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Abstract: In this paper, we present an approach to generalization of the discrete Choquet integral. We

replace the product operator joining capacity m of criteria sets and values of score vector by a fusion

function F satisfying some constraints, similarly as was already done for another form of the discrete

Choquet integral in [2]. The properties of obtained functional Cm
F are studied and some examples for

particular capacities m are given.
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1 Introduction

The evaluation of a score vector achieved in some set of criteria is a long-term point of interest in

multicriteria decision making theory. One of the useful tools used for that purpose is the Choquet integral

[1], which was generalized in several ways, see, for instance, [3], [4].

Our generalization was inspired by that of Mesiar et al. in [2], where the authors generalized one of

the two usually used discrete forms of the Choquet integral (see below, the formula (1)) replacing the

product operator by fusion function satisfying certain conditions. Using the same idea, we generalize the

other formula (see the formula (2)) for the discrete Choquet integral. Note that, in general, the resulting

functional differs from that obtained in [2].

We recall the definition of the Choquet integral on a general monotone measure space (X,S,m),
where X is a non-empty set X , S is a σ-algebra of its subsets and m : S → [0,∞] a monotone measure,

i.e., a set function satisfying the properties m(∅) = 0 and m(A) ≤ m(B) for all A,B ∈ S, A ⊆ B.

Definition 1.1. Let (X,S,m) be a monotone measure space. For any S-measurable function f : X →
[0, 1] the Choquet integral Chm(f) is given by

Chm(f) =

∫ 1

0
m({x ∈ X|f(x) ≥ t}) dt,

where the integral on the right-hand side is the Riemann integral.

In this paper we will only deal with finite spaces X = {1, . . . , n} for some n ∈ N , n ≥ 2, S = 2X

and normalized monotone measures m : 2X → [0, 1], i.e., monotone measures with m(X) = 1, calling

them capacities [5]. The set of all capacities m : 2X → [0, 1] will be denoted by Mn. Any 2X -

measurable function f : X → [0, 1] will be identified with a vector x = (x1, . . . , xn) ∈ [0, 1]n, where

xi = f(i), i = 1, . . . , n.

A discrete form of the Choquet integral is of a great importance in decision making theory, regarding

a finite set X = {1, . . . , n} as some criteria set, a vector x ∈ [0, 1]n as a score vector and a capacity

m : 2X → [0, 1] as the weights of particular sets of criteria.
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Proposition 1.2. Let X = {1, . . . , n} and let m : 2X → [0, 1] be a capacity. Then for any x ∈ [0, 1]n

the discrete Choquet integral is given by

Chm(x) =

n
∑

i=1

(x(i) − x(i−1)) ·m(E(i)), (1)

where (·) : X → X is a permutation such that x(1) ≤ · · · ≤ x(n), E(i) = {(i), . . . , (n)} for i =
1, . . . , n, and x(0) = 0,

or, equivalently, by

Chm(x) =
n
∑

i=1

x(i) · (m(E(i))−m(E(i+1))), (2)

with x(i) and E(i), i = 1, . . . , n, as above, and E(n+1) = ∅.

Observe that information contained in a score vector and that in a capacity are joined by the standard

product operator. Replacing the product in formulae (1) and (2) by a function F : [0, 1]2 → [0, 1] (a

binary fusion function), we obtain the formulae:

CF
m(x) =

n
∑

i=1

F (x(i) − x(i−1),m(E(i))) (3)

and

Cm
F (x) =

n
∑

i=1

F (x(i),m(E(i))−m(E(i+1))), (4)

respectively.

The functionals Cm
F defined by (3) were deeply studied in [2] including a complete characterization

of functionals CF
m as aggregation functions.

In this paper, we will analyse the functionals defined by (4). The paper is organized as follows. In the

next section, we provide the conditions under which a functional Cm
F is correctly defined for any capacity

m ∈ Mn and any x ∈ [0, 1]n and, for suitable fusion functions, we exemplify Cm
F for several particular

capacities. In Section 3, we provide several properties of functionals Cm
F and show their connection with

the discrete Choquet integral. Finally, some concluding remarks are added.

2 Operators Cm
F

Let us first analyse conditions under which the functionals Cm
F introduced in (4) are well defined.

Evidently, for a score vector x ∈ [0, 1]n with card {x1, . . . , xn} = n there is a unique permutation

(·) : X → X such that x(1) ≤ · · · ≤ x(n) (in fact, all inequalities are strict). Thus Cm
F is correctly

defined by formula (4). If some ties occure, i.e., if card {x1, . . . , xn} < n, we have to analyse the

following two cases.

