
Transitivity of interval-valued fuzzy relations

Bernard De Baets ∗ Barbara Pȩkala †‡ Urszula Bentkowska †§

Abstract: In this contribution a new relation for the set of interval-valued fuzzy relations is introduced.

This relation is more suitable for the epistemic setting of these relations. This is an interval order for the

family of intervals and consequences of considering such order are studied in the context of operations

on interval-valued fuzzy relations. Moreover, the new transitivity property, namely pos-T -transitivity is

studied. This transitivity property is connected with the new relation proposed here.
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1 Introduction

Interval-valued fuzzy relations were introduced by L. A. Zadeh [17] as a generalization of the concept of

a fuzzy relation [16]. Interval valued fuzzy sets and relations have applications in diverse types of areas,

for example in classification, image processing and multicriteria decision making.

In [13], a comparative study of the existing definitions of order relations between intervals, analyzing

the level of acceptability and shortcomings from different points of view were presented. Orders used

for interval-valued fuzzy relations may be connected with ontic and epistemic setting ([5, 6]). Epistemic

uncertainty represents the idea of partial or incomplete information. Simply, it may be described by

means of a set of possible values of some quantity of interest, one of which is the right one. A fuzzy

set represents in such approach incomplete information, so it may be called disjunctive [5]. On the other

hand, fuzzy sets may be conjunctive and can be called ontic fuzzy sets [5]. In this situation the fuzzy set

is used as representing some precise gradual entity consisting of a collection of items.

The aim of this work is to examine dependencies between the natural (partial) order and the here

introduced relation in the set of interval-valued fuzzy relations. Moreover, consequences of considering

such relation are studied in the context of operations on interval-valued fuzzy relations, among others the

new transitivity property called pos-T -transitivity is discussed.

The paper is structured as follows. Firstly, some concepts and results useful in further considera-

tions are recalled (Section 2). Next, results connected with the interval order are presented (Section 3).

Moreover, some properties of operations on interval-valued fuzzy relations are studied (Section 4). To

finish, in Section 5 pos-T -transitivity, based on the definition of the given new relation, is presented and

its preservation by basic operations is considered.

2 Interval-valued fuzzy relations

First, we recall definition of the lattice operations and the order for interval-valued fuzzy relations. Let

X,Y, Z be non-empty sets.

Definition 2.1 (cf. [15, 17]). An interval-valued fuzzy relation R between universes X,Y is a mapping

R : X × Y → LI such that

R(x, y) = [R(x, y), R(x, y)] ∈ LI ,

for all couples (x, y) ∈ (X × Y ), where LI = {[x1, x2] : x1, x2 ∈ [0, 1], x1 ≤ x2}.
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The class of all interval-valued fuzzy relations between universes X,Y will be denoted by IVFR(X×
Y ) or IVFR(X) for X = Y .

We use the following partial order for intervals:

[x1, y1] ≤ [x2, y2] ⇔ x1 ≤ x2, y1 ≤ y2. (1)

For every (x, y) ∈ (X × Y ), P = [P , P ], R = [R,R] ∈ IV FR(X) we have

P (x, y) ≤ R(x, y) ⇔ P (x, y) ≤ R(x, y), P (x, y) ≤ R(x, y).

The boundary elements in IVFR(X × Y ) are 1 = [1, 1] and 0 = [0, 0].
Let P,R ∈ IVFR(X × Y ), then

(P ∨R)(x, y) = [max(P (x, y), R(x, y)),max(P (x, y), R(x, y))],

(P ∧R)(x, y) = [min(P (x, y), R(x, y)),min(P (x, y), R(x, y))].

The structure (IVFR(X × Y ),≤) is a partially ordered set, i.e. the relation ≤ is:

reflexive, R(x, y) ≤ R(x, y),
antisymmetric, R(x, y) ≤ P (x, y) and P (x, y) ≤ R(x, y) ⇒ R(x, y) = P (x, y),
transitive, R(x, y) ≤ P (x, y) and P (x, y) ≤ Q(x, y) ⇒ R(x, y) ≤ Q(x, y)
for every (x, y) ∈ (X × Y ) and P,Q,R ∈ IVFR(X × Y ).

For an arbitrary index set D 6= ∅ it holds that

(
∨

d∈D

Rd)(x, y) = [sup
d∈D

Rd(x, y), sup
d∈D

Rd(x, y)],

(
∧

d∈D

Rd)(x, y) = [ inf
d∈D

Rd(x, y), inf
d∈D

Rd(x, y)].

More general classes of operations are triangular norms.

Definition 2.2 ([2]). A triangular norm T on a bounded poset P = (P,≤, 0, 1) is an increasing, com-

mutative, associative operation T : P
2 → P with a neutral element 1.

One construction method for triangular norms is presented below.

