THE MÖBIUS FUNCTION ON A POSET

DISCUSSED BY APOORVA KHARE AND PHILIP BRUNETTI, FALL 2005

Though the analysis here is self-contained, we give a reference: Chapter 3 of Stan.

1. Setup

For this section, we fix a commutative ring A with unity, an A-(bi)module M (since A is commutative), and a partially ordered set (X, \leq) that is locally finite (this is defined presently). In order to define (and prove stuff about) the Möbius function on X, we first look at a set of functions with a group structure of convolution on it, just like in the classical case of arithmetic functions on natural numbers.

Definitions. Suppose (X, \leq) is a partially ordered set.
(1) We say X is locally finite if for all $x \leq y$ in X, the interval $[x, y]:=\{z \in X: x \leq z \leq y\}$ is finite.
(2) Define $I \subset X \times X$ to be the set of pairs (x, y) so that $x \leq y$.
(3) Now define \mathcal{B} to be the set of functions $f: I \rightarrow A$ (if desired, they can be extended to $f: X \times X \rightarrow A$ by setting $f(x, y)=0$ if $(x, y) \notin I)$.

Also define \mathcal{M} to be the set of functions from I to M.
(4) Say X is locally finite. We then define the convolution operation $*: \mathcal{B} \times \mathcal{M} \rightarrow \mathcal{M}$ sending $(f, g) \in \mathcal{B} \times \mathcal{M}$ to $f * g=f \cdot g$, by

$$
(f * g)(x, y)=\sum_{z \in[x, y]} f(x, z) g(z, y)
$$

(Note that each such sum is only over finitely many terms.) We can similarly define the convolution operation $*: \mathcal{M} \times \mathcal{B} \rightarrow \mathcal{M}$.
(5) We will also need to consider the subclass \mathcal{I} of functions $f \in \mathcal{B}$ such that $f(x, x) \in A^{\times}$ for all $x \in X$.

A special case of such an operation is when we take $M=A$, and $\mathcal{M}=\mathcal{B}$. This gives $*: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$, and we presently show that under this operation, \mathcal{B} is a monoid.

Example. The Möbius function (among all arithmetic functions) is one such example, where we have $X=\mathbb{N}$ and $A=M=\mathbb{Z}$. The partial order on \mathbb{N} is the order $x \leq y$ iff $x \mid y$. This satisfies all the conditions above, and given $x \leq y$ we define $f \in \mathcal{B}$ from \mathbb{N} to \mathbb{Z} by $f(x, y):=f(y / x)$. Then the convolution operation is the standard one:

$$
(f * g)(x, y)=\sum_{z \in[x, y]} f(x, z) g(z, y)=\sum_{(z / x) \mid(y / x)} f(z / x) g(y / z)=\sum_{d \mid n} f(d) g(n / d)
$$

where $n=y / x$ and $d=(z / x) \mid n$ (so that $n / d=y / z)$. The analysis of the Möbius function done below, now specializes to exactly the classical analysis of the Möbius function for \mathbb{N}.

2. The main Result

Theorem.

(1) $(\mathcal{B},+, *)$ is a ring, whose group of units (i.e. $*$-invertible elements) is $\mathcal{B}^{\times}=\mathcal{I}$.
(2) \mathcal{M} is a left- and a right- module over \mathcal{B}.

Proof. We first observe that \mathcal{B}, \mathcal{M} are A-modules, under the obvious addition (pointwise over $I)$ and scalar left-multiplication by $a \in A$. It is also easy to check that $*$ distributes over + .

