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Completely hereditarily atomic OMLs
John Harding

New Mexico State University

Andre Kornell
Dalhousie University

hardingj@nmsu.edu

This talk has two parts. The first part is somewhat tutorial in nature. We
review aspects of orthomodular lattices (OMLs) and two important methods
to construct them, the Kalmbach construction and the constructions of Keller,
Gross and Kunzi via orthomodular spaces. In the second part of the talk we
introduce the main topic, that of algebraic OMLs and their weakening to com-
pletely hereditarily atomic OMLs. Completely hereditarily atomic OMLs can be
described in various ways, one of which is that they are complete OMLs whose
blocks are all atomic. Motivated by issues in extending quantum set theory to
the infinite-dimensional setting, we consider the relationship between algebraic-
ity and the covering property, and their weaker forms, for OMLs. We recall
that the covering property says that if a is an atom that does not lie beneath
x, then a ∨ x covers x.

Theorem 1 An OML is algebraic and has the covering property iff it is a direct
product of finite-height modular ortholattices.

So to move past the finite-dimensional setting, one cannot retain both al-
gebraicity and the covering property. We use the two construction techniques
discussed in the tutorial to provide somewhat involved examples of directly irre-
ducible OMLs of infinite height, one that is algebraic with the 2-covering prop-
erty, and one that is completely hereditarily atomic with the covering property.
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Operads
Tom Leinster

University of Edinburgh

tom.leinster@ed.ac.uk

Operads are a cousin of algebraic theories. They were first seriously used in
algebraic topology in the early 1970s, but have now spread much more widely.
Operads have less expressive power than general algebraic theories; for example,
there is an operad for monoids, but no operad for groups. The trade-off is that
models (algebras) for operads can be considered in categories where models
for algebraic theories cannot. I will give an overview of some of the theory of
operads and what has been done with it.
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An algebraic view of entropy
Tom Leinster

University of Edinburgh

tom.leinster@ed.ac.uk

Entropy is often seen as belonging to the realm of physics or dynamical
systems. However, in this talk, I will explain how entropy arises naturally from
very general algebraic considerations - indeed, from the study of operads. The
technical heart of this idea goes back to 1950s work on functional equations by
Faddeev and others, while the modern presentation is joint work with Baez and
Fritz.
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Entropy modulo a prime
Tom Leinster

University of Edinburgh

tom.leinster@ed.ac.uk

As an illustration of the algebraic, axiomatic view of entropy, I will explain
a curiosity: the entropy of probability distributions where the "probabilities"
are not real numbers but integers modulo a prime p. The entropy, too, is an
integer mod p. This entropy, introduced by Kontsevich, has a functional form
quite different from ordinary entropy, but there is compelling evidence that it is
the right definition. I will explain as much as possible, although limited by the
central, unsolved mystery: what does entropy modulo a prime actually mean?
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Abstract commutator theory in concrete classes
David Stanovský

Charles University, Prague
stanovsk@karlin.mff.cuni.cz

The aim of the series is to introduce the abstract commutator theory of
universal algebra and to show how it applies in various concrete varieties, such
as groups, loops, semigroups or quandles.

(1) Solvability and nilpotence: the beginnings and motivation. I will start with
the original historical motivation: the Galois theory of field extensions. Per-
haps surprisingly, the same concept of solvability appears naturally in other
situations, for instance, in the complexity analysis of the identity checking
and equation solving problem. Is solvability and nilpotence a common phe-
nomenon throughout the world of algebraic structures?

(2) Abelianness and centrality. What makes an algebraic object abelian? One
possible answer is that such an object admits some sort of module struc-
ture. I will show an abstract syntactic condition that defines abelianness
in universal algebra, and I will discuss how it relates to a module represen-
tation. In the second part of the lecture, I will discuss the concept of the
center. How does it generalize from groups to loops (that is, when losing
associativity) or inverse semigroups (that is, when losing inverses)?

(3) The commutator. Finally, I will define the commutator of two congruences,
and the derived concepts of solvability and nilpotence. I will show how the
theory can be adapted in concrete classes, for instance loops or quandles,
and how to apply these concepts to obtain conceptually simple inductive
proofs. I also plan to briefly discuss central extensions.
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Completeness and topologizability of semigroups
Serhii Bardyla

P.J. Šafárik University in Košice, Slovakia; and TU Wien, Austria.

sbardyla@gmail.com

We will discuss different sorts of completeness of semigroups and find a
connection between completeness and topologizability of countable groups. The
results are published in [1, 2, 3]

References
[1] T. Banakh, S. Bardyla. Categorically closed countable semigroups, Forum

Mathematicum 35:3, 689--711 (2023).

[2] T. Banakh, S. Bardyla. Characterizing categorically closed commutative
semigroups, Journal of Algebra 591, 84--110 (2022).