An operation T : (LI)2 → LI is called a representable triangular norm if there exist triangular norms

T1, T2 : [0, 1]
2 → [0, 1] such that for all x = [x1, x2], y = [y1, y2] ∈ LI and T1 ≤ T2:

T (x, y) = [T1(x1, y1), T2(x2, y2)].

Many authors, for example in [12, 14], used the following definition of transitivity.

Definition 2.3. Let T = [T1, T2] and T1 ≤ T2, R ∈ IVFR(X). Relation R is called T -transitive if

T1(R(x, y), R(y, z)) ≤ R(x, z)

and

T2(R(x, y), R(y, z)) ≤ R(x, z).

In the next part of the paper we will introduce another type of transitivity.
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3 Interval order in L
I

To begin with, we recall the definition of an interval order for crisp relations. The name ’interval order’

first appeared in print in Fishburn [7, 8, 9].

Definition 3.1 ([10], p. 42). A relation R ⊂ X × X is an interval order if it is complete and has the

Ferrers property, i.e.:

R(x, y) or R(y, x), for x, y ∈ X ,

R(x, y) and R(z, w) ⇒ R(x,w) or R(z, y), for x, y, z, w ∈ X ,

respectively.

Now we consider the following relation between intervals:

[x1, y1] � [x2, y2] ⇔ x1 ≤ y2. (2)

This relation is more adequate in the epistemic setting of the interval-valued fuzzy relations. If

[x1, y1] is an unprecise description of a variable x and [x2, y2] is an unprecise description of a variable y,

then [x1, y1] � [x2, y2] denotes that it is possible that the true value of x is smaller than or equal to the

true value of y. The relation � thus has a possibilistic interpretation [4].

Theorem 3.2. In the structure (LI ,�), the relation � is an interval order.

Proof. Let [a1, b1] � [a2, b2] and [a3, b3] � [a4, b4] for [ai, bi] ∈ LI , i ∈ {1, 2, 3, 4}, so a1 ≤ b2,

a3 ≤ b4.

If a1 > b4, then a3 ≤ a1, i.e. a3 ≤ b2.

If a3 > b2, then a1 ≤ a3, i.e. a1 ≤ b4.

So � has the Ferrers property, i.e.

[a1, b1] � [a2, b2] and [a3, b3] � [a4, b4] ⇒ [a1, b1] � [a4, b4] or [a3, b3] � [a2, b2],

If a1 ≤ b2, then [a1, b1] � [a2, b2].
If a1 ≥ b2, then [a2, b2] � [a1, b1].
So � is complete, i.e.

[a1, b1] � [a2, b2] or [a2, b2] � [a1, b1].

Directly from (1) and (2), we note the following connection between the natural (partial) order ≤ and

the interval order �.

Corollary 3.3. If the natural order (1) holds, then also the interval order holds (2).

The converse implication does not hold, as can be seen from the following example.

Example 3.4. For intervals A = [0.2, 0.8] and B = [0.1, 1] we observe that A � B but it is not true

that A ≤ B.

We would like to use the new relation on the class IVFR(X × Y ) and examine the consequences

of this choice. Thus, for every (x, y) ∈ (X × Y ), P = [P , P ], R = [R,R] ∈ IVFR(X × Y ) we have

P (x, y) � R(x, y) ⇔ P (x, y) ≤ R(x, y).

Let us notice that the relation � in the family IVFR(X) has the reflexivity property only. Thus it is

not an order relation in this family.
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4 Dependencies between operations on IVFR(X × Y )

Firstly, we consider connections between basic operations on IVFR(X×Y ) and the considered relation

�. For (x, y) ∈ (X × Y ), P = [P , P ], R = [R,R] ∈ IVFR(X × Y ) we have

P ∧R � P � P ∨R,

P ∧R � R � P ∨R.

Moreover, if P ≥ R, then R � P ∧R and if P ≤ R, then P � P ∧R.

Interesting differences between the considered relation � and the natural (partial) order present the fol-

lowing conditions

P � R ⇐ (P ∧R = P, P ∨R = R)

and

if P ≤ R, then P � R ⇒ (P ∧R = P, P ∨R = R).

Moreover, we have the implication

(R � P, P � R) ⇐ (R = P , R = P ),

but the converse implication we obtain if the relation � is replaced with the natural order ≤. If we

consider the converse operation Rt(x, y) = R(y, x), then it holds

P � R ⇔ P t � Rt.

Another interesting properties for here considered relation �, we present in the following result.

Theorem 4.1. Let (x, y) ∈ (X × Y ), P = [P , P ], Q = [Q,Q], R = [R,R] ∈ IVFR(X × Y ). Then

we have

•P (x, y) � R(x, y), P (x, y) � Q(x, y) ⇔ P (x, y) � R(x, y) ∧Q(x, y),

•R(x, y) � P (x, y), Q(x, y) � P (x, y) ⇔ R(x, y) ∨Q(x, y) � P (x, y),

•P (x, y) � R(x, y) and W (x, y) � Q(x, y) ⇒

P (x, y) ∨W (x, y) � R(x, y) ∨Q(x, y) and P (x, y) ∧W (x, y) � R(x, y) ∧Q(x, y).