Next, we show that $*$ is associative. Given $f, g \in \mathcal{B}$ and $m \in \mathcal{M}$, we compute for $x \leq y$:

$$
\begin{aligned}
((f * g) \cdot h)(x, y) & =\sum_{x \leq z \leq y}(f * g)(x, z) h(z, y)=\sum_{x \leq w \leq z \leq y} f(x, w) g(w, z) h(z, y) \\
(f \cdot(g \cdot h))(x, y) & =\sum_{x \leq w \leq y} f(x, w)(g * h)(w, y)=\sum_{x \leq w \leq z \leq y} f(x, w) g(w, z) h(z, y)
\end{aligned}
$$

Setting $M=A$, we get associativity for $*$ in \mathcal{B}.
We now claim that \mathcal{B} has a two-sided identity under $*$. This is shown by defining $e(x, y)=$ $\delta_{x, y}$. We now have (for $x \leq y$):

$$
(f * e)(x, y)=\sum_{x \leq z \leq y} f(x, z) e(z, y)=\sum_{x \leq z \leq y} f(x, z) \delta_{z, y}=f(x, y) \delta_{y, y}=f(x, y)
$$

and similarly we show that $(e * f)=f$, whence e is the two-sided identity in \mathcal{B}. The proof that $e \cdot h=h$ for all $h \in \mathcal{M}$ is similar too. This completes the proof that \mathcal{B} is a ring, as well as the fact that \mathcal{M} is a left-module over \mathcal{B}. The proof that \mathcal{M} is a right-module is similar. Note, though, that \mathcal{B} is not commutative in general (this depends on the poset structure of X), and hence \mathcal{M} is not a \mathcal{B}-bimodule.

Before showing that \mathcal{I} is precisely the set of invertible functions (or units) in \mathcal{B}, let us remark that if any f in a monoid $(\mathcal{B}, *, e)$ has a left or a right inverse, namely $g_{L}=g$ or $g_{R}=$ respectively, then both inverses exist, and $g_{L}=g_{R}=g$. This is standard, because by associativity of $*$, we have

$$
g_{L}=g_{L} * e=g_{L} *(f * g)=\left(g_{L} * f\right) * g=e * g=g=\cdots=g_{R}
$$

Finally, we consider invertible elements in \mathcal{B}. We first claim that if $f \in \mathcal{B}$ is invertible, then $f(x, x) \in A^{\times}$. To see this, if $g=f^{-1}$, then evaluating $f * g=e$ at (x, x) for any x, we have

$$
1=e(x, x)=(f * g)(x, x)=\sum_{x \leq z \leq x} f(x, z) g(z, x)=f(x, x) g(x, x)
$$

(The proof for $g * f=e$ is the same.)
The converse is harder to show. Suppose $f(x, x) \in A^{\times}$for all $x \in X$. We now inductively define a right-inverse g_{R} to f at (x, y) for all $x \leq y$, where we apply induction on $|[x, y]|$ (i.e. the size of the interval $[x, y]$, or the number of elements z so that $x \leq z \leq y)$. For $|[x, y]|=1$, the only possibility is when $x=y$, and we define $g_{R}(y, y)=f(y, y)^{-1} \in A^{\times}$.

Now suppose that we have defined $g_{R}(x, y)$ for all $x \leq y$, where $|[x, y]|<n$ for some $n>0$. Consider any $x \leq y$ such that $|[x, y]|=n$. We then define

$$
g_{R}(x, y):=f(x, x)^{-1}\left[\delta_{x, y}-\sum_{x<z \leq y} f(x, z) g_{R}(z, y)\right]
$$

(Note that this implies that

$$
f(x, x) g_{R}(x, y)+\sum_{x<z \leq y} f(x, z) g_{R}(z, y)=\delta_{x, y}
$$

i.e. $\left(f * g_{R}\right)(x, y)=e(x, y)$ as desired. $)$

Moreover, the above definition makes sense, since each summand on the right side is already defined, since $|[z, y]|<|[x, y]|=n$ (this is because $x<z$, so $[z, y] \subset[x, y]$, but $x \notin[z, y]$). We also observe that this definition is forced upon us by the equation $f * g_{R}=e$.

The proof for the existence of a left-inverse g_{L} is similar. Thus both inverses exist iff $f \in \mathcal{I}$, and by the above remarks they must coincide. Hence \mathcal{I} is indeed the group of units in \mathcal{B} (it is now standard to show that the inverse is unique etc.)

