Quantum logics and two-dimensional states

Eva Drobná¹, Oľga Nánásiová² and Ľubica Valášková²

¹Department of Informatics, Armed Forces Academy of General Milan Rastislav Štefánik, Demänová 393, 031 01 Liptovský Mikuláš, Slovakia eva.drobna@aos.sk

²Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia nanasiova@math.sk valaskova@math.sk

In our contribution we will deal with the characterization of orthomodular lattices by means of special types of two-dimensional states G. Under special marginal conditions a two-dimensional state G can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice [2, 3, 5].

To model noncompatible events, a quantum logic was chosen among various algebraic structures as the suitable one. We can give a characterization of a center in various types of quantum logics by means of special two-dimensional states defined on them. Any quantum logic can be described as a union of blocks (a block in a given quantum logic \mathcal{L} is the maximal Boolean subalgebra of \mathcal{L}) [6]. Center $C(\mathcal{L})$ of a quantum logic \mathcal{L} is its Boolean subalgebra of elements compatible with all other elements of L. Each quantum logic \mathcal{L} has a center that can be taken as a common part of its blocks. We study three types of quantum logics:

- (T1) a quantum logic \mathcal{L} as a horizontal sum of k maximal Boolean algebras (blocks);
- (T2) a quantum logic \mathcal{L} created from two blocks with non trivial center;
- (T3) a quantum logic \mathcal{L} with nontrivial center as a union of k blocks $\mathcal{B}_i, i \leq k$, where $\mathcal{B}_i \cap \mathcal{B}_j \subset C(\mathcal{L})$ for $i \neq j$.

Let us realize the process of investigation of two events A, B, each of them expressed as $A = \{a_1, \ldots, a_n\}, B = \{b_1, \ldots, b_k\}$, according to its organization. How to face the situation, when simple events a_i, b_j cannot be verified simultaneously, but, despite this fact, we are able to obtain some information about a_i while one of b_j does not come into being? Videlicet, how to deal with $f(a_i|b_j^{\perp})$ or $f(b_j|a_i^{\perp})$? For that reason we effort to find a basic structure created by these observations (e.g. whether some "property levels" of A, B are the same). More precisely let A, B be orthogonal partitions of unit 1_L . Let us denote $B^{\perp} = \{b_1^{\perp}, \ldots, b_k^{\perp}\}$ and $A^{\perp} = \{a_1^{\perp}, \ldots, a_n^{\perp}\}$. Then

$$P(A, B^{\perp}) = \begin{pmatrix} p(a_1, b_1^{\perp}) & \cdots & p(a_1, b_k^{\perp}) \\ \vdots & \ddots & \vdots \\ p(a_n, b_1^{\perp}) & \cdots & p(a_n, b_k^{\perp}) \end{pmatrix},$$

where $p(a_i, b_j^{\perp}) = m(b_j)m(a_i|b_j^{\perp})$, i = 1, ..., n and j = 1, ..., k. By analogy we get $P(B, A^{\perp})$. Let us denote $p_s = 0.5(p(a, b) + p(b, a))$. In [4], inter alia, it has been proved that p_s is an s-map and $p_s(a, b) = p_s(b, a)$ for any $a, b \in L$ and, moreover, $p(a, a) = p_s(a, a)$ for each $a \in L$. As $d_p(a_i, b_j) = p(a_i, b_j^{\perp}) + p(a_i^{\perp}, b_j)$, the matrix

$$D_{p_s}(A, B) = \frac{1}{2}(P(A, B^{\perp}) + P(B, A^{\perp})^T)$$

is the matrix for the function d_{p_s} . The sum of d_{p_s} throughout all levels gives us basic information about given structure [1]. For example if $S_{d_{p_s}}$ is not integer number then A, B do not create one Boolean algebra. Conversely if $S_{d_{p_s}} \in N$, it does not mean then A and B belong to one Boolean algebra.

Acknowledgment

This work was supported by grant agency VEGA under the contracts No. 1/0103/10 and No. 1/0297/11.

References

- Drobná, E., Nánásiová O., Valášková Ľ., Quantum logics and bivariable functions, Kybernetika, 46 (6), 2010, 982-995
- [2] Nánásiová O., Principle Conditioning, Int. Journ. Of Theor. Physc., Vol. 43, 2004, 1383-1395
- [3] Nánásiová O., Map for Simultaneus Measurements for a Quantum Logic, Int. J. Theor. Phys., 42, 2003, 1889-1903
- [4] Nánásiová O., Trokanová K., Żembery I., Commutative and non commutative smaps. Forum Statisticum Slovacum 2, 2007, 172-177
- [5] Nánásiová O., Valášková Ľ., Maps on a quantum logic. Soft Computing Vol. 14, 2010, 1047-1052
- [6] Pták P., Pulmannová S., Quantum Logics Kluwer Acad. Press, Bratislava 1991.