[3] T. Banakh, S. Bardyla. Characterizing chain-compact and chain-finite topo-
logical semilattices, Semigroup Forum 98:2, 234--250 (2019).
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Towards weak bases of minimal relational clones
on all finite sets

Mike Behrisch
Technische Universität Wien

Johannes Kepler Universität Linz

behrisch@logic.at

Weak bases of relational clones have been used in the past as a theoret-
ical tool to establish more fine-grained complexity analyses of computational
problems, see, e.g., [6, 1, 5, 8, 3]. For the Boolean case weak bases have been
determined by Lagerkvist in [7], see also the discussion in [2]. The quest for
weak bases on sets of larger size was begun in [4] with a study of weak bases
for maximal clones, resulting in a complete description for all maximal clones
on a three-element set. We shall report on extending this work to all maximal
clones on any finite set.

References
[1] M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. Minimal distance

of propositional models, Theory Comput. Syst. 63(6) 1131--1184 (2019).
Available from https://doi.org/10.1007/s00224-018-9896-8

[2] M. Behrisch. Weak bases for Boolean relational clones revisited, in IEEE
52nd ISMVL 2022, Dallas, TX, May 18--20, 2022, 68--73 (2022). Available
from https://doi.org/10.1109/ISMVL52857.2022.00017

[3] M. Behrisch. On weak bases for Boolean relational clones and reductions for
computational problems, To appear in Journal of Applied Logics -- IfCoLog
Journal (2023)

[4] M. Behrisch. Weak bases for maximal clones, in IEEE 53rd ISMVL 2023,
Matsue, Shimane, Japan, May 22--24, 2023, 128--133 (2023). Available
from https://doi.org/10.1109/ISMVL57333.2023.00034

[5] M. Couceiro, L. Haddad, and V. Lagerkvist. Fine-grained complexity of
constraint satisfaction problems through partial polymorphisms: a survey,
in IEEE 49th ISMVL 2019, Fredericton, New Brunswick, Canada, May
21--23, 2019, 170--175 (2019). Available from https://doi.org/10.1109/
ISMVL.2019.00037

[6] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones
and the time complexity of SAT problems, J. Comput. System Sci. 84 52--78
(2017). Available from https://doi.org/10.1016/j.jcss.2016.07.008
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[7] V. Lagerkvist. Weak bases of Boolean co-clones, Inform. Process. Lett.
114(9) 462--468 (2014). Available from https://doi.org/10.1016/j.
ipl.2014.03.011

[8] V. Lagerkvist and B. Roy. Complexity of inverse constraint problems and
a dichotomy for the inverse satisfiability problem, J. Comput. System Sci.
117 23--39 (2021). Available from https://doi.org/10.1016/j.jcss.
2020.10.004
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Structures with slow unlabelled growth
Bertalan Bodor

University of Szeged

bodor@server.math.u-szeged.hu

For a structure A we denote by fn(A) the number of orbits of the natural
action of the automorphism group of A on the n-element subsets of A. The
study of the behaviour of the sequences fn(A), in the case when it always has
finite values, was initiated by Cameron and Macpherson in the 80s, and it has
been a subject of active research since. In my talk I will discuss some recent
developments on this topic concerning the case when we have an exponential or
lower upper bound for the sequence fn(A).

I will present a complete classification of structures A for which fn(A) < cn

holds for some c < 2 in terms or their automorphism groups. As a consequence
of this classification we can show that all these structures satisfy some interesting
model-theoretical properties: they are all interdefinable with a finitely bounded
homogeneous structure, and they all satisfy Thomas' conjecture, i.e., they have
finitely many reducts up to interdefinability.
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Several questions and notions of loop theory
relevant for universal algebra

Aleš Drápal
Charles University, Prague

drapal@karlin.mff.cuni.cz

Consider a class consisting of loops that have no nontrivial section in a given
variety. Each such class is a pseudovariety. If the variety is the variety of groups,
then it is not clear if the avoiding pseudovariety is a variety or not. A similar
question arises for isotopically invariant classes of loops. This is connected to
(so called) Falconer varieties---a notion that will be explained. Reieterman's
characterization of finite pseudovarieties induces another class of problems: un-
der which conditions on the pseudovariety of loops does there exist a proper
implicit operation?

If time allows, I will also mention the notion of propagating equations and
explain how the notion has been derived from loop-theoretical results.

References
[1] A. Drápal and P. Vojtěchovský: Subdirect products and propagating equa-

tions with an application to Moufang Theorem, The Art of Discrete and
Applied Mathematics (accepted).

[2] Etta Falconer: Isotopy Invariants in Quasigroups, Trans. Amer. Math.
Soc., 151 (1970), 511--526.

12



On subdirectly irreductible members of double
Boolean algebras

Temgoua Alomo Etienne Romuald, Kwuida Leonard, Tenkeu Kembang Gaël
University of Yaounde 1

University of Bern
University of Yaounde 1
retemgoua@gmail.com

Double Boolean algebras are algebras D = (D;⊔,⊓,¬, ⌟,⊥,⊤) of type (2, 2, 1, 1, 0, 0)
introduced by Rudolf Wille to capture the equational theory of the algebra of
protoconcepts. Every double Boolean algebra D contains two Boolean alge-
bras denoted D⊓ and D⊔. A double Boolean algebra D is said to be pure if
D = D⊓ ∪ D⊔ and trivial if ⊥ ⊔ ⊥ = ⊤ ⊓ ⊤. In this work, we look at the
subdirectly irreducible algebras of the variety of double Boolean algebras.