3. MÖbius inversion formulae

We next show the Möbius inversion formula - or two versions of it (the first version is stated in a "left" as well as a "right" way).
Proposition 1. Henceforth, let M merely denote an abelian group.
(1) There exists a unique function $\mu: X \times X \rightarrow A$, called the Möbius function, so that $\mu(x, y)=0$ unless $x \leq y$, and

$$
\sum_{x \leq z \leq y} \mu(x, z)=\delta_{x, y}
$$

Moreover, μ actually has values in \mathbb{Z} (or its image in A), and also satisfies the "dual" identity, namely:

$$
\sum_{x \leq z \leq y} \mu(z, y)=\delta_{x, y} \forall x \leq y
$$

(2) (Möbius inversion formula 1.) If $f: I \rightarrow M$, define $h_{L}(x, y):=\sum_{x \leq z \leq y} f(z, y)$ and $h_{R}(x, y):=\sum_{x \leq z \leq y} f(x, z)$. Then

$$
f(x, y)=\sum_{x \leq z \leq y} \mu(x, z) h_{L}(z, y)=\sum_{x \leq z \leq y} \mu(z, y) h_{R}(x, z)
$$

(3) (Möbius inversion formula 2.) Suppose for each $x \in X$, that the set $\{y \in X: y \leq x\}$ is finite. If $F: X \rightarrow M$, define $H_{R}(x):=\sum_{y \leq x} F(y)$. Then

$$
F(x)=\sum_{z \leq x} \mu(z, x) H_{R}(z)
$$

We show another example of Möbius inversion below, after the proof.
Proof. Firstly, note for the two inversion formulas, that the expression makes sense since μ takes values in \mathbb{Z} by the first part. Moreover, we can write μ to the left or right since M is a \mathbb{Z}-bimodule (since \mathbb{Z} is commutative).

Next, let us define the function $U: I \rightarrow A$ by $U \equiv 1$. Thus $U \in \mathcal{I}$.
(1) The two desired identities are merely saying that $\mu * U=U * \mu=e$ in \mathcal{B}. This unique two-sided inverse to U under $*$ in \mathcal{B} now exists by the previous theorem. Moreover, since $U \in \mathcal{B}_{\mathbb{Z}}:=\{f: X \rightarrow \mathbb{Z}\}$, hence we also have $\mu=U^{-1} \in \mathcal{B}_{\mathbb{Z}}$. Note here that $\mathcal{B}_{\mathbb{Z}} \subset \mathcal{B}$ since we have $\varphi: \mathbb{Z} \rightarrow A$, sending $1 \mapsto 1$, which sends $f: X \rightarrow \mathbb{Z}$ to $\varphi \circ f: X \rightarrow \mathbb{Z} \rightarrow A$.
(2) This assertion is also clear, since we clearly have $h_{L}=U * f$ in the left $\mathcal{B}_{\mathbb{Z}}$-module \mathcal{M}, and $h_{R}=f * U$ in the right $\mathcal{B}_{\mathbb{Z}}$-module \mathcal{M}. By the module structure, we thus have

$$
f=e * f=(\mu * U) * f=\mu *(U * f)=\mu * h_{L}
$$

which is exactly what is claimed. The proof that $f=h_{R} * \mu$ is similar.
(3) One way to verify this is to use directly compute, noting that each sum is finite by our assumption on X :

$$
\begin{aligned}
\sum_{z \leq x} \mu(z, x) H_{R}(z) & =\sum_{z \leq x} \mu(z, x) \sum_{y \leq z} F(y)=\sum_{y \leq z \leq x} F(y) \mu(z, x)=\sum_{y \leq x} F(y) \sum_{z \in[y, x]} \mu(z, x) \\
& =\sum_{y \leq x} F(y) \delta_{y, x}=F(x)
\end{aligned}
$$

where we use the first part of the identity (or perhaps the dual of it) for one of the steps.

The other way to verify these formulae are to use a slightly different poset, and the verified module structure and Möbius function on that poset.

