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Abstract: In this paper we study a pre-order �U induced by uninorms U . We will be interested

especially in cases when �U is not an ordering. We will also study algebraic properties of equivalence

classes ∼U . We will show examples of uninorms when the uninorm restricted to an equivalence class

A is an Abelian subgroup of the monoid ([0, 1], U, e), examples when this is an Abelian group but not

a subgroup of ([0, 1], U, e), as well as examples when an equivalence class A cannot be organized into

a group. We will further see that the Abelian groups occurring in the monoid ([0, 1], U, e), may have

non-trivial subgroups.
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1 Introduction and known facts

Uninorms since their introduction by Dombi [2] under the name aggregative operator, and later re-
introduction by Yager and Rybalov [10], have found broad interest among researchers, and also broad
applicability in many areas, such as decision making, fuzzy control, etc. Uninorms were proposed by
Yager and Rybalov as a natural generalization of both, t-norms and t-conorms. Because of lack of space,
for basic properties on t-norms and t-conorms we refer readers to [7, 9].

1.1 Uninorms

The definition of uninorm proposed by Yager and Rybalov [10] is the following.

Definition 1.1. A uninorm U is a function U : [0, 1]2 → [0, 1] that is increasing, commutative, associative

and has a neutral element e ∈ [0, 1].

An overview of basic properties of uninorms is in [1]. For an overview of known classes of uninorms
see [8].

A uninorm U is said to be conjunctive if U(x, 0) = 0, and U is said to be disjunctive if U(1, x) = 1,
for all x ∈ [0, 1].

A uninorm U is called representable if it can be written in the form

U(x, y) = g−1(g(x) + g(y)) ,

where g : [0, 1] → [−∞,∞] is a continuous strictly increasing function with g(0) = −∞ and g(1) = ∞.
Note yet that for each generator g there exist two different uninorms depending on convention we take
∞−∞ = ∞, or ∞−∞ = −∞. In the former case we get a disjunctive uninorm, in the latter case a
conjunctive uninorm.

Representable uninorms are “almost continuous”, i.e., they are continuous everywhere on [0, 1]2

except of points (0, 1) and (1, 0).
Conjunctive and disjunctive uninorms are dual in the following way

Ud(x, y) = 1− Uc(1− x, 1− y) ,
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where Uc is an arbitrary conjunctive uninorm and Ud its dual disjunctive uninorm. Assuming Uc has a
neutral element e, the neutral element of Ud is 1− e.

For an arbitrary uninorm U and arbitrary (x, y) ∈ ]0, e[× ]e, 1]∪ ]e, 1]× ]0, e[ we have

min{x, y} ≤ U(x, y) ≤ max{x, y} . (1)

We say that a uninorm U contains a homomorphic image of a representable uninorm in ]a, b[2 for
0 ≤ a < e < b ≤ 1 (where a 6= 0 and/or b 6= 1), if there exists a continuous strictly increasing function
g̃ : [a, b] → [−∞,∞] such that g̃(a) = −∞, g̃(b) = ∞, g̃(e) = 0 and

U(x, y) = g̃−1(g̃(x) + g̃(y)) for x, y ∈ ]a, b[ . (2)

1.2 Orders induced by t-norms

In [6] t-norms on bounded lattices were introduced.

Definition 1.2. Let L be a bounded lattice. A function T : L2 → L is said to be a t-norm if T is

commutative, associative, monotone and 1L is its neutral element.

Each uninorm U with a neutral element 0 < e < 1, when restricted to the square [0, e]2, is a t-norm
(on the lattice L = [0, e] equipped with meet and join) and when restricted to the square [e, 1]2, is a
t-conorm (on the lattice L = [e, 1] equipped with meet and join). We will denote this t-norm by TU and
the t-conorm by SU .

In [5], for a given t-norm T on a bounded lattice L a relation �T generated by T was introduced.
The definition is as follows

Definition 1.3. Let T : L2 → L be a given t-norm. For arbitrary x, y ∈ L we denote x �T y if there

exists ℓ ∈ L such that T (y, ℓ) = x.

Proposition 1.4. ([5]) Let T be an arbitrary t-norm. The relation �T is a partial order. Moreover, if

x �T y holds for x, y ∈ L then x ≤ y, where ≤ is the order generated by lattice operations.

Dually, we can introduce a partial order �S for arbitrary t-conorm S by

x �S y if there exists ℓ ∈ [0, 1] such that S(y, ℓ) = x .

However, in this case we have
x �S y ⇒ x ≥ y .

1.3 Relation �U

As a generalization of the relation �T , Hliněná, Kalina and Král’ in [3] introduced relation �U .

Definition 1.5 ([3]). Let U be arbitrary uninorm. By �U we denote the following relation

x �U y if there exists ℓ ∈ [0, 1] such that U(y, ℓ) = x .

Associativity of U implies transitivity of �U . Existence of a neutral element e implies reflexivity of
�U . However, anti-symmetry of �U is rather problematic.

Since for representable uninorm U and for arbitrary x ∈ ]0, 1[ and y ∈ [0, 1] there exists ℓy such that
U(x, ℓy) = y, the relation �U is not necessarily anti-symmetric.

