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Abstract: In this work we deal with OWA operators for normal, convex fuzzy truth values (fuzzy sets in

[0, 1]). Our approach is as follows. We adapt a more general notion of OWA operators on any complete

lattice endowed with a t-norm and a t-conorm [4, 6], and study this notion on a particular case of

complete lattice, namely the set of all normal, convex fuzzy truth values. We focus on a specific nature of

the operators in this settings.

Keywords: OWA operator, type-2 fuzzy set, fuzzy truth value, aggregation, distributive weighting vector

1 Introduction

In [4, 6] the concept of an ordered weighted averaging (OWA for short) operator is extended to any

complete lattice endowed with a t-norm and a t-conorm. The intention of authors was to avoid the

need of a linear order in environments in which it is available only partial order. Our aim is to study a

specific nature of ideas from [4, 6] in one particular case of complete lattice, namely the set of all normal,

convex fuzzy truth values (fuzzy sets in [0, 1]). It is well-known that this set is not linearly ordered. We

discuss the notion of (distributive) weighting vector, formulate a sufficient and necessary condition under

which given elements constitute a distributive weighting vector and investigate bounds of the proposed

operators.

The aggregation of fuzzy truth values is essential in the type-2 fuzzy sets settings [8, 9]. Also, the

need of aggregation of fuzzy truth values arises in decision making problems when the alternatives are

assessed by fuzzy truth values. Recall that Yager’s OWA operators are of special significance in solving

decision making problems. This leads to growing interest of scholars to investigate OWA operators for

various kinds of elements, e.g., for intervals [1, 13], fuzzy intervals [15, 16], gradual intervals [10], i.e.,

also for fuzzy truth values.

The paper is organized as follows. Section 2 contains basic definitions and notations that are used

in the remaining parts of the paper. In Section 3, we study OWA operator on the set of normal, convex

fuzzy truth values and some its properties. The conclusions are discussed in Section 4.

2 Preliminaries

In this section we present some basic concepts and terminology that will be used throughout the paper.

Let X be a set. A fuzzy set in X is a mapping from X to [0, 1]. Let F(X) denote the class of all

fuzzy sets in X, and let F denote the class of all fuzzy sets in [0, 1]. A type-2 fuzzy set in X is a fuzzy

set whose membership grades are fuzzy sets in [0, 1]. Hence, type-2 fuzzy set in X is a mapping

f̃ : X → F

and the elements of F are called fuzzy truth values.

A fuzzy set f in X is normal if there exists x ∈ X such that f(x) = 1. Let X be a linear space, a

fuzzy set f in X is convex if it is satisfied f(λx1 + (1 − λ)x2) ≥ min(f(x1), f(x2)) for all λ ∈ [0, 1],
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for each x1, x2 ∈ X. We denote by FNC the class of all normal, convex fuzzy truth values. We will use

operations ⊔, ⊓, relations ⊑, � and special elements 0, 1 on F given by:

(f ⊔ g)(z) = sup
x∨y=z

(f(x) ∧ g(y)), f ⊑ g iff f ⊓ g = f,

(f ⊓ g)(z) = sup
x∧y=z

(f(x) ∧ g(y)), f � g iff f ⊔ g = g,

0(x) =

{
1 , if x = 0,

0 , otherwise,
1(x) =

{
1 , if x = 1,

0 , otherwise.

(1)

The algebra of fuzzy truth values (F ,⊔,⊓,0,1,⊑,�) is closely described in [5] and [11]. In [11] it is

showed that (FNC ,⊔,⊓,0,1,⊑) is a bounded, distributive lattice, and in [2] the authors showed that the

lattice is complete. Recall that the two orders ⊑ and � coincide on the set of normal, convex fuzzy truth

values.

In 1988 Yager [14] introduced OWA operator which is one of the most widely used aggregation

methods for real numbers.

Definition 2.1. Let w = (w1, . . . , wn) ∈ [0, 1]n with w1+ . . .+wn = 1 be a weighting vector. An OWA

operator associated with w is a mapping OWAw : [0, 1]n → [0, 1] defined by

OWAw(x1, . . . , xn) =

n∑

i=1

wix(i)

where x(i) denotes the ith largest number among x1, . . . , xn.