We attach a least element 0 to X, to get another poset $X^{\prime}=X \cup\{0\}$ with $0<$ $x \forall x \in X$. Note then that we can extend U to $U^{\prime} \equiv 1$ on X^{\prime}, and the function μ on X also extends to μ^{\prime}. In other words, the inverse of U^{\prime} in $\mathcal{B}_{\mathbb{Z}, X^{\prime}}$ restricts to μ on X - this follows from the uniqueness property of μ.

We now define $f: I_{X^{\prime}} \rightarrow \mathbb{Z}$ by $f(0, x)=F(x)$ for all $x \in X$, and any arbitrary values for the others (as we shall see, the only value that might matter is that of $f(0,0)$, but even this does not matter !). We also define $H_{R}(0)=F(0):=f(0,0)$. For $x \in X$, we then have

$$
\begin{aligned}
H_{R}(x) & =\sum_{y \leq x} F(y)=\sum_{0<y \leq x} f(0, y)=\sum_{0 \leq y \leq x} f(0, y) U(y, x)-f(0,0) U(0, x) \\
& =(f * U)(0, x)-f(0,0)
\end{aligned}
$$

For $x=0$, we also observe that

$$
(f * U)(0,0)=f(0,0) U(0,0)=f(0,0)=F(0)=H_{R}(0)
$$

if we extend U to $U^{\prime} \equiv 1$ on X^{\prime}. Using these equations, we now compute the desired expression:

$$
\begin{aligned}
\sum_{z \leq x} \mu(z, x) H_{R}(z) & =\sum_{0<z \leq x} \mu(z, x) H_{R}(z) \\
& =\sum_{0<z \leq x} \mu(z, x)[(f * U)(0, z)-f(0,0)]+\mu(0, x) H_{R}(0)-\mu(0, x) H_{R}(0) \\
& =\sum_{0 \leq z \leq x} \mu(z, x)(f * U)(0, z)-f(0,0) \sum_{0<z \leq x} \mu(z, x)-\mu(0, x) f(0,0) \\
& =((f * U) * \mu)(0, x)-f(0,0) \sum_{0 \leq z \leq x} \mu(z, x) \\
& =f(0, x)-f(0,0) \sum_{0 \leq z \leq x} U^{\prime}(0, z) \mu^{\prime}(z, x) \\
& =F(x)-\left(U^{\prime} * \mu^{\prime}\right)(0, x)=F(x)-\delta_{0, x}=F(x)
\end{aligned}
$$

since $x \in X$. Hence we are done. (Also observe that the proof is independent of the specific other values chosen for f at various points in $I \subset X \times X$.)

Note also, that if X has the property that for any $x \in X$, the set $R_{x}:=\{y \in X$: $y \geq x\}$ is finite, then one can define H_{L} and carry out a similar analysis for the "otherhanded" case here. To show this left-handed version, we work instead with a different poset $X^{\prime \prime}:=X \cup\{\infty\}$, with $x<\infty \forall x \in X$. The equations and proof are similar.

4. Some easy results

We now have the following corollary to the Möbius inversion formula:
Corollary 1. For all $x \leq y \in X$, we have

$$
\sum_{x \leq z \leq y} \mu(x, z)|[z, y]|=\sum_{x \leq z \leq y} \mu(z, y)|[x, z]|=1
$$

where $|[x, y]|$ is the size of that interval in X (and finite by assumption).
Proof. Let us evaluate $(U * U)$ at any point of I. We have

$$
(U * U)(x, y)=\sum_{x \leq z \leq y} U(x, z) U(z, y)=\sum_{x \leq z \leq y} 1=|[x, y]|
$$

and therefore the claimed result just says that $(\mu *(U * U))(x, y)=1=U(x, y)$, and that $((U * U) * \mu)(x, y)=1=U(x, y)$. This follows from Möbius inversion, as above.

We next compute the Möbius function over small posets.
Proposition 2. If $x, y, z \in X$, with $[x, y]=\{x, y\}$ and $[x, z]=\{x, y, z\}$, then $\mu(x, x)=$ $1, \mu(x, y)=-1$, and $\mu(x, z)=0$.
Proof. This is trivial, if we just compute that $(U * \mu)(x, x)=1,(U * \mu)(x, y)=(U * \mu)(x, z)=0$, and expand these out.