Case 1: Let n = 2. Consider x = (x1, x2) = (x, x), and a capacity ma,b ∈ M2 defined by ma,b({1}) =
a and ma,b({2}) = b, where a, b ∈ [0, 1]. Then C

ma,b

F (x, x) is well defined only if formula (4) gives

back the same value for both possible permutations (1,2) and (2,1) ordering the vector x increasingly,

i.e., if it holds

F (x, 1− a) + F (x, a) = F (x, 1− b) + F (x, b)

for all a, b ∈ [0, 1].
Consequently, we obtain the following proposition.

Proposition 2.1. Let n = 2. Then Cm
F : [0, 1]2 → [0, 2] introduced in (4) is well defined if and only if

F (x, y) + F (x, 1− y) = 2F (x, 1/2), for any x, y ∈ [0, 1] .
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L’. Horanská, A. Šipošová: Generalization of the discrete Choquet integral

We can immediately characterize all well defined functionals C
ma,b

F :

C
ma,b

F (x, y) =







F (x, 1− b) + F (y, b) if x < y,

2F (x, 1/2) if x = y,

F (x, a) + F (y, 1− a) if x > y.

Example 2.2. Consider F : [0, 1]2 → [0, 1] defined by F (x, y) = x
2 ((2y − 1)3 + 1), see Fig. 1. Then F

satisfies the constraints of Proposition 2.1. and thus Cm
F is correctly defined for any ma,b ∈ M2. Note

that then

C
ma,b

F (x, y) =

{

x+y
2 + (y−x)

2 (2b− 1)3 if x ≤ y,
x+y
2 + (x−y)

2 (2a− 1)3 otherwise,

see Fig. 2.

If a = b, i.e., ma,a is a symetric capacity, then

C
ma,a

F (x, y) =
x+ y

2
+

|x− y|

2
(2a− 1)3 for all x, y ∈ [0, 1] .
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Figure 1: F (x, y) = x
2 ((2y − 1)3 + 1) Figure 2: C

ma,b

F , a = 0.85, b = 0.95

Case 2: Now, consider n > 2 and a vector x = (x1, · · · , xn) ∈ [0, 1]n such that

card{x1, · · · , xn} < n. Without loss of generality we can suppose that card{x1, · · · , xn} = n− 1 and

x1 = x2 = min{x1, · · · , xn} = x. Then, similarly as before, we find out that Cm
F (x) is well defined

only if

F (x, 1−m({2, 3, · · · , n})) + F (x,m({2, 3, · · · , n})−m({3, · · · , n})) =

F (x, 1−m({1, 3, · · · , n})) + F (x,m({1, 3, · · · , n})−m({3, · · · , n})) .

The last equality has to be satisfied for any capacity m ∈ Mn, i.e., for any α, β, γ, δ ∈ [0, 1] such

that α+ β = γ + δ ∈ [0, 1] it should hold that

F (x, α) + F (x, β) = F (x, γ) + F (x, δ).

The only solution of this Cauchy’s equation is of the form

F (x, y) = f(x) · y, (5)

where f : [0, 1] → [0, 1] is an arbitrary function. On the other hand, any function F of the form (5)

yields a well defined functional Cm
F : [0, 1]n → [0, n].

Proposition 2.3. Let n > 2. The functional Cm
F : [0, 1]n → [0, n] is well defined for any m ∈ Mn if

and only if F (x, y) = f(x) · y for all x, y ∈ [0, 1] and some function f : [0, 1] → [0, 1]. In that case

Cm
F (x) =

n
∑

i=1

f(x(i)) · (m(E(i))−m(E(i+1))). (6)
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Example 2.4. Consider F : [0, 1]2 → [0, 1] given by F (x, y) = (1 − x)y, which satisfies Proposition

2.3. Then for each m ∈ Mn and x ∈ [0, 1]n it holds:

Cm
F (x) = 1− Chm(x) = Chmd(1− x),

where md is a dual capacity to m, given by md(E) = 1−m(Ec). Note that Cm
F is a decreasing operator,

Cm
F (0, . . . , 0) = 1 and Cm

F (1, . . . , 1) = 0.