References
[1] P. Balbiani. Deciding the word problem in pure double boolean algebras, J.

Appl. Logic 10(3) 260--273 (2012)

[2] S. Burris and H. Sankappanavar A course in universal Algebra, Springer
Verlag, 1981.

[3] Y.L. Tenkeu Jeufack, E. Temgoua and L. Kwuida. Filter, ideals and congru-
ences on double boolean algebras, Springer Nature Switzerland AG, 2021,
A Braud and al.(Eds):ICFCA 2021, LNAI 12733 270--280 (2021)

[4] B. Vormbrock. Double Boolean Algebra, PhD thesis, TU Darmstadt, 2005.

[5] R. Wille. Boolean Concept Logic, In Bernhard Ganter and Guy W.
Mineau, Conceptual Structures:Logical Linguistic, and Computational Is-
sue, Springer Berlin Heidelberg 317--331 (2000)
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Digraph conditions equivalent to certain Mal'tsev
conditions

B. Bodor, G. Gyenizse, M. Maróti, L. Zádori
University of Szeged

gyenizse.gergo@math.u-szeged.hu

By a 1973 result of Hagemann and Mitschke a variety is congruence n-
permutable iff any edge in any reflexive directed graph compatible with the
operations of an algebra of the variety is part of an n-circle. Accordingly, the
n-permutability of a variety depends only on the set of digraphs admitted by it.
Similarly, the n-permutability of a locally finite variety depends only on the finite
digraphs admitted by it. In this talk, we show similar results for Taylor varieties
and for varieties omitting TCT types 1 and 5. The graph conditions appearing
here are rather nice, as they can be described by certain connectivity conditions
of the admitted digraphs. We also consider the digraphs admitted by Polin's
variety, which suggest that a digraph description for congruence modularity is
hard to find, and possibly does not exist.
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On discrete properties of monotone mappings
Emília Halušková

Mathematical Institute of Slovak Academy of Sciences
ehaluska@saske.sk

Let h : A → A and ε be a partial order on A. We deal with properties
of oriented graphs which corresponds to the algebra (A, h) in the case that
h is monotone with respect to ε. We derive that every mono-unary algebra
except connected one with a cycle of odd length has the property that there
exists a non-trivial partial order such that (A, h) is monotone with respect to
it. All mono-unary algebras such that there exists a linear order such that
h is monotone with respect to this order will be described; if the number of
components of (A, h) is infinite, then the number of such orders is equal to the
cardinality of the power set of A.

References
[1] I. Chajda, H. Länger. Monotone and cone preserving mappings

on posets, Mathematica Bohemica, published first online, doi:
10.21136/MB.2022.0026-21 (2022)

[2] J. Chvalina, O. Kopeček, M. Novotný. Homomorphic transformations - why
and possible ways to how, Brno, 2012.
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The combinatorics of weak congruences of lattices
Eszter K. Horváth

University of Szeged
Department of Algebra and Number Theory

Andreja Tepavčević
University of Novi Sad

Mathematical Institute SANU Beograd
horeszt@math.u-szeged.hu

Weak congruences are compatible relations on an algebra that are symmet-
ric and transitive. We provide formulas for the number of weak congruences
of some algebras, such as the greatest and second greatest numbers of weak
congruences of finite lattices, and we describe the way we obtained them. We
analyze the weak congruences of ordinal sums and glued sums of lattices. We
provide formulas for special kinds of lattices, such as lanterns and chandeliers.
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Minimal closed monoids for the
Galois connection End-Con

Danica Jakubíková-Studenovská (Košice),
Reinhard Pöschel (Dresden),
Sándor Radeleczki (Miskolc)

The minimal nontrivial endomorphism monoids End Con(A,F ) of congru-
ence lattices of algebras (A,F ) defined on a finite set A are described. They
correspond (via the Galois connection End-Con) to the maximal nontrivial
congruence lattices Con(A,F ) which have been investigated and characterized
previously by the authors. Analogous results are provided for endomorphism
monoids of quasiorder lattices Quord(A,F ).
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Meet-irreducibility of congruence lattices of
prime-cycled algebras

Lucia Janičková
University of Pavol Jozef Šafárik in Košice, Slovakia

lucia.janickova@upjs.sk

Let A be a given finite set. The system of all congruences of an algebra
(A,F ), ordered by inclusion, forms a lattice Con(A,F ). Similarly, the system
of all lattices Con(A,F ) with a given base set A forms a lattice EA. It is known
that all meet-irreducible elements of EA are congruence lattices of monounary
algebras. In some cases, necessary and sufficient conditions of meet-irreducibility
of Con(A, f) were already proven. Namely, if (A, f) is a connected algebra, if
each element of (A, f) maps into a cycle, or if each cycle of (A, f) contains at
most 2 elements. Characterization of all meet-irreducible elements in the EA
remains an open problem. In this talk, we present our results related to meet-
irreducibility of congruence lattices of monounary algebras such that each cycle
contains prime number of elements.

References
[1] G. Grätzer, E.T. Schmidt. Characterizations of congruence lattices of ab-

stract algebras, Acta Sci. Math. (Szeged) 24, 34--59, (1963).