Finally, we show an easy result (that applies to the example $X=\mathbb{Z}$, among others) that implies the commutativity of \mathcal{B}.

Lemma. Suppose for each $x \leq y$ in X, we have a permutation $\sigma_{x, y}$ of the finite set $[x, y]$, that interchanges x and y. Now define I^{\prime} to be the quotient of $I=\{(x, y) \in X \times X: x \leq y\}$ by the relations $\left\{(x, z)=\left(\sigma_{x, y}(z), y\right)\right.$ for all $\left.x \leq y \leq z \in X\right\}$, and suppose $f, g: I^{\prime} \rightarrow A$. Then $f * g=g * f$.
As an example, consider $X=\mathbb{Z}$. We know that $f(x, y)=f(y / x)$, and we define $\sigma_{x, y}(z)=x y / z$ for all $x|z| y$. Then we verify that $\sigma_{x, y}^{2}(z)=z$ for all $z \in[x, y]$. Moreover, the relation says that

$$
f(z / x)=f(x, z)=f\left(\sigma_{x, y}(z), y\right)=f\left(y / \sigma_{x, y}(z)\right)=f(y /[x y / z])=f(z / x)
$$

as it should.
Proof. This is easy: we use the fact that summing over $z \in[x, y]$ is the same as summing over $\sigma_{x, y}(z)$, by the given assumptions. Hence we compute, for general $x \leq y \in X$, using the given properties:

$$
\begin{aligned}
(f * g)(x, y) & =\sum_{z \in[x, y]} f(x, z) g(z, y)=\sum_{z \in[x, y]} f\left(\sigma_{x, y}(z), y\right) g\left(x, \sigma_{x, y}(z)\right) \\
& =\sum_{\sigma_{x, y}(z) \in[x, y]} g\left(x, \sigma_{x, y}(z)\right) f\left(\sigma_{x, y}(z), y\right)=(g * f)(x, y)
\end{aligned}
$$

and since this holds for all $x \leq y$, we are done.

5. Examples

Example 1: The classical Möbius function. (We prove this result below, using results on functoriality, and the next example.) Let (X, \leq) be the set \mathbb{N} with the partial order of divisibility. Then it is well-known that the Möbius function here (for any $d, n \in \mathbb{N}$) is

$$
\mu_{\mathbb{N}}(n)=\mu(d, d n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{r} & \text { if for some distinct primes } p_{1}, \ldots, p_{r}, n=p_{1} \ldots p_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Example 2: Another poset structure for the natural numbers. We now endow \mathbb{N} with the usual partial - or total, in this case - order inherited from \mathbb{R}. We now present its Möbius function:

Proposition 3. For $m \leq n$, the Möbius function is

$$
\mu(m, n)= \begin{cases}1 & \text { if } n-m=0 \\ -1 & \text { if } n-m=1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. This will follow from the results on functoriality that we present below, but here is the proof anyways. Firstly, $\mu(m, m)=1$ and $\mu(m, m+1)=-1$ for all m, by a proposition above. Next, we claim by induction that $\mu(m, m+1+n)=0$ for all $n \in \mathbb{N}$. The base case of $n=1$ also follows from the proposition above. The poset structure gives us merely that

$$
\begin{aligned}
0 & =(U * \mu)(m, m+1+n)=\mu(m, m)+\mu(m, m+1)+\sum_{j=0}^{n-1} \mu(m, m+2+j) \\
& =\sum_{j=0}^{n-2} \mu(m, m+2+j)+\mu(m, m+n+1)=\mu(m, m+n+1)
\end{aligned}
$$

