|f̃(p)(o) > α}
and

Bf̃α� = {(p, card(f̃α�(p)))|p ∈ P}.
Note that by Definition 1, we have Bf̃α = (B̃f̃ )α and Bf̃α� = (B̃f̃ )α� .

Notation 3. We set f̃[α,β)(p) = {o ∈ O|α ≤ f̃(p)(o) < β} and f̃(α,β](p) = {o ∈ O|α < f̃(p)(o) ≤ β}
for all p ∈ P .

Some useful results for the fuzzy bags are given in the next theorem.

Theorem 2. Let B̃f̃ , B̃g̃ ∈ B̃(P,O), α, β ∈ [0, 1] and α 6 β. Then,

i) Bf̃β� ṽBf̃β ṽBf̃α� ṽBf̃α ,

ii) Bf̃α = Bf̃β if and only if Bf̃[α,β) = B0,

iii) Bf̃α� = Bf̃β� if and only if Bf̃(α,β] = B0,

iv) (B̃f̃ ∪ B̃g̃)α = Bf̃α ∪ Bg̃α and (B̃f̃ ∪ B̃g̃)α� = Bf̃α� ∪ Bg̃α� ,

v) (B̃f̃ ∩ B̃g̃)α = Bf̃α ∩ Bg̃α and (B̃f̃ ∩ B̃g̃)α� = Bf̃α� ∩ Bg̃α� .

In the following example, we compute α-cuts of a fuzzy bag.

Example 4. Consider the fuzzy bag of Example 2. We compute α-cuts, Bf̃α = (f̃α, B
f̃α). Where, f̃α(p)

is presented in Table 3.
and Bf̃α is as follows

Bf̃0 = {(young, 9), (middle age, 9), (old, 9)}, Bf̃0.1 = {(young, 8), (middle age, 9), (old, 9)}
Bf̃0.2 = {(young, 7), (middle age, 9), (old, 4)}, Bf̃0.3 = {(young, 5), (middle age, 9), (old, 2)}
Bf̃0.4 = {(young, 5), (middle age, 5), (old, 2)}, Bf̃0.5 = {(young, 3), (middle age, 5), (old, 2)}
Bf̃0.7 = {(young, 3), (middle age, 4), (old, 1)}, Bf̃0.8 = {(middle age, 2), (old, 1)}, Bf̃0.9 = {(old, 1)}.
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Table 3: The values of f̃α(p) for Example 4
HHHHHHα

p
young middle age old

0.0 O O O
0.1 O \ {John,Sara} O O
0.2 O \ {John,Sara} O O \ {Sue, John,Kim,Sara}
0.3 O \ {Sue, John,Kim,Sara} O {John,Sara}
0.4 O \ {Sue, John,Kim,Sara} {Sue,Tom,Bill,Kim,Sara} {John,Sara}
0.5 {Ben,Stan,Ana} {Sue,Tom,Bill,Kim,Sara} {John,Sara}
0.7 {Ben,Stan,Ana} {Sue,Tom,Bill,Kim} {John}
0.8 ∅ {Sue,Kim} {John}
0.9 ∅ ∅ {John}

Definition 11. Let Bf ∈ B(P,O) and α ∈ [0, 1]. We define fuzzy bag α̃Bf = B̃α̃f = (α̃f , Bα̃f ) where,

α̃f(p)(o) = min(α, χf(p)(o)) = αχf(p)(o),

for all o ∈ O and p ∈ P .

Theorem 3. i) Let B̃f̃ be a fuzzy bag and let Bf̃α be α-cut of B̃f̃ . Then,

B̃f̃ =
⋃

α∈[0,1]
α̃Bf̃α .

i) Let B̃f̃ be a fuzzy bag and let Bf̃α� be the strong α-cut of B̃f̃ . Then,

B̃f̃ =
⋃

α∈[0,1]
α̃Bf̃α�

.

Theorem 4. Let B̃f̃ ∈ B̃(P,O) and {Bg̃α |α ∈ [0, 1]} is a class of elements of B(P,O) such that
Bf̃α� v Bg̃α v Bf̃α . Then,

B̃f̃ =
⋃

α∈[0,1]
α̃Bg̃α .

Theorem 5. Let {Bgα |α ∈ [0, 1]} is a class of elements of B(P,O). There exists B̃f̃ ∈ B̃(P,O) such
that for all α ∈ [0, 1], Bf̃α = Bgα if and only if for all α, β ∈ [0, 1] such that α ≤ β, Bgβ v Bgα and
Bg0 = B1.