3 OWA operators defined on the set of convex normal fuzzy truth values

In this section we apply the ideas of [4, 6] to the settings of type-2 fuzzy sets. In other words, we will

study distributive weighting vectors and consequently OWA operators on the set of fuzzy truth values F .

Let us start with the notion of a t-norm and a t-conorm on F .

Definition 3.1. A mapping T : F × F → F is said to be a t-norm on (F ,⊑) if it is commutative,

associative, increasing in each component and has a neutral element 1.

A mapping S : F × F → F is said to be a t-conorm on (F ,⊑) if it is commutative, associative,

increasing in each component and has a neutral element 0.

The operations ⊓ and ⊔ given by (1) are t-norm and t-conorm on F , respectively. The following

propositions are easy to check, see [3], [7] and [12].

Proposition 3.2. The operation ⊓ given by (1) is a t-norm on (F ,⊑).

Proposition 3.3. The operation ⊔ given by (1) is a t-conorm on (F ,⊑).

According to the following lemma, it is possible to construct linearly ordered vector from any given

vector in Fn
NC .

Lemma 3.4 ([4]). Let (f1, . . . , fn) ∈ Fn
NC , and let

g1 = f1 ⊔ . . . ⊔ fn,

g2 =
(
(f1 ⊓ f2) ⊔ . . . ⊔ (f1 ⊓ fn)

)
⊔
(
(f2 ⊓ f3) ⊔ . . . ⊔ (f2 ⊓ fn)

)
⊔ . . . ⊔

(
(fn−1 ⊓ fn)

)
,

...

gk = ⊔
{
fj1 ⊓ . . . ⊓ fjk | {j1, . . . , jk} ⊆ {1, . . . , n}

}
,

...

gn = f1 ⊓ . . . ⊓ fn.
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Then

gn ⊑ gn−1 ⊑ . . . ⊑ g1.

Moreover, if the set {f1, . . . , fn} is linearly ordered, then the vector (g1, . . . , gn) coincides with (fσ(1), . . . , fσ(n))
for some permutation σ of {1, . . . , n}.

We proceed with the study of distributive weighting vector in Fn
NC and some of its properties.

Definition 3.5. Let w1, . . . , wn ∈ F . A vector (w1, . . . , wn) is said to be a weighting vector in (F ,⊑) if

w1 ⊔ . . . ⊔ wn = 1, and it is said to be a distributive weighting vector if it also satisfies

f ⊓ (w1 ⊔ . . . ⊔ wn) = (f ⊓ w1) ⊔ . . . ⊔ (f ⊓ wn)

for all f ∈ F .

The following theorem gives a necessary condition under which elements w1, . . . , wn constitute a

weighting vector in (FNC ,⊑).

Theorem 3.6. Let w1, . . . , wn ∈ FNC . If w1 ⊔ . . . ⊔ wn = 1, then wi = 1 for some i ∈ {1, . . . , n}.

Proof. 1. We show that wi(1) = 1 for some i ∈ {1, . . . , n}. From w1 ⊔ . . . ⊔ wn = 1 it follows

(w1 ⊔ . . . ⊔ wn)(1) = 1, hence there exist a1, . . . an ∈ [0, 1] such that max(a1, . . . , an) = 1 and

min(w1(a1), . . . , wn(an)) = 1, and consequently there exist a1, . . . an ∈ [0, 1] such that max(a1, . . . , an) =
1 and w1(a1) = . . . = wn(an) = 1. It means that, for some i ∈ {1, . . . , n}, it holds ai = 1 and

wi(a1) = 1, thus wi(1) = 1 for some i ∈ {1, . . . , n}. Let us write wk0(1) = 1.

2. Now we are going to show that wk0(x) = 0 for all x ∈ [0, 1[ if wi 6= 1 for all i ∈ {1, . . . , n} −
{k0}. Let there exist x0 ∈ [0, 1[ such that wk0(x0) > 0. Then there exist b1, . . . , bk0−1, bk0+1, . . . , bn ∈
[0, 1[ such that

w1(b1), . . . , wk0−1(bk0−1), wk0+1(bk0+1), . . . , wn(bn) > 0,

hence (
w1 ⊔ . . . ⊔ wn

)
(max(b1, . . . , bk0−1, x0, bk0+1, . . . , bn)) =

= min
(
w1(b1), . . . , wk0−1(bk0−1), wk0(x0), wk0+1(bk0+1), . . . , wn(bn)

)
> 0,

which contradicts our assumption w1 ⊔ . . . ⊔wn = 1.