Example 3: Finite subsets of a set. For any set S, its power set $\mathcal{P}(S)$ is a poset, with inclusion as the partial order. If we look at the set of finite subsets of S, then this is clearly an interval-finite poset. (This equals the entire power set if S is finite.) Let us determine the Möbius function of this poset.
Proposition 4. For $V \subset W \subset S$ with W finite, the Möbius function is $\mu(V, W)=(-1)^{|V|+|W|}$. Proof. The proof is by induction on $n=|W|-|V|$. For $n=0$, we have $V \subset W$ and $|V|=|W|$, hence $V=W$. But then $\mu(V, V)=\mu(V, V) U(V, V)=(\mu * U)(V, V)=1$, as desired. Now suppose we know the result for all $n<K$, and let $|W|-|V|=K$. Then we have

$$
\sum_{Z \in[V, W]} \mu(V, Z)=0
$$

so we get that

$$
\mu(V, W)=-\sum_{Z \in[V, W)} \mu(V, Z)
$$

Now note that if $W=V \coprod\left\{s_{1}, \ldots, s_{K}\right\}$ (where $s_{i} \in S$), then the subsets $Z \in[V, W]$ are characterized exactly by the s_{i} 's that are contained in Z. Thus for all $0 \leq j \leq K$, there are exactly $\binom{K}{j}$ subsets Z of W, that contain exactly j of the s_{i} 's. And for each of these Z 's, we have $\mu(V, Z)=(-1)^{j}$, by the induction hypothesis. In particular, we have

$$
\mu(V, W)=-\sum_{V \leq Z<W} \mu(V, Z)=-\sum_{j=0}^{K-1}\binom{K}{j}(-1)^{j}=-(1-1)^{K}+(-1)^{K}=(-1)^{K}
$$

and hence we are done, since $(-1)^{K}=(-1)^{|W|-|V|}=(-1)^{|W|+|V|}$.

Example 4: The Bruhat order. Let $X=W$ be any Coxeter group, with \leq the Bruhat order on it. It is stated in Hum, that $\mu(x, z)=(-1)^{l(x)+l(z)}$ for all $x \leq z$ in W.
Example 5: Möbius functions with any integer value. We could ask the question, given the above examples: Does the Möbius function, which is integer-valued, only take on the values 0 and ± 1 ?

The answer is no: let us construct a two-parameter family of posets $X_{m, n}$, each with unique extremal elements x, y, with various values of $\mu(x, y)$.

Given $m, n \geq 0$, define a poset structure on the set

$$
X_{m, n}:=\left\{x, w_{1}, w_{2}, \ldots, w_{m+1}, z_{1}, \ldots, z_{n+1}, y\right\}
$$

by: $x<w_{j}<z_{i}<y \forall i, j$.
We now compute the various μ-values. Firstly, $\left.\mu(x, x)=\mu\left(w_{j}\right), w_{j}\right)=\mu\left(z_{i}, z_{i}\right)=\mu(y, y)=1$ and $\mu\left(x, w_{j}\right)=\mu\left(w_{j}, z_{i}\right)=\mu\left(z_{i}, y\right)=-1$, by a proposition above, for all i, j. Next, we have

$$
\mu\left(x, z_{i}\right)=-\mu(x, x)-\sum_{j} \mu\left(x, w_{j}\right)=-1-(m+1)(-1)=m
$$

for all i. Similarly, for each j, we have

$$
\mu\left(w_{j}, y\right)=-\mu\left(w_{j}, w_{j}\right)-\sum_{i} \mu\left(w_{j}, z_{i}\right)=-1-(n+1)(-1)=n
$$

Finally, we compute $\mu(x, y)$. This equals

$$
\begin{aligned}
-\mu(x, x)-\sum_{j} \mu\left(x, w_{j}\right)-\sum_{i} \mu\left(x, z_{i}\right) & =-1-(m+1)(-1)-(n+1) m \\
& =-1+m+1-(n+1) m=-m n
\end{aligned}
$$

Thus, the Möbius function can assume all possible integer values.

6. Functoriality

We now relate the Möbius functions in several different setups.

Proposition 5.