5 Conclusion

Using Delgado et al.’s definition of bags, which is improved version of Yager’s one, a new definition for
fuzzy bags has been introduced. Also, a concept of the α−cut of fuzzy bags has been studied.

References

[1] Yager RR. On the theory of bags. Int J General Syst 1986;13: 23–37.

[2] Delgado M, Ruiz MD, Sanchez D. RL-bags: A conceptual, level-based approach to fuzzy bags.
Fuzzy Sets Syst 2012;208:111–128.

65



Uncertainty modelling 2015

[3] Kouchakinejad F, Mashinchi M. Algebraic structure of bags and fuzzy bags. The 46th Annual
Iranian Mathematics Conference: Yazd University. Yazd. Iran. accepted; Aug. 2015.

[4] Beliakov G, Pradera A, Calvo T. Aggregation Functions: A Guide for Practitioners. Berlin, Heidel-
berg: Springer; 2007.

[5] Nguyen HT, Walker EA. A first course in fuzzy logic. Boca Raton, Florida: CRC Press; 2006.

66



OWA operators for fuzzy truth values

Zdenko Takáč ∗

Abstract: In this work we deal with OWA operators for normal, convex fuzzy truth values (fuzzy sets in
[0, 1]). Our approach is as follows. We adapt a more general notion of OWA operators on any complete
lattice endowed with a t-norm and a t-conorm [4, 6], and study this notion on a particular case of
complete lattice, namely the set of all normal, convex fuzzy truth values. We focus on a specific nature of
the operators in this settings.

Keywords: OWA operator, type-2 fuzzy set, fuzzy truth value, aggregation, distributive weighting vector

1 Introduction

In [4, 6] the concept of an ordered weighted averaging (OWA for short) operator is extended to any
complete lattice endowed with a t-norm and a t-conorm. The intention of authors was to avoid the
need of a linear order in environments in which it is available only partial order. Our aim is to study a
specific nature of ideas from [4, 6] in one particular case of complete lattice, namely the set of all normal,
convex fuzzy truth values (fuzzy sets in [0, 1]). It is well-known that this set is not linearly ordered. We
discuss the notion of (distributive) weighting vector, formulate a sufficient and necessary condition under
which given elements constitute a distributive weighting vector and investigate bounds of the proposed
operators.

The aggregation of fuzzy truth values is essential in the type-2 fuzzy sets settings [8, 9]. Also, the
need of aggregation of fuzzy truth values arises in decision making problems when the alternatives are
assessed by fuzzy truth values. Recall that Yager’s OWA operators are of special significance in solving
decision making problems. This leads to growing interest of scholars to investigate OWA operators for
various kinds of elements, e.g., for intervals [1, 13], fuzzy intervals [15, 16], gradual intervals [10], i.e.,
also for fuzzy truth values.

The paper is organized as follows. Section 2 contains basic definitions and notations that are used
in the remaining parts of the paper. In Section 3, we study OWA operator on the set of normal, convex
fuzzy truth values and some its properties. The conclusions are discussed in Section 4.

2 Preliminaries

In this section we present some basic concepts and terminology that will be used throughout the paper.
Let X be a set. A fuzzy set in X is a mapping from X to [0, 1]. Let F(X) denote the class of all

fuzzy sets in X, and let F denote the class of all fuzzy sets in [0, 1]. A type-2 fuzzy set in X is a fuzzy
set whose membership grades are fuzzy sets in [0, 1]. Hence, type-2 fuzzy set in X is a mapping

f̃ : X → F

and the elements of F are called fuzzy truth values.
A fuzzy set f in X is normal if there exists x ∈ X such that f(x) = 1. Let X be a linear space, a

fuzzy set f in X is convex if it is satisfied f(λx1 + (1 − λ)x2) ≥ min(f(x1), f(x2)) for all λ ∈ [0, 1],

∗Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food Technology, Slovak
University of Technology in Bratislava, zdenko.takac@stuba.sk
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for each x1, x2 ∈ X. We denote by FNC the class of all normal, convex fuzzy truth values. We will use
operations ⊔, ⊓, relations ⊑, � and special elements 0, 1 on F given by:

(f ⊔ g)(z) = sup
x∨y=z

(f(x) ∧ g(y)), f ⊑ g iff f ⊓ g = f,

(f ⊓ g)(z) = sup
x∧y=z

(f(x) ∧ g(y)), f � g iff f ⊔ g = g,

0(x) =

{
1 , if x = 0,

0 , otherwise,
1(x) =

{
1 , if x = 1,

0 , otherwise.

