On a pathological behavior of conditional states on OML's

Martin Kalina

Dept. of Mathematics, Slovak University of Technolgy, Radlinského 11, 813 68 Bratislava, Slovakia kalina@math.sk

Notation: L will denote an OML with a state m. L_c will denote the set of all elements $a \in L$ such that $(\exists \bar{m} : L \to [0, 1])(\bar{m}(a) = 1)$.

Definition 1 ([3]) Let $f: L \times L_c \to [0,1]$ be a function fulfilling the following

- for each $a \in L_c$ f(.|a) is a state on L;
- for each f(a, a) = 1;
- for mutually orthogonal elements $a_1, a_2, ..., a_n \in L_c$ and arbitrary $b \in L$ the following is satisfied

$$f\left(b\left|\bigvee_{i=1}^{n}a_{i}\right)=\sum_{i=1}^{n}f(b|a_{i})f\left(a_{i}\left|\bigvee_{i=1}^{n}a_{i}\right)\right).$$

Then f is called a conditional state on L.

Using a canditional state $f: L_c \times L \to [0, 1]$ we can define a two-dimensional function $p: L^2 \to [0, 1]$ by the formula

$$p(b,a) = \begin{cases} f(b|a)f(a|1), & \text{if } a \in L_c, \\ 0, & \text{if } a \notin L_c. \end{cases}$$

We will discuss properties of p in case $L_c \subsetneq L \setminus \{\mathbf{0}\}$.

Acknowledgment

This work was supported by the VEGA grant agency, grant No. 1/0279/11.

References

- A. Dvurečenskij, S. Pulmannová, New trends in quantum structures. Kluwe, Acad. Publisher, Dordrecht, 2000.
- [2] O. Nánásiová, Map for simultanous measurements for a quantum logic, International Journal of Quantum Physics, 42 (2003), 1889-1903. issue (year), pages.
- [3] O. Nánásiová, Principal conditioning, International Journal of Quantum Physics, 43 (2004), 1383-1395.