Proof. Let P (x, y) � R(x, y) and P (x, y) � Q(x, y), so P ≤ R and P ≤ Q, then

P ≤ R ∧ Q because ∧ is the infimum in the lattice ([0, 1],∧,∨). Similarly, we obtain the second

condition by the property of supremum ∨. Moreover, by isotonicity of these operations we obtain the

third condition.

Lets us now recall the notion of the composition for interval-valued fuzzy relations.

Definition 4.2 (cf. [1, 11]). Let P ∈ IVFR(X × Y ), R ∈ IVFR(Y × Z). The sup−T composition

of the relations P and R is called the relation P ◦R ∈ IVFR(X × Z),

(P ◦R)(x, z) =
∨

y∈Y

T(P (x, y), R(y, z)).

Especially, if T is a representable triangular norm T we have sup−T1T2 composition,

(P ◦R)(x, z) = [(P ◦T1
R)(x, z), (P ◦T2

R)(x, z)],

where T1 ≤ T2 and

(P ◦T1
R)(x, z) = sup

y∈Y

T1(P (x, y), R(y, z)), (P ◦T2
R)(x, z) = sup

y∈Y

T2(P (x, y), R(y, z)).
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In our further considerations in the whole paper we will use the composition with a representable

triangular norm and the symbol ◦ will mean sup−T1T2 composition. For simplicity of notations we

present the results for composition in the class IVFR(X).

Theorem 4.3. If T1, T2, T1 ≤ T2 are triangular norms, then

P � R ⇒ P ◦Q � R ◦Q, Q ◦ P � Q ◦R,

P ◦ (Q ∨R) = P ◦Q ∨ P ◦R.

Moreover, if T1, T2, T1 ≤ T2 are supremum preserving then

P ◦ (Q ◦R) = (P ◦Q) ◦R.

Proof. Let P � R, i.e. P ≤ R and T1 ≤ T2, then by Theorem 4.1 we have for x, y ∈ X∨
z∈X T1(P (x, z), Q(z, y)) ≤

∨
z∈X T2(P (x, z), Q(z, y)), so P ◦Q � R ◦Q. The second inequality in

the first condition can be proven similarly. By distributivity of a triangular norm with respect to maximum

we obtain the second condition. Moreover, since triangular norms T1, T2 are supremum preserving, we

have associativity.

In a semigroup (IVFR(X), ◦) we can consider the powers of its elements, i.e. relations Rn for

R ∈ IVFR(X), n ∈ N.

Definition 4.4. Let R ∈ IVFR(X). The powers of R are defined in the following way

R1 = R, Rn+1 = Rn ◦R, n ∈ N.

The upper operation R∨ and the lower operation R∧ of R are defined in the following way

R∨ =
∞∨

k=1

Rk, R∧ =
∞∧

k=1

Rk,

where Rk = [Rk, R
k
]. Now we will examine connections between powers and upper (lower) operations

and operations ∨ and ∧.

Theorem 4.5. Let T1, T2, T1 ≤ T2 be supremum preserving and P,R ∈ IVFR(X).

If R � P, then Rn � Pn, R∨ � P∨, R∧ � P∧, n ∈ N.

Moreover,

(P ∨R)∨ � P∨ ∨R∨,

(P ∧R)∨ � P∨ ∧R∨,

(P ∨R)∧ � P∧ ∨R∧,

(P ∧R)∧ � P∧ ∧R∧.

Proof. By isotonicity of composition we obtain isotonicity of powers, moreover by isotonicity of supre-

mum and infimum we have dependencies for lower and upper operations. By Theorem 4.1 and the above

conditions we obtain the rest of results.
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5 Possible T -transitivity

Now we will consider the transitivity property connected with the introduced relation � in the epistemic

setting. This definition of transitivity naturally follows from the introduced relation �, namely replacing

the natural order ≤ with the relation � we get by Definition 2.3 for a representable triangular norm T
the formula T (R(x, y), R(y, z)) � R(x, z). As a result, applying definition of the relation � we get the

following notion.

Definition 5.1 ([3]). Let T : [0, 1]2 → [0, 1] be a triangular norm. A relation R ∈ IVFR(X) is possibly

T -transitive (pos-T -transitive), if

T (R(x, y), R(y, z)) ≤ R(x, z). (3)

This transitivity property is called possible T -transitivity which follows from the interpretation of the

relation �. Again, if R(x, y) is an imprecise description of the relation between x and y, and similarly

for R(y, z) and R(x, z), then formula (3) expresses that it is possible to choose values in these intervals

such that usual T -transitivity holds.