(1)

The algebra of fuzzy truth values (F ,⊔,⊓,0,1,⊑,�) is closely described in [5] and [11]. In [11] it is
showed that (FNC ,⊔,⊓,0,1,⊑) is a bounded, distributive lattice, and in [2] the authors showed that the
lattice is complete. Recall that the two orders ⊑ and � coincide on the set of normal, convex fuzzy truth
values.

In 1988 Yager [14] introduced OWA operator which is one of the most widely used aggregation
methods for real numbers.

Definition 2.1. Let w = (w1, . . . , wn) ∈ [0, 1]n with w1+ . . .+wn = 1 be a weighting vector. An OWA
operator associated with w is a mapping OWAw : [0, 1]n → [0, 1] defined by

OWAw(x1, . . . , xn) =

n∑

i=1

wix(i)

where x(i) denotes the ith largest number among x1, . . . , xn.

3 OWA operators defined on the set of convex normal fuzzy truth values

In this section we apply the ideas of [4, 6] to the settings of type-2 fuzzy sets. In other words, we will
study distributive weighting vectors and consequently OWA operators on the set of fuzzy truth values F .
Let us start with the notion of a t-norm and a t-conorm on F .

Definition 3.1. A mapping T : F × F → F is said to be a t-norm on (F ,⊑) if it is commutative,
associative, increasing in each component and has a neutral element 1.

A mapping S : F × F → F is said to be a t-conorm on (F ,⊑) if it is commutative, associative,
increasing in each component and has a neutral element 0.

The operations ⊓ and ⊔ given by (1) are t-norm and t-conorm on F , respectively. The following
propositions are easy to check, see [3], [7] and [12].

Proposition 3.2. The operation ⊓ given by (1) is a t-norm on (F ,⊑).

Proposition 3.3. The operation ⊔ given by (1) is a t-conorm on (F ,⊑).

According to the following lemma, it is possible to construct linearly ordered vector from any given
vector in Fn

NC .

Lemma 3.4 ([4]). Let (f1, . . . , fn) ∈ Fn
NC , and let

g1 = f1 ⊔ . . . ⊔ fn,

g2 =
(
(f1 ⊓ f2) ⊔ . . . ⊔ (f1 ⊓ fn)

)
⊔
(
(f2 ⊓ f3) ⊔ . . . ⊔ (f2 ⊓ fn)

)
⊔ . . . ⊔

(
(fn−1 ⊓ fn)

)
,

...

gk = ⊔
{
fj1 ⊓ . . . ⊓ fjk | {j1, . . . , jk} ⊆ {1, . . . , n}

}
,

...

gn = f1 ⊓ . . . ⊓ fn.
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Then
gn ⊑ gn−1 ⊑ . . . ⊑ g1.

Moreover, if the set {f1, . . . , fn} is linearly ordered, then the vector (g1, . . . , gn) coincides with (fσ(1), . . . , fσ(n))
for some permutation σ of {1, . . . , n}.

We proceed with the study of distributive weighting vector in Fn
NC and some of its properties.

Definition 3.5. Let w1, . . . , wn ∈ F . A vector (w1, . . . , wn) is said to be a weighting vector in (F ,⊑) if
w1 ⊔ . . . ⊔ wn = 1, and it is said to be a distributive weighting vector if it also satisfies

f ⊓ (w1 ⊔ . . . ⊔ wn) = (f ⊓ w1) ⊔ . . . ⊔ (f ⊓ wn)

for all f ∈ F .

The following theorem gives a necessary condition under which elements w1, . . . , wn constitute a
weighting vector in (FNC ,⊑).

Theorem 3.6. Let w1, . . . , wn ∈ FNC . If w1 ⊔ . . . ⊔ wn = 1, then wi = 1 for some i ∈ {1, . . . , n}.

Proof. 1. We show that wi(1) = 1 for some i ∈ {1, . . . , n}. From w1 ⊔ . . . ⊔ wn = 1 it follows
(w1 ⊔ . . . ⊔ wn)(1) = 1, hence there exist a1, . . . an ∈ [0, 1] such that max(a1, . . . , an) = 1 and
min(w1(a1), . . . , wn(an)) = 1, and consequently there exist a1, . . . an ∈ [0, 1] such that max(a1, . . . , an) =
1 and w1(a1) = . . . = wn(an) = 1. It means that, for some i ∈ {1, . . . , n}, it holds ai = 1 and
wi(a1) = 1, thus wi(1) = 1 for some i ∈ {1, . . . , n}. Let us write wk0(1) = 1.