(1) If $\varphi: X \rightarrow Y$ is an isomorphism of locally finite posets, then for all $x, x^{\prime} \in X$, we have: $\mu_{X}\left(x, x^{\prime}\right)=\mu_{Y}\left(\varphi(x), \varphi\left(x^{\prime}\right)\right)$.
(2) If $X \subset Y$ is "interval-closed" (i.e. if $x, y \in X$ then $[x, y]_{Y} \subset X$), and Y is locally finite, then $\mu_{X}=\left.\mu_{Y}\right|_{X}$.
(3) If X_{i} are locally finite posets, then the disjoint union $X=\coprod_{i} X_{i}$ is also a locally finite poset, with Möbius function equal to

$$
\mu\left(x_{i}, x_{j}\right)=\delta_{i j} \mu_{X_{i}}\left(x_{i}, x_{j}\right)
$$

where $x_{i} \in X_{i}, x_{j} \in X_{j}$.
(4) If X_{i} are (finitely many) locally finite posets, then their product $X=\prod_{i} X_{i}$ (together with the partial order $\left(x_{i}\right)_{i} \leq\left(y_{i}\right)_{i}$ iff $\left.x_{i} \leq_{i} y_{i} \forall i\right)$ has Möbius function

$$
\mu\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right)=\prod_{i} \mu_{i}\left(x_{i}, y_{i}\right)
$$

Proof. (1) This is obvious - and is also a consequence of the next part!
(2) We need to show that $\mu_{X}(x, y)=\mu_{Y}(x, y)$ for $x, y \in X$. Note that $[x, y]_{X}=[x, y]_{Y}$, whence it is easy to see that $\mu_{X}(x, y)=\mu_{[x, y]}(x, y)=\mu_{Y}(x, y)$.
(3) This is also easy to see, since the intervals are of the form $\left[x_{i}, x_{i}^{\prime}\right]=\left[x_{i}, x_{i}^{\prime}\right]_{X_{i}}$ for all i and all $x_{i}, x_{i}^{\prime} \in X_{i}$.
(4) We claim, firstly, that each interval is the product of the respective intervals. In other words, given $x_{i} \leq_{i} y_{i}$ in X_{i} for all i, we claim that $\left[\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right]_{X}=\prod_{i}\left[x_{i}, y_{i}\right]_{X_{i}}$. This is because we have

$$
\left(x_{i}\right)_{i} \leq\left(z_{i}\right)_{i} \leq\left(y_{i}\right)_{i} \Longleftrightarrow x_{i} \leq z_{i} \leq y_{i} \forall i
$$

We now claim that $\prod_{i} \mu_{i}$ is a (and hence "the") Möbius function on X, for we compute that $\mu\left(\left(x_{i}\right)_{i},\left(x_{i}\right)_{i}\right)=\prod_{i} \mu_{i}\left(x_{i}, x_{i}\right)=\prod_{i} 1=1$, and for $\left(x_{i}\right)_{i}<\left(y_{i}\right)_{i}$, there is a j so that $x_{j}<z_{j}$, so

$$
\begin{aligned}
\sum_{\left(x_{i}\right)_{i} \leq\left(z_{i}\right)_{i} \leq\left(y_{i}\right)_{i}} \mu\left(\left(x_{i}\right)_{i},\left(z_{i}\right)_{i}\right) & =\sum_{z_{i} \in\left[x_{i}, y_{i}\right]} \prod_{\forall i} \mu_{j}\left(x_{j}, z_{j}\right)=\prod_{i}\left(\sum_{z_{i} \in\left[x_{i}, y_{i}\right]} \mu_{i}\left(x_{i}, z_{i}\right)\right) \\
& =\prod_{i}\left(\mu_{i} * U_{i}\right)\left(x_{i}, z_{i}\right)=\prod_{i} \delta_{x_{i}, z_{i}}=0
\end{aligned}
$$

We now define the lower one-point compactification $X_{-\infty}$ of a poset X. Define $X_{-\infty}$ to be the set $X \cup\{-\infty\}$, with the relation that $-\infty<x \forall x \in X$.