Lemma 1.6 ([3]). Let U be arbitrary uninorm. The relation �U is a pre-order.

We introduce a relation ∼U .

Definition 1.7 ([3]). Let U be arbitrary uninorm. We say that x, y ∈ [0, 1] are U -indifferent if

x �U y and y �U x .

If x, y are U -indifferent, we write x ∼U y.

Lemma 1.8 ([3]). For arbitrary uninorm U the relation ∼U is an equivalence relation.
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2 Properties of uninorms induced by the relation �U

For arbitrary uninorm U with neutral element e the uninorm can be considered to be a binary operation
on [0, 1]. Thus ([0, 1], U, e) becomes a commutative (i.e., Abelian) monoid which is moreover isotone
with respect to the standard ordering of reals.

Lemma 2.1. Let U : [0, 1]2 → [0, 1] be an arbitrary uninorm and x1, x2 ∈ [0, 1] such that x1 ∼U x2.

Then

U(x1, x1) ∼U U(x2, x2) ∼U U(x1, x2). (3)

A direct corollary to Lemma 2.1 is the next assertion.

Proposition 2.2. Let U : [0, 1]2 → [0, 1] be an arbitrary uninorm and e ∈ ]0, 1[ be its neutral element.

Assume there exists x ∈ [0, 1], x 6= e and y ∈ [0, 1] such that U(x, y) = e. Then there exists a set

Ae ⊂ [0, 1] such that for all x ∈ Ae, x ∼U e. Moreover, if we denote by ⊙ the binary operation on

Ae defined by x ⊙ y = U(x, y) for all x, y ∈ Ae, then (Ae,⊙, e) is a non-trivial Abelian subgroup of

([0, 1], U, e).

Lemma 2.1 can be further generalized.

Proposition 2.3. Let U : [0, 1]2 → [0, 1] be an arbitrary uninorm and x1, x2, y ∈ [0, 1]. Then the

following holds

(x1 ∼U x2) ⇒ (U(x1, y) ∼U U(x2, y)) . (4)

As Proposition 2.3 shows, the set Ae of all elements of [0, 1] which are indifferent from e generates
classes of indifferent elements. In general, we have the following possibilities.

Proposition 2.4. Let U be a fixed uninorm and e its neutral element. For arbitrary x ∈ [0, 1] denote the

set Ax = {y ∈ [0, 1];x ∼U y}. Then Ax is either a singleton or an infinite set.

Further, assume that for a fixed x the set Ax is infinite and denote by ⊙x the binary operation on Ax

defined by x⊙ y = U(x, y) for all x, y ∈ Ax. Then there are the following possibilities.

• Ax = Ae and (Ax,⊙x, e) is a non-trivial Abelian subgroup of ([0, 1], U, e).

• Ax 6= Ae and (Ax,⊙x, ẽ) is a non-trivial Abelian group with a neutral element ẽ 6= e. In this case

(Ax,⊙x, ẽ) is not a subgroup of ([0, 1], U, e).

• x 6∼U U(x, x), i.e., ⊙x is an operation on Ax but into [0, 1] \Ax. Moreover, there exists y ∈ [0, 1]
such that (Ay,⊙y, ẽ) is a non-trivial Abelian group and for all z ∈ Ay we have U(x, z) ∼U x.

3 Illustrative examples

In this section we provide illustrative examples. The first example shows uninorm U1 which generates
two infinite indifference classes with respect to ∼U1

. One indifference class is Ae such that (Ae,⊙e, e)
is a non-trivial subgroup of ([0, 1], U1, e). The other indifference class A 1

8

is such that for all x ∈ A 1

8

and all y ∈ Ae we have U(x, y) ∈ A 1

8

. The set A 1

8

cannot be organized into a group.

Example 3.1 ([3]). We recall the construction of a conjunctive uninorm which contains a homomorphic
image of a representable uninorm Ur on ]1

4
, 3
4
[ 2. Further, on the rectangle [0, 1

4
[×[1

4
, 3
4
] the values of U1
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are given by the partial function U 1

8

(z) =
z− 1

4

2
. The explicit formula for the uninorm U1 is the following

U1(x, y) =
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















0 if min{x, y} = 0

or if max{x, y} ≤ 1

4
,

1 if min{x, y} ≥ 3

4
,

1

4
if 0 < min{x, y} ≤ 1

4

and if max{x, y} ≥ 3

4
,

or if min{x, y} = 1

4

and max{x, y} > 1

4
,

Ur(x, y) if (x, y) ∈ ]1
4
, 3
4
[2,

max{x, y} if 1

4
< min{x, y} < 3

4

and max{x, y} ≥ 3

4
,

and values on ]0, 1
4
[× ]1

4
, 3
4
[ and ]1

4
, 3
4
[× ]0, 1

4
[ are given by the partial function U 1

8

by formula (5) show-

ing the computation of the value at a point (x2, y2) ∈
]

0, 1
4

[

×
]

1

4
, 3
4

[

. Assume that x2 = U(1
8
, y1).