2. Now we are going to show that wk0(x) = 0 for all x ∈ [0, 1[ if wi 6= 1 for all i ∈ {1, . . . , n} −
{k0}. Let there exist x0 ∈ [0, 1[ such that wk0(x0) > 0. Then there exist b1, . . . , bk0−1, bk0+1, . . . , bn ∈
[0, 1[ such that

w1(b1), . . . , wk0−1(bk0−1), wk0+1(bk0+1), . . . , wn(bn) > 0,

hence (
w1 ⊔ . . . ⊔ wn

)
(max(b1, . . . , bk0−1, x0, bk0+1, . . . , bn)) =

= min
(
w1(b1), . . . , wk0−1(bk0−1), wk0(x0), wk0+1(bk0+1), . . . , wn(bn)

)
> 0,

which contradicts our assumption w1 ⊔ . . . ⊔wn = 1.

The following corollary states a simple necessary and sufficient condition under which (w1, . . . , wn) ∈
Fn
NC is a distributive weighting vector.

69



Uncertainty modelling 2015

Corollary 3.7. A vector (w1, . . . , wn) ∈ Fn
NC is a distributive weighting vector in (FNC ,⊑) if and only

if there exists i ∈ {1, . . . , n} such that wi = 1.

Proof. 1. Necessity: Let (w1, . . . , wn) ∈ Fn
NC be a distributive weighting vector. Then, according to

Definition 3.5, w1 ⊔ . . . ⊔ wn = 1; and from Theorem 3.6 it follows wi = 1 for some i ∈ {1, . . . , n}.
2. Sufficiency: Let us first observe that (FNC ,⊑) is a distributive lattice, thus it is sufficient to show

that (w1, . . . , wn) is a weighting vector in (FNC ,⊑). Let wi = 1 for some i ∈ {1, . . . , n}. The proof
follows from the observation that 1 ⊔ f = 1 for all f ∈ FNC .

Now we can use the notion of distributive weighting vector and define an OWA operator on the set
of normal, convex fuzzy truth values FNC .

Definition 3.8. Let w = (w1, . . . , wn) ∈ Fn
NC be a distributive weighting vector in (FNC ,⊑). The

mapping Fw : Fn
NC → FNC given, for all (f1, . . . , fn) ∈ Fn

NC , by

Fw(f1, . . . , fn) = (w1 ⊓ g1) ⊔ . . . ⊔ (wn ⊓ gn),

where (g1, . . . , gn) is a linearly ordered vector constructed from (f1, . . . , fn) according to Lemma 3.4,
is called an n-ary OWA operator on FNC .

Example 3.9. Let weighting vector be w = (w1,1) and w1, f1, f2 be fuzzy truth values given by Figure
1. Then g1 = f1 ⊔ f2, g2 = f1 ⊓ f2, and

Fw(f1, f2) = (w1 ⊓ g1) ⊔ (1 ⊓ g2) = (w1 ⊓ g1) ⊔ g2.

The results are depicted in Figure 1 (for simplicity, fuzzy truth values g1 and g2 are not depicted - they
can be found in Figure 2).
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Figure 1: See Example 3.9.

From our point of view, the most important property of operator Fw is given by the following theo-
rem.
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Theorem 3.10. Let Fw be an n-ary OWA operator on FNC . Then

f1 ⊓ . . . ⊓ fn ⊑ Fw(f1, . . . , fn) ⊑ f1 ⊔ . . . ⊔ fn

for all f1, . . . , fn ∈ FNC .

Proof. We prove the right inequality, the left one can be checked in a similar way.

Fw(f1, . . . , fn) = (w1 ⊓ g1) ⊔ . . . ⊔ (wn ⊓ gn) ⊑ (w1 ⊓ g1) ⊔ . . . ⊔ (wn ⊓ g1) =

= (w1 ⊔ . . . ⊔ wn) ⊓ g1 = 1 ⊓ g1 = g1 = f1 ⊔ . . . ⊔ fn.

The theorem says that the results of Fw(f1, . . . , fn) are bounded by f1 ⊓ . . . ⊓ fn and f1 ⊔ . . . ⊔ fn.
It is worth pointing out that for standard OWA operators for real numbers from min(x1, . . . , xn) ≤
OWAw(x1, . . . , xn) ≤ max(x1, . . . , xn) it follows that OWAw(x1, . . . , xn) ≥ xi for some i ∈
{1, . . . , n}, and OWAw(x1, . . . , xn) ≤ xj for some j ∈ {1, . . . , n}. However, the similar property
does not hold for Fw, i.e., it is possible that

Fw(f1, . . . , fn) ❁ fi , for all i ∈ {1, . . . , n}

or
Fw(f1, . . . , fn) ❂ fj , for all j ∈ {1, . . . , n}.