Proposition 6. Suppose X, Y are posets, with Y finite, and X locally finite. Let us define a new poset Z by "superimposing" X after Y. In other words, $y<x$ for all $y \in Y, x \in X$. Then the Möbius functions are related as follows: define, for each $y \in Y$, the integer $n_{y}=$ $\sum_{y^{\prime} \geq y} \mu_{Y}\left(y, y^{\prime}\right)$. Then for all $y, y^{\prime} \in Y, x, x^{\prime} \in X$, we have

$$
\mu_{Z}\left(y, y^{\prime}\right)=\mu_{Y}\left(y, y^{\prime}\right), \mu_{Z}\left(x, x^{\prime}\right)=\mu_{Z}\left(x, x^{\prime}\right), \mu_{Z}(y, x)=n_{y} \mu_{X_{-\infty}}(-\infty, x)
$$

Proof. The first two assertions follow from one of the parts of the previous proposition, so it remains to show the last part. Let us now prove that $\sum_{z \in[y, x]} \mu_{Z}(y, z)=0$; this completes the proof. We observe that

$$
\begin{aligned}
\sum_{z \in[y, x]} \mu_{Z}(y, z) & =\sum_{z \in Y \cap[y, x]} \mu_{Z}(y, z)+\sum_{z \in X \cap[y, x]} \mu_{Z}(y, z)=n_{y}+\sum_{z \in X \cap[y, z]} n_{y} \mu_{X_{-\infty}}(-\infty, z) \\
& =n_{y} \mu_{X_{-\infty}}(-\infty,-\infty)+n_{y} \sum_{z \in X \cap[y, z]} \mu_{X_{-\infty}}(-\infty, z) \\
& =n_{y} \sum_{z \in X_{-\infty} \cap[-\infty, x]} \mu_{X_{-\infty}}(-\infty, z)=n_{y}\left(U * \mu_{X_{-\infty}}\right)(-\infty, x)=0
\end{aligned}
$$

Corollary 2. In the same setup, suppose Y has a unique maximum element $y_{\text {max }}$. Then $n_{y}=0$ for all $y \neq y_{\text {max }}$, whence $\mu(y, x)=0$ for all $x \in X, y \in Y \backslash\left\{y_{\max }\right\}$.

A straightforward application is for $Y=\{n, n+1\}$ and $X=[n+2, \infty) \cap \mathbb{N}$, under the partial order $m \leq n$ if $n-m \geq 0$. Then we get immediately that $\mu(n, n+1+m)=0$ for all $m \in \mathbb{N}$, in the setup of Example 2.

Proof. This is because $n_{y}=\sum_{y \in\left[y, y_{\max }\right]} \mu(y, z)=\left(U * \mu_{Y}\right)\left(y, y_{\max }\right)=\delta_{y, y_{\max }}=0$.
We conclude by computing the classical Möbius function on \mathbb{N}.

Corollary 3. The classical Möbius function for $(\mathbb{N}, \cdot \mid \cdot)$ is $(-1)^{r}$ at a product of any number $r \geq 0$ of distinct primes, and 0 otherwise.
Proof. For each prime $p \in \mathbb{N}$, let X_{p} be the set $\left\{1, p, p^{2}, \ldots\right\}$. Then the partial order on \mathbb{N} is induced from the one on the "restricted product" of the X_{p} 's, and each set X_{p} is posetisomorphic to the set \mathbb{N} under the usual ordering \leq.

Moreover, if $n=\prod_{i=1}^{r} p_{i}^{n_{i}}$ for $n_{i}>0$, then we see that

$$
\mu_{\mathbb{N}}(n)=\mu(1, n)=\prod_{i=1}^{r} \mu_{p_{i}}\left(1, p_{i}^{n_{i}}\right)
$$

Therefore $\mu(n)$ is nonzero if and only if each $n_{i} \leq 1$, and then we have $\mu(n)=\prod_{i=1}^{r} \mu_{p_{i}}\left(1, p_{i}\right)=$ $(-1)^{r}$ from earlier results.

References

[Hum] James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics no. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1990.
[Stan] R.P. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth \& Brooks/Cole, Monterey, 1986.