The following corollary states a simple necessary and sufficient condition under which (w1, . . . , wn) ∈
Fn
NC is a distributive weighting vector.
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Corollary 3.7. A vector (w1, . . . , wn) ∈ Fn
NC is a distributive weighting vector in (FNC ,⊑) if and only

if there exists i ∈ {1, . . . , n} such that wi = 1.

Proof. 1. Necessity: Let (w1, . . . , wn) ∈ Fn
NC be a distributive weighting vector. Then, according to

Definition 3.5, w1 ⊔ . . . ⊔ wn = 1; and from Theorem 3.6 it follows wi = 1 for some i ∈ {1, . . . , n}.

2. Sufficiency: Let us first observe that (FNC ,⊑) is a distributive lattice, thus it is sufficient to show

that (w1, . . . , wn) is a weighting vector in (FNC ,⊑). Let wi = 1 for some i ∈ {1, . . . , n}. The proof

follows from the observation that 1 ⊔ f = 1 for all f ∈ FNC .

Now we can use the notion of distributive weighting vector and define an OWA operator on the set

of normal, convex fuzzy truth values FNC .

Definition 3.8. Let w = (w1, . . . , wn) ∈ Fn
NC be a distributive weighting vector in (FNC ,⊑). The

mapping Fw : Fn
NC → FNC given, for all (f1, . . . , fn) ∈ Fn

NC , by

Fw(f1, . . . , fn) = (w1 ⊓ g1) ⊔ . . . ⊔ (wn ⊓ gn),

where (g1, . . . , gn) is a linearly ordered vector constructed from (f1, . . . , fn) according to Lemma 3.4,

is called an n-ary OWA operator on FNC .

Example 3.9. Let weighting vector be w = (w1,1) and w1, f1, f2 be fuzzy truth values given by Figure

1. Then g1 = f1 ⊔ f2, g2 = f1 ⊓ f2, and

Fw(f1, f2) = (w1 ⊓ g1) ⊔ (1 ⊓ g2) = (w1 ⊓ g1) ⊔ g2.

The results are depicted in Figure 1 (for simplicity, fuzzy truth values g1 and g2 are not depicted - they

can be found in Figure 2).
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Figure 1: See Example 3.9.

From our point of view, the most important property of operator Fw is given by the following theo-

rem.
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Theorem 3.10. Let Fw be an n-ary OWA operator on FNC . Then

f1 ⊓ . . . ⊓ fn ⊑ Fw(f1, . . . , fn) ⊑ f1 ⊔ . . . ⊔ fn

for all f1, . . . , fn ∈ FNC .

Proof. We prove the right inequality, the left one can be checked in a similar way.

Fw(f1, . . . , fn) = (w1 ⊓ g1) ⊔ . . . ⊔ (wn ⊓ gn) ⊑ (w1 ⊓ g1) ⊔ . . . ⊔ (wn ⊓ g1) =

= (w1 ⊔ . . . ⊔ wn) ⊓ g1 = 1 ⊓ g1 = g1 = f1 ⊔ . . . ⊔ fn.

The theorem says that the results of Fw(f1, . . . , fn) are bounded by f1 ⊓ . . . ⊓ fn and f1 ⊔ . . . ⊔ fn.

It is worth pointing out that for standard OWA operators for real numbers from min(x1, . . . , xn) ≤
OWAw(x1, . . . , xn) ≤ max(x1, . . . , xn) it follows that OWAw(x1, . . . , xn) ≥ xi for some i ∈
{1, . . . , n}, and OWAw(x1, . . . , xn) ≤ xj for some j ∈ {1, . . . , n}. However, the similar property

does not hold for Fw, i.e., it is possible that

Fw(f1, . . . , fn) ❁ fi , for all i ∈ {1, . . . , n}

or

Fw(f1, . . . , fn) ❂ fj , for all j ∈ {1, . . . , n}.

See Example 3.9) where Fw(f1, fn) ❂ f1 and Fw(f1, fn) ❂ f2.