Then

U(x2, y2) = U

(

1

8
, U(y1, y2)

)

. (5)

The uninorm U1 and its level-set functions of levels 1

16
, 1
8
, 3

16
are sketched on Fig. 1.
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Figure 1: Uninorm U1

The next example shows a uninorm U2 which generates two infinite indifference classes with respect
to ∼U2

. One indifference class is Ae such that (Ae,⊙e, e) is a non-trivial subgroup of the monoid
([0, 1], U2, e). The other indifference class A equipped with operation ⊙A = U2 ↾ A is also an Abelian
group, but not a subgroup of the monoid ([0, 1], U2, e).

Example 3.2. The construction of the uninorm U2 we are going to present in this example, is based on
the idea of paving that was introduced in [4]. The idea is the following. We split the unit interval into
countably many disjoint subintervals {Ii}i∈Z (in such a way we split the unit square into countably many
disjoint sub-rectangles Ii × Ij). Then we choose an operation ⊗ : [0, 1]2 → [0, 1] we want to use for
paving, choose increasing bijective transformations ϕi : Ii → [0, 1] and we "pave" the whole unit square
(see Fig. 2 for a graphical schema of paving) by

ϕ−1

i+j(ϕi(x)⊗ ϕj(y)). (6)
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Figure 2: Graphical schema of paving

To make each point (x, y) ∈ [0, 1]2 uniquely identifiable with a rectangle Ii × Ij , we will use left-
open intervals. Then the operation ⊗ used for paving must be without zero-divisors. In this case we
choose a representable uninorm Ur as the operation ⊗, and the following partition of ]0, 1[:

Ii =











]1
4
, 3
4
] if i = 0,

]2
i+1

−1

2i+1 , 2
i+2

−1

2i+2 ] if i > 0,

] 1

22−i ,
1

21−i ] if i < 0.

(7)

The uninorm U2 is defined by

U2(x, y) =











ϕ−1

i+j (Ur (ϕi(x), ϕj(y))) if x ∈ Ii, y ∈ Ij ,

0 if min{x, y} = 0,

1 if max{x, y} = 1 and min{x, y} 6= 0.

Let us remark that the increasing bijective transformations ϕi : Ii → [0, 1] are chosen arbitrarily (and
for every choice we get a different uninorm). The relation �U2

generates two indifference classes –

A 3

4

= {2i+1
−1

2i+1 ; i ∈ N} ∪ { 1

21+i ; i ∈ N}, where N is the set of positive integers, and Ae = ]0, 1[ \A 3

4

.

Then (Ae,⊙e, e) is a non-trivial subgroup of ([0, 1], U2, e) and
(

A 3

4

,⊙ 3

4

, 3
4

)

is an Abelian group that is

not a subgroup of ([0, 1], U2, e).

Remark 3.3. If we look at the two Abelian groups induced by the uninorm U2 (Example 3.2), they are

in some sense different. While
(

A 3

4

,⊙ 3

4

, 3
4

)

has no non-trivial subgroups, (Ae,⊙e, e) has a non-trivial

subgroup, namely
( ]

1

4
, 3
4

[

, (⊙e ↾
]

1

4
, 3
4

[

), e
)

.

In the last example we modify the uninorm U2 from Example 3.2 in two ways.

Example 3.4. We take the product t-norm TΠ for the operation ⊗ used for paving. We split the interval
]0, 1[ in the same way as in Example 3.2, i.e., the partition is given by formula (7). As the result of paving
we get uninorm U3 defined by the following

U3(x, y) =











ϕ−1

i+j (TΠ (ϕi(x), ϕj(y))) if x ∈ Ii, y ∈ Ij ,

0 if min{x, y} = 0,

1 if max{x, y} = 1 and min{x, y} 6= 0.

(8)

Also in this case we can choose arbitrarily the increasing bijective transformations ϕi : Ii → [0, 1]. I.e.,
correctly speaking, we have got a system of uninorms. But they all induce the same pre-order �U3

.
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Denote ai and bi the left- and right-end-points of the interval Ii, respectively. Then for xi ∈ Ii and
xj ∈ Ij we have xi ∼U3

xj if and only if xi−ai
bi−ai

=
xj−aj
bj−aj

. The set Ax0
for x0 ∈ I0, x0 6= 3

4
, cannot be

organized into a group, and
(

A 3

4

,⊙ 3

4

, 3
4

)

is a subgroup of
(

[0, 1], U3,
3

4

)

.

If we choose the minimum t-norm, TM , instead of the product in the formula (8), and use the same
partition given by formula (7), we get again the same system of equivalence classes. But in this case for
all x0 ∈ I0 the algebraic system (Ax0

,⊙x0
, x0) is an Abelian group, and for x0 = 3

4
it is a subgroup of

(

[0, 1], U3,
3

4

)

.

Remark 3.5. We have seen in Example 3.4 that uninorms U3, U4 induce the same pre-order, i.e.,
�U3

=�U4
. If we look at algebraic properties of equivalence classes got by the pre-orders �U3

and
�U4

, they are different. This means, in some cases, when different uninorms induce the same pre-order
the underlying algebraic properties of equivalence classes may help to distinguish types of uninorms in
question.
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