[2] D. Jakubíková-Studenovská, R. Pöschel, S. Radeleczki. The lattice of con-
gruence lattices of algebra on a finite set, Algebra Universalis 79(2), (2018).

[3] D. Jakubíková-Studenovská, L. Janičková. Meet-irreducible congruence lat-
tices, Algebra Universalis 79(4), (2018).

[4] D. Jakubíková-Studenovská, L. Janičková. Congruence lattices of connected
algebras, Algebra Universalis 81(4), (2020).

[5] L. Janičková. Monounary algebras containing subalgebras with meet-
irreducible congruence lattice, Algebra Universalis 84(4), (2022).
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Indecomposable involutive 2-permutable solutions
of Yang-Baxter equation

Přemysl Jedlička
Czech University of Life Sciences

Agata Pilitowska
Warsaw University of Technology

jedlickap@tf.czu.cz

The Yang-Baxter equation is a fundamental equation occurring in integrable
models in statistical mechanics and quantum field theory. Let V be a vector
space. A solution of the Yang–Baxter equation is a linear mapping r : V ⊗V →
V ⊗ V such that

(id⊗ r)(r ⊗ id)(id⊗ r) = (r ⊗ id)(id⊗ r)(r ⊗ id).

Description of all possible solutions seems to be extremely difficult and therefore
there were some simplifications introduced. Let X be a basis of the space
V and let σ : X2 → X and τ : X2 → X be two mappings. We say that
(X,σ, τ ) is a set-theoretical solution of the Yang–Baxter equation if the mapping
x⊗ y → σ(x, y)⊗ τ(x, y) extends to a solution of the Yang–Baxter equation. It
means that r : X2 → X2 , where r = (σ, τ) satisfies the braid relation:

(id× r)(r × id)(id× r) = (r × id)(id× r)(r × id).

A solution is called non-degenerate if the mappings σx = σ(x,_) and τy =
τ(_, y) are bijections, for all x, y ∈ X. A solution (X,σ, τ) is involutive if
r2 = idX2 .

It can be proved that being an involutive solution reduces to the following
equation:

σxσy = σσx(y)στy(x).

Moreover, in this case we have ty(x) = σ−1
σx(y)

(x) and we need to consider one
binary operation only.

An involutive solution is called 2-permutable if it satisfies

σσx(z) = σσy(z),

for all x, y, z ∈ X. An involutive solution is called indecomposable if the per-
mutation group generated by {σx | x ∈ X} acts transitively on X. In our talk
we shall speak about a generic construction of indecomposable 2-permutable
involutive solutions.
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The (in)comparability orthoset of a finite poset

Gejza Jenča
Slovak University of Technlogy

gejza.jenca@stuba.sk

In his PhD. thesis [1], Dacey explored the notion of “abstract orthogonality”,
by means of sets equipped with a symmetric, irreflexive relation ⊥. He named
these structures orthogonality spaces, nowadays called orthosets. Every orthoset
has an orthocomplementation operator X 7→ X⊥ defined on the set of all its
subsets. Dacey proved that X 7→ X⊥⊥ is a closure operator and that the set
of all closed subsets of an orthoset forms a complete ortholattice, which we call
the logic of an orthoset. Moreover, Dacey gave a characterization of orthosets
such that their logic is an orthomodular lattice. The orthosets of this type are
nowadays called Dacey spaces.

In [3], we constructed an orthoset (Q+(P ),⊥) from every poset P . The
elements of Q+(P ) are pairs (a, b) of elements of P with a < b, which we called
quotients.

Theorem 1. [3, Theorem 4.10] For every finite bounded poset P , P is a lattice
if and only if Q+(P ) is Dacey.

We are continuing this line of research in a natural direction. To every
poset P we associate two orthosets on the underlying set of P , namely the strict
comparability orthoset C(P ) and the incomparability orthoset I(P ).

In C(P ), two elements a, b ∈ P are orthogonal iff a > b or b > a. In I(P ),
a, b ∈ P are orthogonal iff a, b are incomparable.

Theorem 2. Let P be a finite poset. Then the incomparability orthoset of P is
Dacey if and only if P is N-free in the sense of [2]

Similarly, the characterization of finite posets for which their strict compa-
rability orthoset is Dacey can be given in terms of their order structure.

Funding: This research is supported by grants VEGA 2/0142/20 and 1/0006/19,
Slovakia and by the Slovak Research and Development Agency under the
contracts APVV-18-0052 and APVV-20-0069.

References
[1] James Charles Dacey Jr. Orthomodular spaces. PhD thesis, University of

Massachusetts Amherst, 1968.

[2] M. Habib and R. Jegou. N-free posets as generalizations of series-parallel
posets. Discrete Applied Mathematics, 12(3):279--291, 1985.
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[3] Gejza Jenča. Orthogonality spaces associated with posets. Order (to appear),
2022.
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Multiplication of matrices over lattices
Kamilla Kátai-Urbán
University of Szeged

katai@math.u-szeged.hu

Matrices over the two-element lattice correspond to binary relations. There
are many results about the semigroup of binary relations, in this talk we recall
a few of them. We give a description of idempotent elements by interpreting
the graph corresponding to a matrix as a transportation network.