See Example 3.9) where Fw(f1, fn) ❂ f1 and Fw(f1, fn) ❂ f2.

Example 3.11. Let weighting vector be w = (1, w2) and w2, f1, f2 be fuzzy truth values given by Figure
2. Then g1 = f1 ⊔ f2, g2 = f1 ⊓ f2, and (see Lemma 3.12 for the last equality)

Fw(f1, f2) = (1 ⊓ g1) ⊔ (w2 ⊓ g2) = g1 ⊔ (w2 ⊓ g2) = g1.

It is easy to check that Fw(f1, f2) = g1 ❂ fi, for i = 1, 2.
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Figure 2: See Example 3.11.
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The following lemma was used in previous example and will also be needed in proof of Theorem
3.13.

Lemma 3.12. Let f, g, h ∈ FNC with f ⊑ g. Then g ⊔ (f ⊓ h) = g.

Proof. Applying the distributive laws ([11], Proposition 36) and absorption laws ([11], Proposition 37)
we have:

g ⊔ (f ⊓ h) = (g ⊔ f) ⊓ (g ⊔ h) = g ⊓ (g ⊔ h) = g.

Note that the property of Lemma 3.12 does not hold in F . The reason is that the absorption laws fail
if g is not convex or h is not normal.

We can now strengthen Proposition 3.8 from [4] in the settings of fuzzy truth values. Our result is
that if 1 is on the first position of a weighting vector w, then our OWA operator is simply maximum,
no matter what are the other weights - see item 1 of the following theorem. Note that there are much
stronger assumptions for a similar assertion on minimum - see item 2 of the theorem.

Theorem 3.13. Let w = (w1, . . . , wn) be a distributive weighting vector in FNC .

1. If w1 = 1, then Fw(f1, . . . , fn) = f1 ⊔ . . . ⊔ fn.

2. If wn = 1 and wi ⊑ f1⊓ . . .⊓ fn for all i ∈ {1, . . . , n− 1}, then Fw(f1, . . . , fn) = f1⊓ . . .⊓ fn.

3. If wk = 1 for some k ∈ {1, . . . , n} and wi = 0 for all i ∈ {1, . . . , n}−{k}, then Fw(f1, . . . , fn) =
gk.

Proof. 1. Let w = (1, w2, . . . , wn). Then

Fw(f1, . . . , fn) = (1 ⊓ g1) ⊔ (w2 ⊓ g2) ⊔ . . . ⊔ (wn ⊓ gn) =

= g1 ⊔ (w2 ⊓ g2) ⊔ . . . ⊔ (wn ⊓ gn)

and applying Lemma 3.12 (n− 1) times we conclude

Fw(f1, . . . , fn) = g1 = f1 ⊔ . . . ⊔ fn.

2. Let w = (w1, . . . , wn−1,1) with wi ⊑ gn for all i ∈ {1, . . . , n − 1}. Then wi ⊑ gi for all
i ∈ {1, . . . , n− 1}, and we have

Fw(f1, . . . , fn) = (w1 ⊓ g1) ⊔ . . . ⊔ (wn−1 ⊓ gn−1) ⊔ (1 ⊓ gn) = w1 ⊔ . . . ⊔ wn−1 ⊔ gn =

= gn = f1 ⊓ . . . ⊓ fn.

3. Let w = (0, . . . ,0, wk = 1,0 . . . ,0). Then

Fw(f1, . . . , fn) = (0 ⊓ g1) ⊔ . . . ⊔ (0 ⊓ gk−1) ⊔ (1 ⊓ gk) ⊔ (0 ⊓ gk+1) . . . ⊔ (0 ⊓ gn) =

= 0 ⊔ . . . ⊔ 0 ⊔ gk ⊔ 0 . . . ⊔ 0 = gk.

4 Conclusion

In [4, 6] an OWA operator on any complete lattice endowed with a t-norm and a t-conorm was intro-
duced. In this paper we focused on OWA operators on one particular case of complete lattice, namely
the set of all normal, convex fuzzy truth values. We have restricted our attention on operations ⊓ and
⊔. Our next intention is to apply some other t-norms and t-conorms on the set of fuzzy truth values and
study properties of corresponding OWA operators. Another line of our investigation is a relationship of
the proposed OWA operators to existing operators, namely type-1 OWA operators [15, 16] and OWA
operators for gradual intervals [10].
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