Using (6), for a fixed suitable fusion function F given by (5), we can derive Cm
F for some particular

capacities m ∈ Mn, see the following table.

m ∈ Mn Cm
F ; F (x, y) = f(x) · y

m∗(E) =

{

1 if E 6= ∅,
0 if E = ∅

Cm∗

F (x) = f(x(n)) = f( max
1≤i≤n

xi)

m∗(E) =

{

1 if E = {1, · · · , n},
0 otherwise

Cm∗

F (x) = f(x(1)) = f( min
1≤i≤n

xi)

CmH

F (x) = f(xi), where

mH(E) =

{

1 if H ⊆ E,
0 otherwise

{j ∈ {1, · · · , n}|xj ≥ xi} ⊇ H but

{j ∈ {1, · · · , n}|xj > xi} ⊇ H does not hold

∅ 6= H ⊆ X

m(E) = card E
n

Cm
F (x) = 1

n

n
∑

i=1
f(xi)

Note that m∗ and m∗ are the greatest and the smallest elements of Mn, respectively, and that m∗ =
mH for H = X .

3 C
m
F with some particular properties

In this section, we formulate several properties of functionals Cm
F and also show the connection Cm

F with

the discrete Choquet integral.

At first, we recall that the functional Cm
F is:

• an aggregation function, if Cm
F is monotone increasing and Cm

F (0) = 0, Cm
F (1) = 1;

• a mean, if for each x ∈ [0, 1]n it holds Min(x) ≤ Cm
F (x) ≤ Max(x), where Min(x) =

min{x1, . . . , xn}, Max(x) = max{x1, . . . , xn};

• translation invariant, if Cm
F (x1 + c, . . . , xn + c) = c + Cm

F (x1, . . . , xn) for all c ∈]0, 1] and

(x1, . . . , xn) ∈ [0, 1]n such that (x1 + c, . . . , xn + c) ∈ [0, 1]n;

• idempotent, if Cm
F (x, . . . , x) = x for each x ∈ [0, 1].

For the functionals Cm
F of the form (6) with F satisfying (5), the following properties can be directly

derived.
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Proposition 3.1. Let F : [0, 1]2 → [0, 1], F (x, y) = f(x) · y, where f : [0, 1] → [0, 1]. Then for any

fixed n ≥ 2 it holds that

(i) Cm
F is an aggregation function for each m ∈ Mn if and only if f is an increasing function

satisfying f(0) = 0 and f(1) = 1.

(ii) Cm
F ≥ Min for each m ∈ Mn if and only if f is an increasing function satisfying f(x) ≥ x for

all x ∈ [0, 1].

(iii) Cm
F ≤ Max for each m ∈ Mn if and only if f is an increasing function satisfying f(x) ≤ x for

all x ∈ [0, 1].

(iv) Cm
F is a mean for each m ∈ Mn if and only if F is the product operator.

(v) Cm
F is translantion invariant for each m ∈ Mn if and only if F is the product operator.

(vi) Cm
F is idempotent for each m ∈ Mn, if and only if F is the product operator.

Note that for the standard product F (x, y) = x.y the functional Cm
F coincides with Chm, therefore

the properties (iv), (v), (vi) hold only for the Choquet integral itself.

Since an increasing function preserves ordering of an input vector and a decreasing one inverts it,

we obtain the following propositions that show the connection between Cm
F and the discrete Choquet

integral.

Proposition 3.2. Let F : [0, 1]2 → [0, 1], F (x, y) = f(x) · y, where f : [0, 1] → [0, 1] is an increasing

function. Then, for each m ∈ Mn and x ∈ [0, 1]n,

Cm
F (x) = Chm(f(x)),

where f(x) = (f(x1), · · · , f(xn)).

Proposition 3.3. Let F : [0, 1]2 → [0, 1], F (x, y) = f(x) · y, where f : [0, 1] → [0, 1] is a decreasing

function. Then, for each m ∈ Mn and x ∈ [0, 1]n,

Cm
F (x) = 1− Chm(1− f(x)) = Chmd(f(x))

where md ∈ Mn is a capacity dual to m.

Note that the last property was already ilustrated for a special function F in Example 2.4.

4 Concluding remarks

We have generalized the formula (2) for the discrete Choquet integral, replacing the standard product

operator by a function F : [0, 1]2 → [0, 1]. Several particular operators Cm
F were discussed, based

either on a fixed capacity m ∈ Mn or on a fixed function F . We expect applications of our results in

all domains where the generalizations of the discrete Choquet integral are considered, for example in

medicine.
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