Example 3.11. Let weighting vector be w = (1, w2) and w2, f1, f2 be fuzzy truth values given by Figure

2. Then g1 = f1 ⊔ f2, g2 = f1 ⊓ f2, and (see Lemma 3.12 for the last equality)

Fw(f1, f2) = (1 ⊓ g1) ⊔ (w2 ⊓ g2) = g1 ⊔ (w2 ⊓ g2) = g1.

It is easy to check that Fw(f1, f2) = g1 ❂ fi, for i = 1, 2.
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Figure 2: See Example 3.11.
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The following lemma was used in previous example and will also be needed in proof of Theorem

3.13.

Lemma 3.12. Let f, g, h ∈ FNC with f ⊑ g. Then g ⊔ (f ⊓ h) = g.

Proof. Applying the distributive laws ([11], Proposition 36) and absorption laws ([11], Proposition 37)

we have:

g ⊔ (f ⊓ h) = (g ⊔ f) ⊓ (g ⊔ h) = g ⊓ (g ⊔ h) = g.

Note that the property of Lemma 3.12 does not hold in F . The reason is that the absorption laws fail

if g is not convex or h is not normal.

We can now strengthen Proposition 3.8 from [4] in the settings of fuzzy truth values. Our result is

that if 1 is on the first position of a weighting vector w, then our OWA operator is simply maximum,

no matter what are the other weights - see item 1 of the following theorem. Note that there are much

stronger assumptions for a similar assertion on minimum - see item 2 of the theorem.

Theorem 3.13. Let w = (w1, . . . , wn) be a distributive weighting vector in FNC .

1. If w1 = 1, then Fw(f1, . . . , fn) = f1 ⊔ . . . ⊔ fn.

2. If wn = 1 and wi ⊑ f1⊓ . . .⊓ fn for all i ∈ {1, . . . , n− 1}, then Fw(f1, . . . , fn) = f1⊓ . . .⊓ fn.

3. If wk = 1 for some k ∈ {1, . . . , n} and wi = 0 for all i ∈ {1, . . . , n}−{k}, then Fw(f1, . . . , fn) =
gk.

Proof. 1. Let w = (1, w2, . . . , wn). Then

Fw(f1, . . . , fn) = (1 ⊓ g1) ⊔ (w2 ⊓ g2) ⊔ . . . ⊔ (wn ⊓ gn) =

= g1 ⊔ (w2 ⊓ g2) ⊔ . . . ⊔ (wn ⊓ gn)

and applying Lemma 3.12 (n− 1) times we conclude

Fw(f1, . . . , fn) = g1 = f1 ⊔ . . . ⊔ fn.

2. Let w = (w1, . . . , wn−1,1) with wi ⊑ gn for all i ∈ {1, . . . , n − 1}. Then wi ⊑ gi for all

i ∈ {1, . . . , n− 1}, and we have

Fw(f1, . . . , fn) = (w1 ⊓ g1) ⊔ . . . ⊔ (wn−1 ⊓ gn−1) ⊔ (1 ⊓ gn) = w1 ⊔ . . . ⊔ wn−1 ⊔ gn =

= gn = f1 ⊓ . . . ⊓ fn.

3. Let w = (0, . . . ,0, wk = 1,0 . . . ,0). Then

Fw(f1, . . . , fn) = (0 ⊓ g1) ⊔ . . . ⊔ (0 ⊓ gk−1) ⊔ (1 ⊓ gk) ⊔ (0 ⊓ gk+1) . . . ⊔ (0 ⊓ gn) =

= 0 ⊔ . . . ⊔ 0 ⊔ gk ⊔ 0 . . . ⊔ 0 = gk.

4 Conclusion

In [4, 6] an OWA operator on any complete lattice endowed with a t-norm and a t-conorm was intro-

duced. In this paper we focused on OWA operators on one particular case of complete lattice, namely

the set of all normal, convex fuzzy truth values. We have restricted our attention on operations ⊓ and

⊔. Our next intention is to apply some other t-norms and t-conorms on the set of fuzzy truth values and

study properties of corresponding OWA operators. Another line of our investigation is a relationship of

the proposed OWA operators to existing operators, namely type-1 OWA operators [15, 16] and OWA

operators for gradual intervals [10].
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