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Symmetry and duality in basic logic

In basic logic one proves a symmetry result, which states that Γ ` ∆ is provable if and
only if its symmetric ∆s ` Γs is provable. The symmetric As of a formula A is defined
putting ps ≡ p for every literal p in A, and switching any connective into its dual copy.
One has logical connectives in dual pairs, since one puts the definitory equations, where
the connectives are defined from suitable metalinguistic links, in symmetric pairs.

The quantifiers ∀ and ∃ are given by considering assertions linked by the metalinguistic
link forall. For the universal quantifier, we consider the assertions: forall z ∈ D, Γ `
A(z), that are written Γ, z ∈ D ` A(z) importing z ∈ D as a further premise in the
sequent. Then one puts the definitory equation of ∀:

Γ ` (∀x ∈ D)A(x) if and only if Γ, z ∈ D ` A(z)

Symmetrically, one defines ∃ putting:

(∃x ∈ D)A(x) ` ∆ if and only if A(z) ` ∆, z /∈ D

In logic, the symmetry result is meaningful when literals are considered in dual pairs:
p, p⊥, where .⊥ is a primitive negation (Girard’s negation). The question is: is there
an interpretation for symmetry itself? Logical connectives arise in dual pairs, are there
symmetric connectives somewhere? We find an interpretation by means of quantum states.

Representation of quantum states and qubits

A discrete random variable Z yields a set

DZ ≡ {z = (s(z), p{Z = s(z)})}

where s(z) is the outcome and p{Z = s(z)} > 0 is its frequency. We term DZ random
first order domain.

We say that a random first order domain DZ is focused w.r.t. an equality predicate =
if and only if it holds

z ∈ DZ ` (z = t1) ∨ · · · ∨ (z = tm)

where the terms ti = (s(ti), p{Z = s(ti)}), i = 1, . . .m, denote the outcomes of the
random variable with their probabilities. Otherwise, DZ is unfocused.



A discrete observable gives a finite random first order domain DZ = {t1, . . . , tm}, where
ti = (s(ti), p{Z = s(ti)}). One can write A(ti) for the proposition “The particle A is
found in state s(ti) with probability p{Z = s(ti)}”. Let us summarize all the hypothesis
concerning the preparation of the state and its measurement into a set of premises Γ.
One has that Γ yield A(ti), for i = 1 . . .m. Such m assertions are written Γ ` A(ti)
as sequents. Then one has equivalently Γ ` A(t1)& . . .&A(tm), where & is the additive
conjunction. The proposition A(t1)& . . .&A(tm) represents our knowledge of the state
after measurement, namely the probability distribution of the outcomes.

In order to describe the quantum state prior to measurement, one drops the identifica-
tion of the states, namely, the equality that renders DZ focused. In such a case, describing
our knowledge is possible only considering the predicate z ∈ DZ and the proposition A(z):
“The particle is in state s(z) with probability p{Z = s(z)}” forall z ∈ DZ . If the mea-
surement hypothesis are denoted by Γ, we apply the definitory equation of the universal
quantifier given above. So we describe the quantum state by the proposition

(∀x ∈ DZ)A(x)

By the rules ∀r, &f and by a substitution of the variable by closed terms, one derives the
sequent (∀x ∈ DZ)A(x) ` A(t1)& . . .&A(tm). In our terms, it says that the probability
distribution follows from the state, after a quantum measurement. A measurement is
represented by a substitution of the free variable z by the closed terms ti in our model. The
converse sequent holds if and only if DZ is focused, as one can prove. This enables us to
characterize quantum states predicatively. Moreover, formally, we have an interpretation
via the existential quantifier.

In order to represent qubits, we consider the measurement of the spin w.r.t. the z axis.
The outcome of a measurement of a qubit q is “spin down” ↓ with probability α2 and
“spin up” ↑ with probability β2, α2 + β2 = 1. Then the random first order domain is the
set DZ = {(↓, α2), (↑, β2)} and the state of q is represented by the predicative formula
(∀x ∈ {(↓, α2), (↑, β2)})A(x).

In the Hilbert space C2 we consider the orthonormal basis {|↓〉, |↑〉}. We write the
state evidentiating its relative phase φ:|x〉 = α|↓〉 + eiφβ|↑〉. Different qubits yielding
the same probability distribution can be characterized by φ. So an unfocused domain
DZ = {(↓, α2), (↑, β2)}, corresponds to a family of vectors α|↓〉+eiφβ|↑〉, φ ∈ [0, 2π). Two
qubits in the same family can be distinguished by measurement if and only if they are
orthogonal. This forces α2 = β2 = 1/2 and φ′ − φ = π. We consider the phases φ = 0
and φ = π, which give real factors, and characterize the couple of orthogonal vectors
|+〉 = 1/

√
2|↓〉+ 1/

√
2|↑〉 and |−〉 = 1/

√
2|↓〉 − 1/

√
2|↑〉.

Duality and phase duality

So, a fixed measurement basis |↓〉 and |↑〉 determines two unfocused copies of the domain
DU = {(↓, 1/2), (↑, 1/2)}, relative to the uniform distribution U of the outcomes. We
shall label them D+ and D−. They are equal as sets, from an extensional point of view.
The labels + and − give an “intensional” characterization, to represent qubits in states
|+〉 and |−〉.



On the other side, we have the singletons D↑ = {(↑, 1)} and D↓ = {(↓, 1)}, relative to
the measurement of qubits in states described by vectors |↑〉 and |↓〉.

A qubit in state ↓ is represented by the proposition (∀x ∈ D↓)A(x) and in state ↑ by
the proposition (∀x ∈ D↑)A(x). A qubit in state |+〉 is represented by the proposition
(∀x ∈ D+)A(x), and in state |−〉 is represented by (∀x ∈ D−)A(x). So, for different
qubits, we have two different lists of pairs of propositions.

Symmetrically we have two lists of pairs obtained representing quantum states by ∃.
It is clear that (∀x ∈ D↓)A(x) = (∃x ∈ D↓)A(x) and (∀x ∈ D↑)A(x) = (∃x ∈ D↑)A(x).

Then we make a unique list of pairs, shorthanded A↓, A↑. They are like pairs of literals
and we apply Girard duality to them:

A⊥↓ ≡ A↑ A⊥↑ ≡ A↓

Similarly, one has (∀x ∈ D+)A(x) = (∃x ∈ D+)A(x), (∀x ∈ D−)A(x) = (∃x ∈
D−)A(x) if and only if one considers the following axiom (phase axiom) for unfocused
domains:

A(y), z ∈ D ` A(z), y ∈ D>

where y, z are first order variables. > exchanges + and −: we term it phase duality. One
can see that phase axioms are inconsistent on focused domains and characterize singletons
when substitution is allowed, namely when measurement is considered. So our logic can
be equipped with a second list of pairs of literals, A+, A−, switched by phase duality:

A+> ≡ A− A−
> ≡ A+

which makes a sense only prior to measurement. It is read as the identity after measure-
ment.

Actually, duality ⊥ describes the action of the Pauli matrix σX (the NOT gate) while
phase duality > describes the action of the Pauli matrix σZ (the phase gate). Then ⊥ is
extended to the literals A+, A− by the identity, analogously for >.

A similarity with the behaviour of singletons can be exploited also to represent the four
Bell’s states by means of the unfocused domains D+ and D−. Phase duality is extended
to the representation.
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