Multiplication of matrices over a lattice L is associative if and only if L
is a distributive lattice. Matrices over distributive lattices can be viewed as
multiple-valued analogues of binary relations. We describe idempotent and
nilpotent matrices in some special cases. We show that matrix multiplication
over nondistributive lattices is antiassociative.

References
[1] K. Kátai-Urbán, T. Waldhauser. Multiplication of matrices over lattices,

J. Mult.-Valued Logic Soft Comput. 39 111--134 (2022)
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Special filters in bounded lattices
Ivan Chajda, Miroslav Kolařík
Palacký University Olomouc

Helmut Länger
TU Wien and Palacký University Olomouc

miroslav.kolarik@upol.cz

M.S. Rao recently investigated some sorts of special filters in distributive
pseudocomplemented lattices. We extend this study to lattices which need nei-
ther be distributive nor pseudocomplemented. For this sake we define a certain
modification of the notion of a pseudocomplement as the set of all maximal
elements belonging to the annihilator of the corresponding element. We prove
several basic properties of this notion and then define coherent, closed and me-
dian filters as well as D-filters. In order to be able to obtain valuable results we
often must add some additional assumptions on the underlying lattice, e.g. that
this lattice is Stonean or D-Stonean. Our results relate properties of lattices
and of corresponding filters. We show how the structure of a lattice influences
the form of its filters and vice versa.
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Tolerances on posets
Ivan Chajda

Palacký University Olomouc

Helmut Länger
TU Wien and Palacký University Olomouc

helmut.laenger@tuwien.ac.at

The concept of a tolerance relation, shortly called tolerance, was studied on
various algebras since the seventies of the twentieth century (cf. e.g. [1] and [7]).
Since tolerances need not be transitive, their blocks may overlap and hence in
general the set of all blocks of a tolerance cannot be converted into a quotient
algebra in the same way as in the case of congruences. However, G. Czédli [8]
showed that lattices can be factorized by means of tolerances in a natural way,
and J. Grygiel and S. Radeleczki [9] proved some variant of an Isomorphism
Theorem for tolerances on lattices. The aim of the present talk is to extend the
concept of a tolerance on a lattice to posets in such a way that results similar
to those obtained for tolerances on lattices can be derived.

References
[1] I. Chajda. Algebraic Theory of Tolerance Relations, Palacký Univ. Press,

Olomouc 1991.

[2] I. Chajda, G. Czédli, and R. Halaš. Independent joins of tolerance factorable
varieties, Algebra Universalis 69 83--92 (2013)

[3] I. Chajda, G. Czédli, R. Halaš, and P. Lipparini. Tolerances as images of
congruences in varieties defined by linear identities, Algebra Universalis 69
167--169 (2013)

[4] I. Chajda and H. Länger. Filters and congruences in sectionally pseudocom-
plemented lattices and posets, Soft Computing 25 8827--8837 (2021)

[5] I. Chajda and H. Länger. Tolerances on posets, Miskolc Math. Notes 24
725-736 (2023)

[6] I. Chajda, J. Niederle, and B. Zelinka. On existence conditions for compatible
tolerances, Czechoslovak Math. J. 26 304--311 (1976)

[7] I. Chajda and B. Zelinka. Tolerance relation on lattices, Časopis Pěst. Mat.
99 394--399 (1974)
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[8] G. Czédli. Factor lattices by tolerances, Acta Sci. Math. (Szeged) 44 35--42
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[9] J. Grygiel and S. Radeleczki. On the tolerance lattice of tolerance factors,
Acta Math. Hungar. 141 220--237 (2013)
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Quantum Suplattices
Gejza Jenča

Slovak University of Technology

Bert Lindenhovius
Slovak Academy of Sciences

lindenhovius@mat.savba.sk

Discrete quantization is a method of finding noncommutative generalizations
of discrete mathematical structures by means of internalizing these structures
in a suitable order-enriched dagger compact category qRel, whose objects are
von Neumann algebras isomorphic to a (possibly infinite) ℓ∞-sum of matrix
algebras called quantum sets. The morphisms of qRel are noncommutative
generalizations of binary relations between sets, called quantum relations, and
were distilled by Weaver [5] from his work with Kuperberg on the quantiza-
tion of metric spaces [6]. Other structures that were quantized using discrete
quantization include posets [4] and cpos [3].

In this contribution, we apply discrete quantization in order to obtain a
noncommutative version of complete lattices (also called suplattices), which
we call quantum suplattices. We discuss the categorical constructions in the
category Rel that can be used to define ordinary suplattices, and discuss how
to lift these constructions to qRel in order to obtain our definition of quantum
suplattices. Furthermore, we discuss how classical theorems on suplattices such
as the Knaster-Tarski Theorem generalize to the quantum case. We refer to [1]
for the concrete constructions of quantum suplattices.

