Quantum logics and two-dimensional states

Eva Drobná ${ }^{1}$, Ol'ga Nánásiová ${ }^{2}$ and L'ubica Valášková ${ }^{2}$
${ }^{1}$ Department of Informatics, Armed Forces Academy of General Milan Rastislav Štefánik, Demänová 393, 03101 Liptovský Mikuláš, Slovakia eva.drobna@aos.sk
${ }^{2}$ Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81368 Bratislava, Slovakia nanasiova@math.sk valaskova@math.sk

In our contribution we will deal with the characterization of orthomodular lattices by means of special types of two-dimensional states G. Under special marginal conditions a two-dimensional state G can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice $[2,3,5]$.

To model noncompatible events, a quantum logic was chosen among various algebraic structures as the suitable one. We can give a characterization of a center in various types of quantum logics by means of special two-dimensional states defined on them. Any quantum logic can be described as a union of blocks (a block in a given quantum logic \mathcal{L} is the maximal Boolean subalgebra of $\mathcal{L})$ [6]. Center $C(\mathcal{L})$ of a quantum logic \mathcal{L} is its Boolean subalgebra of elements compatible with all other elements of L. Each quantum logic \mathcal{L} has a center that can be taken as a common part of its blocks. We study three types of quantum logics:
(T1) a quantum logic \mathcal{L} as a horizontal sum of k maximal Boolean algebras (blocks);
(T2) a quantum logic \mathcal{L} created from two blocks with non trivial center;
(T3) a quantum logic \mathcal{L} with nontrivial center as a union of k blocks $\mathcal{B}_{i}, i \leq k$, where $\mathcal{B}_{i} \cap \mathcal{B}_{j} \subset C(\mathcal{L})$ for $i \neq j$.

Let us realize the process of investigation of two events A, B, each of them expressed as $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{k}\right\}$, according to its organization. How to face the situation, when simple events a_{i}, b_{j} cannot be verified simultaneously, but, despite this fact, we are able to obtain some information about a_{i} while one of b_{j} does not come into being? Videlicet, how to deal with $f\left(a_{i} \mid b_{j}^{\perp}\right)$ or $f\left(b_{j} \mid a_{i}^{\perp}\right)$? For that reason we effort to find a basic structure created by these observations (e.g. whether some "property levels" of A, B are the same). More precisely let A, B be orthogonal partitions of unit 1_{L}. Let us denote $B^{\perp}=\left\{b_{1}^{\perp}, \ldots, b_{k}^{\perp}\right\}$ and $A^{\perp}=\left\{a_{1}^{\perp}, \ldots, a_{n}^{\perp}\right\}$. Then

$$
P\left(A, B^{\perp}\right)=\left(\begin{array}{ccc}
p\left(a_{1}, b_{1}^{\perp}\right) & \cdots & p\left(a_{1}, b_{k}^{\perp}\right) \\
\vdots & \ddots & \vdots \\
p\left(a_{n}, b_{1}^{\perp}\right) & \cdots & p\left(a_{n}, b_{k}^{\perp}\right)
\end{array}\right)
$$

where $p\left(a_{i}, b_{j}^{\perp}\right)=m\left(b_{j}\right) m\left(a_{i} \mid b_{j}^{\perp}\right), i=1, \ldots, n$ and $j=1, \ldots, k$. By analogy we get $P\left(B, A^{\perp}\right)$. Let us denote $p_{s}=0.5(p(a, b)+p(b, a))$. In [4], inter alia, it has been proved that p_{s} is an s-map and $p_{s}(a, b)=p_{s}(b, a)$ for any $a, b \in L$ and, moreover, $p(a, a)=p_{s}(a, a)$ for each $a \in L$. As $d_{p}\left(a_{i}, b_{j}\right)=p\left(a_{i}, b_{j}^{\perp}\right)+p\left(a_{i}^{\perp}, b_{j}\right)$, the matrix

$$
D_{p_{s}}(A, B)=\frac{1}{2}\left(P\left(A, B^{\perp}\right)+P\left(B, A^{\perp}\right)^{T}\right)
$$

is the matrix for the function $d_{p_{s}}$. The sum of $d_{p_{s}}$ throughout all levels gives us basic information about given structure [1]. For example if $S_{d_{p_{s}}}$ is not integer number then A, B do not create one Boolean algebra. Conversely if $S_{d_{p_{s}}} \in N$, it does not mean then A and B belong to one Boolean algebra.

Acknowledgment

This work was supported by grant agency VEGA under the contracts No. 1/0103/10 and No. 1/0297/11.

References

[1] Drobná, E., Nánásiová O., Valášková L.., Quantum logics and bivariable functions, Kybernetika, 46 (6), 2010, 982-995
[2] Nánásiová O., Principle Conditioning, Int. Journ. Of Theor. Physc., Vol. 43, 2004, 1383-1395
[3] Nánásiová O., Map for Simultaneus Measurements for a Quantum Logic, Int. J. Theor. Phys., 42, 2003, 1889-1903
[4] Nánásiová O., Trokanová K., Žembery I., Commutative and non commutative smaps. Forum Statisticum Slovacum 2, 2007, 172-177
[5] Nánásiová O., Valášková L'., Maps on a quantum logic. Soft Computing Vol. 14, 2010, 1047-1052
[6] Pták P., Pulmannová S., Quantum Logics Kluwer Acad. Press, Bratislava 1991.