Theorem 5.2. Let D 6= ∅ and Rd ∈ IVFR(X), d ∈ D. If (Rd) is a family of pos-T-transitive relations,

then the fuzzy relation
∧

d∈D Rd is pos-T -transitive.

Proof. If Rd are pos-T -transitive relations, i.e., T (Rd(x, y), Rd(y, z)) ≤ Rd(x, z), then by isotonicity of

triangular norms, we know that min dominates any triangular norm T , i.e. T (
∧

d∈D Rd(x, y),
∧

d∈D Rd(y, z)) ≤∧
d∈D T (Rd(x, y), Rd(y, z)) ≤

∧
d∈D Rd(x, z).

Theorem 5.3. Let R ∈ IVFR(X). If R is pos-T -transitive, then Rt is also pos-T -transitive.

Proof. For an arbitrary R ∈ IVFR(X) which is pos-T -transitive and by commutativity of a triangular

norm we have

T (Rt(x, y), Rt(y, z)) = T (R(y, x), R(z, y)) = T (R(z, y), R(y, x)) ≤ R(z, x) = Rt(x, z).

In the following theorems we use the fact (which follows from definition of pos-T -transitivity and

definition of composition) that

Lemma 5.4. Let R ∈ IVFR(X). R is pos-T -transitive if and only if R2 ≤ R, where R2 = R ◦T R.

Theorem 5.5. Let P,R ∈ IVFR(X). If P,R are pos-T -transitive relations and

R ◦T P ∨ P ◦T R ≤ R ∨ P , then R ∨ S is pos-T -transitive.

Proof. Let P,R be interval-valued fuzzy pos-T -transitive relations. By Lemma 5.4, and the assumption

R ◦T P ∨ P ◦T R ≤ R ∨ P and by Theorem 4.3 we have

(R ∨ P )2 = (R ∨ P ) ◦T (R ∨ P ) = R2 ∨R ◦ P ∨ P ◦R ∨ P 2 ≤ R ∨R ∨ P ∨ P = R ∨ P ,

so R ∨ S is pos-T -transitive.

Theorem 5.6. Let T1,T2, T1 ≤ T2 be supremum preserving P,R ∈ IVFR(X). If P,R are pos-T1-

transitive and R ◦T1
P = P ◦T1

R, then R ◦ P is pos-T1-transitive.

Proof. Let P,R be interval-valued fuzzy pos-T -transitive relations. By associativity of composition and

the assumption R ◦T1
P = P ◦T1

R, by Lemma 5.4 we have

(R ◦T1
P )2 = (R ◦T1

P )2 = R ◦T1
(P ◦T1

R) ◦T1
P = R2 ◦T1

P 2 ≤ R ◦T1
P ≤ R ◦T2

P = P ◦T2
R.

Thus, R ◦ P is a pos-T1-transitive relation.

Corollary 5.7. Let T1, T2, T1 ≤ T2 be supremum preserving and R ∈ IVFR(X). If R is pos-T1-

transitive, then Rn is also pos-T1-transitive.

Proof. By isotonicity of composition and powers, we obtain Rn ≤ R
n−1

, so Rn preserves pos-T1-

transitivity.
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Theorem 5.8. Let R ∈ IVFR(X). If R is T -transitive, then R is pos-T -transitive.

Proof. Let R be T -transitive. Then R2 ≤ R ≤ R. Thus by Lemma 5.4, we obtain pos-T -transitivity of

R.

We also notice the connection between T -transitivity and pos-T -transitivity.

Proposition 5.9. Let R ∈ IVFR(X). If R is T -transitive, then R is pos-T1-transitive.

Moreover, we know directly by definitions of T -transitivity and composition, that

Proposition 5.10. Let R ∈ IVFR(X), T1, T2, T1 ≤ T2 be triangular norms. R is T -transitive if and

only if R is T1-transitive and R is T2-transitive.

Moreover, we have the following property.

Theorem 5.11. Let T1, T2 be triangular norms and T1 ≤ T2. If R ∈ IVFR(X) is pos-T2-transitive,

then R is pos-T1-transitive.

Proof. Let R be pos-T2-transitive. Then T2(R(x, y), R(y, z)) ≤ R(x, z) and by the fact that T1 ≤ T2

we have T1(R(x, y), R(y, z)) ≤ T2(R(x, y), R(y, z)) ≤ R(x, z) for x, y, z ∈ X . As a result R is

pos-T1-transitive.

6 Conclusion

In future work other operations and some properties for interval-valued fuzzy relations for the relation �
may be considered. Next, generalization of the here considered composition, i.e. sup−A composition

(where A is an aggregation function), may be discussed. Moreover, other types of transitivity and other

relations between interval-valued fuzzy relations may be studied.
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