Finally, we discuss how to quantize the concept of a topological space based
on the notion of quantum suplattices. Traditionally, C*-algebras form the stan-
dard approach to quantum topology, but only generalize locally compact Haus-
dorff spaces. Our approach is different, and allows for the quantization of specific
topological spaces that are not necessarily locally compact or Hausdorff.
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Weakly dicomplemented lattices arise as abstractions of concept algebras, in-
troduced by Rudolf Wille when modelling negation on concept lattices [2]; they
are algebras (L,∧,∨,∆ ,∇ , 0, 1) of type (2, 2, 2, 2, 0, 0) formed of bounded lattices
(L,∧,∨, 0, 1) endowed with two unary operations: ∆, called weak complemen-
tation, and ∇, called dual weak complementation, together forming the weak
dicomplementation (∆,∇ ), both of which are order--reversing and that also sat-
isfy, for all x, y ∈ L: x∆∆ ≤ x ≤ x∇∇ and (x∧y)∨(x∧y∆) = x = (x∨y)∧(x∨y∇),
where ≤ is the lattice order of L. Their bounded lattice reducts endowed with
the weak complementation, (L,∧,∨,∆ , 0, 1), are called weakly complemented
lattices, and their bounded lattice reducts endowed with the dual weak comple-
mentation, (L,∧,∨,∇ , 0, 1), are called dual weakly complemented lattices.

For instance, any Boolean algebra is both a weakly complemented lattice
and a dual weakly complemented lattice. Furthermore, any bounded lattice can
be endowed with the trivial weak dicomplementation, formed of the trivial weak
complementation, that sends 1 to 0 and all other elements to 1, and the trivial
dual weak complementation, that sends 0 to 1 and all other elements to 0.

A context is a triple (J,M, I), where J and M are sets and I ⊆ J × M .
A subcontext of (J,M, I) is a context (H,N, I ∩ (H × N)), with H ⊆ J and
N ⊆ M . For every (A,B) ∈ P(J) × P(M), we denote by: A′ = {m ∈
M : (∀ a ∈ A) (a I m)} and B′ = {j ∈ J : (∀ b ∈ B) (j I b)}. The con-
cept algebra associated to the context (J,M, I) is the weakly dicomplemented
(complete) lattice (B(J,M, I),∧,∨,∆ ,∇ , 0, 1), where: B(J,M, I) = {(A,B) ∈
P(J) × P(M) : A′ = B,B′ = A} is the set of the formal concepts associ-
ated to the context (J,M, I), ∧ and ∨ are the lattice operations corresponding
to the order ⊆ × ⊇ of P(J) × P(M) restricted to B(J,M, I), 0 = (∅′′,M),
1 = (J, J ′) and, for any (A,B) ∈ B(J,M, I), (A,B)∆ = ((J \ A)′′, (J \ A)′)
and (A,B)∇ = ((M \ B)′, (M \ B)′′). A subcontext (H,N,E) of (J,M, I)
is said to be compatible iff the map ΠJ,M,H,N : B(J,M, I) → B(H,N,E),
ΠJ,M,H,N (A,B) = (A ∩ H,B ∩ N) for all (A,B) ∈ B(J,M, I), is well defined,

∗This work was supported by the research grant number IZSEZO_186586/1, awarded to
the project Reticulations of Concept Algebras by the Swiss National Science Foundation,
within the programme Scientific Exchanges.
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case in which this map is a surjective weakly dicomplemented lattice morphism.
Whenever J is a join--dense subset and M is a meet--dense subset of a com-

plete lattice L, L can be endowed with the weak dicomplementation (∆J ,∇M )
defined by x∆J =

∨
(J \ (x]L) and x∇M =

∧
(M \ [x)L) for all x ∈ L, and the

map φL,J,M : L → B(J,M,≤), defined by φL,J,M (x) = (J ∩ (x]L,M ∩ [x)L)
for all x ∈ L, is a weakly dicomplemented lattice isomorphism. In this case, it
follows that, for any compatible subcontext (H,N,≤) of the context (J,M,≤),
ΠJ,M,H,N ◦ φL,J,M : L → B(H,N,≤) is a surjective weakly dicomplemented
lattice morphism, hence its kernel, that we denote by ζL,H,N , is a lattice con-
gruence of L that preserves the weak dicomplementation (∆J ,∇M ), and the
weakly dicomplemented lattices L/ζL,H,N and B(H,N,≤) are isomorphic; we
call ζL,H,N the weakly dicomplemented lattice congruence induced by the compat-
ible subcontext (H,N,≤) of (J,M,≤). We say that a weak dicomplementation
(∆,∇ ) on L is representable iff ∆ =∆J and ∇ =∇M for some join--dense subset
J and some meet--dense subset M of L.

In the paper [1], we study the existence of nontrivial and of representable
(dual) weak complementations, along with the lattice congruences that preserve
them, in different constructions of bounded lattices, then use this study to de-
termine the finite (dual) weakly complemented lattices with the largest numbers
of congruences, along with the structures of their congruence lattices. It turns
out that, if n ≥ 7 is a natural number, then the four largest numbers of con-
gruences of the n--element (dual) weakly complemented lattices are: 2n−2 + 1,
2n−3 + 1, 5 · 2n−6 + 1 and 2n−4 + 1, which yields the fact that, for any n ≥ 5,
the largest and second largest numbers of congruences of the n--element weakly
dicomplemented lattices are 2n−3 + 1 and 2n−4 + 1. For smaller numbers of
elements, several intermediate numbers of congruences appear between the ele-
ments of these sequences. While already published, this research has never been
presented at a conference before.

In the same purely lattice--theoretical manner, we study compatible sub-
contexts and the congruences they induce in various types and constructions of
lattices. Out of this part of our ongoing research, I will do my best to select the
most interesting results that I can fit into my talk.

Keywords: congruence, (glued/ordinal, horizontal) sum of bounded lat-
tices, (nontrivial, representable) (dual) weak (di)complementation, compatible
subcontext.

Mathematics Subject Classification 2010: 06B10, 06F99.
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Dagger kernel categories have been introduced in [HeJa] as a simple setting
in which one can study categorical quantum logic. The present paper continues
the study of dagger kernel categories in relation to orthomodular lattices in the
spirit of [Jac].

In particular, we show that the category of orthomodular lattices OMLatLin
where morphisms are mappings having adjoints is a dagger kernel category. We
describe finite dagger biproducts and free objects over finite sets in OMLatLin.

A meet semi-lattice (X,∧ 1) is called an ortholattice if it comes equipped
with a function (−)⊥ : X → X satisfying:

• x⊥⊥ = x;

• x ≤ y implies y⊥ ≤ x⊥;

• x ∧ x⊥ = 1⊥.
One can then define a bottom element as 0 = 1 ∧ 1⊥ = 1⊥ and join by x ∨ y =
(x⊥ ∧ y⊥)⊥, satisfying x ∨ x⊥ = 1. We write x ⊥ y if and only if x ≤ y⊥.

Such an ortholattice is called orthomodular if x ≤ y implies y = x ∨ (x⊥ ∧ y).
Definition 1. A dagger on a category C is a functor ⋆ : Cop → C that is involutive
and the identity on objects. A category equipped with a dagger is called a dagger
category.

Let C be a dagger category. A morphism f : A → B is called a dagger
monomorphism if f⋆ ◦ f = idA, and f is called a dagger isomorphism if f⋆ ◦ f =
idA and f ◦ f⋆ = idB .

We now introduce a new way of organising orthomodular lattices into a
dagger category.
Definition 2. The category OMLatLin has orthomodular lattices as objects.
A morphism f : X → Y in OMLatLin is a function f : X → Y between the
underlying sets such that there is a function h : Y → X and, for any x ∈ X and
y ∈ Y ,

f(x) ⊥ y if and only if x ⊥ h(y).

We say that h is an adjoint of a linear map f . It is clear that adjointness is a
symmetric property: if a map f possesses an adjoint h, then f is also an adjoint
of h.

Moreover, a map f : X → X is called self-adjoint if f is an adjoint of itself.
The identity morphism on X is the self-adjoint identity map id : X → X.

Composition of X f→ Y
g→ Z is given by usual composition of maps.
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Lemma 3. Let f : X → Y be a morphism of orthomodular lattices. Then
↓f∗(1)⊥ = {x ∈ X : f(x) = 0} is an orthomodular lattice.

OMLatLin has a zero object 0; this means that there is, for any orthomod-
ular lattice X, a unique morphism 0 → X and hence also a unique morphism
X → 0. The zero object 0 will be one-element orthomodular lattice {0}.

For objects X and Y , we denote by 0X,Y = X → 0 → Y the morphism
uniquely factoring through 0.

Definition 4. For a morphism f : A → B in a dagger category with zero
morphisms, we say that a morphism k : K → A is a weak dagger kernel of f if
fk = 0K,B , and if m : M → A satisfies fm = 0M,B then kk∗m = m.

A dagger kernel category is a dagger category with a zero object, hence zero
morphisms, where each morphism f has a weak dagger kernel k (called dagger
kernel) that additionally satisfies k∗k = 1K .

Theorem 5. The category OMLatLin is a dagger kernel category. The dagger
kernel of a morphism f : X → Y is k : ↓k → X, where k = f∗(1)⊥ ∈ X.

Corollary 6. Every morphism f : X → Y in OMLatLin has a factorisation
me where m = f(1) : ↓f(1) → Y and e = f |↓f(1) : X → ↓f(1).

By a dagger biproduct of objects A,B in a dagger category C with a zero
object, we mean a coproduct A A⊕B B

ιA ιB such that ιA, ιB are
dagger monomorphisms and ιB

⋆ ◦ ιA = 0A,B . The dagger biproduct of an
arbitrary set of objects is defined in the expected way.

Proposition 7. The category OMLatLin has arbitrary finite dagger biproducts⊕
. Explicitly,

⊕
i∈I Xi is the cartesian product of orthomodular lattices Xi,

i ∈ I, I finite.
The coprojections κj : Xj →

⊕
i∈I Xi are defined by (κj)(x) = xj= with

xj=(i) =

{
x if i = j;

0 otherwise.
and (κj)

∗((xi)i∈I) = xj. The dual product structure

is given by pj = (κj)
∗.

Proposition 8. A free object on a finite set A in OMLatLin is isomorphic to
the finite Boolean algebra PA.
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We consider so-called S-operations f : An → A for which each variable gets
a signum s ∈ S representing ``properties'' like, e.g., order preserving or order
reversing with respect to a partial order on A. The set S of such properties has
the structure of a monoid reflecting the behaviour of composition of S-operations
(e.g., order reversing composed with order reversing is order preserving). The
collection of all operations with prescibed properties for their signed variables is
not a clone (since it is not closed under arbitrary identification of variables), but
it is a preclone with special properties what leads to the notion of S-preclone.
We introduce S-relations ϱ = (ϱs)s∈S , S-relational clones and a preservation
property (f S

▷ ϱ), and consider the induced Galois connection SPol− SInv. The
S-preclones turn out to be just the Galois closures. Moreover we can characterize
the Galois closures on the relational side as S-relational clones.
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We are studying groups by analyzing their lattices of weak congruences. For
an algebra A these are congruences on subalgebras considered as relations on
A. When the algebra is a group G, the algebraic lattice Wcon(G) encompasses
the lattices of subgroups and normal subgroups for every subgroup of G, up to
isomorphism.

Subgroup lattices have been used to characterize various classes of groups
to some extent, but weak congruence lattices provide much more information.
We have obtained characterizations in this context, which are discussed in the
papers listed here.

In this presentation, we expand our framework by incorporating systems
of subgroups into weak congruence lattices. This advancement enhances our
understanding of Kurosh-Chernikov classes of groups and offers a new charac-
terization within this setting.

Furthermore, we address the Algebra of Group Theoretical Classes, which
refers to group theoretical properties and the corresponding closure operations
on these classes. We demonstrate that these closure operations can be expressed
in terms of lattices.

As a consequence, we are able to formulate results of the following type.
A group G belongs to the class P if and only if the lattice Wcon(G) satisfies

the lattice theoretic properties LP.
If the above holds, we say that P is an L-class of groups.

Theorem. Let P be an L-class of groups. A group G is a residually P-group
(it belongs to the class RP) if and only if the lattice Wcon(G) fulfils:

(∗) For each ∆X ∈ C(↓∆), ∆X ̸= {(e, e)}, there is ∆N ◀∆, such that
∆N ∧∆X < ∆X and the interval [N2, G2], as the lattice with normal elements
determined by N2 ∨∆, satisfies the lattice theoretic properties LP.

We prove that most of the known classes of groups are L-classes. Conversely,
we start with a lattice property and analyze (algebraic properties of) the corre-
sponding L-class of groups.

Finally, we prove that Birkhoff's theorem for L-classes of groups can be
formulated with purely lattice-theoretic arguments.
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Theorem. An L-class P of groups is a variety if and only if the following hold:
(i) if G is a P-group, then in the lattice Wcon(G) for every ∆H ∈ ↓∆,

such that ∆H ◀∆ (normal in lattice sense), the interval [H2, G2], which is a
lattice with normal element determined by H2 ∨∆, satisfies LP, i.e., the lattice
properties determining the class P and

(ii) f G is a group, such that the lattice Wcon(G) satisfies (∗), then G belongs
to P.
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The talk will focus on exploring tense operators in quantale-enriched cate-
gories (quantale modules, V -frames, V -F -semilattices) analogously to the cat-
egories studied in 'Another look on tense operators' (sup-semilattices, frames,
F -semilattices). The goal is to understand the connections between tense oper-
ators and functorial constructions in quantum logic.

We'll investigate the quantale-enriched versions of the classical three adjoint
situations, highlighting the interplay of tense operators within quantale-enriched
structures. Concrete examples will be presented to demonstrate the applications
of quantale-enriched categories in algebraic methods in quantum logic.
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A square root as a unary operation on MV-algebras was introduced in [3].
This presentation provides a study of pseudo MV-algebras with square roots
on pseudo MV-algebras. We introduce different notions of a square root on
a pseudo MV-algebra which coincide on MV-algebras, and present their main
properties. We show that the class of pseudo-MV-algebras with square roots is
a proper subvariety of the variety of pseudo MV-algebras. We define a strict
square root to classify the class of pseudo MV-algebras with square roots. We
found a relationship between strongly atomless pseudo MV-algebras and strict
pseudo MV-algebras and we investigate square roots on representable symmetric
pseudo MV-algebras, and we present a complete characterization of a square
root and a weak square root on a representable symmetric pseudo MV-algebra
using addition in a unital ℓ-group. In addition, some interesting examples are
provided.

References
[1] A. Dvurečenskij, O. Zahiri, Some results on pseudo MV-algebras with

square roots, Fuzzy Sets and Systems 465 (2023), Art. Num 108527.

[2] A. Dvurečenskij, O. Zahiri, On EMV-algebras with square roots, J. Math.
Anal. Appl. 524 (2023), Art. Num 127113.

[3] U. Höhle, Commutative, residuated 1—monoids. In: U. Höhle., E.P. Kle-
ment (eds), Non-Classical Logics and their Applications to Fuzzy Subsets:
A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Vol
32, pp. 53--106. Springer, Dordrecht, 1995.

∗The paper acknowledges the support by the grant of the Slovak Research and Development
Agency under contract APVV-20-0069 and the grant VEGA No. 2/0142/20 SAV, A.D

†The project was also funded by the European Union's Horizon 2020 Research and Inno-
vation Programme on the basis of the Grant Agreement under the Marie Skłodowska-Curie
funding scheme No. 945478 - SASPRO 2, project 1048/01/01, O.Z

35


