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1 - Introduction
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Psudo MV-algebra (PMV-algebra)

A non-commutative generalization of MV-algebras was introduced by
[Georgescu and Iorgulescu, 2001] as an algebraic counterpart of the
non-commutative Łukasiewicz logic.

Definition [Georgescu and Iorgulescu, 2001]
A PMV-algebra is an algebra (M; ⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0) such that
the following axioms hold for all x, y, z ∈ M,
(A1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, (A2) x ⊕ 0 = 0 ⊕ x = x,
(A3) x ⊕ 1 = 1 ⊕ x = 1, (A4) 1− = 1∼ = 0,
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−, (A6) (x−)∼ = x,
(A7) x ⊕ (x∼ ⊙ y) = y ⊕ (y∼ ⊙ x) = (x ⊙ y−) ⊕ y = (y ⊙ x−) ⊕ x,
(A8) x ⊙ (x− ⊕ y) = (x ⊕ y∼) ⊙ y,
where x ⊙ y = (y− ⊕ x−)∼.

Additional binary operations (implications) :
x → y := x− ⊕ y, x⇝ y := y ⊕ x∼.
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Each PMV-algebra M with the following partial order relation is a bounded
distributive lattice.

x ≤ y ⇔ x ⊙ y− = 0 ⇔ y∼ ⊙ x = 0

Boolean skeleton
An element x of a PMV-algebra M is called a Boolean element if x ⊕ x = x.

B(M) = {x ∈ M : x ⊕ x = x}

B(M) is a Boolean algebra and a subalgebra of M.

A PMV-algebra (M; ⊕,∼ ,− , 0, 1) is said to be symmetric if x∼ = x−, ∀x ∈ M.
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Ideals and Representable PMV-algebras

A non-empty subset I of a PMV-algebra M is called an ideal if (1) for each
y ∈ M, y ≤ x ∈ I implies that y ∈ I ; (2) I is closed under ⊕.
An ideal I of M is said to be
(i) prime if x ∧ y ∈ I implies x ∈ I or y ∈ I ;
(ii) normal if x ⊕ I = I ⊕ x for any x ∈ M, where x ⊕ I := {x ⊕ i | i ∈ I} and
I ⊕ x = {i ⊕ x | i ∈ I}.

Representable PMV-algebra
A PMV-algebra M is said to be representable if M is a subdirect product of a
system of linearly ordered PMV-algebras.

M
subdirect embedding
−−−−−−−−−−−−−−−−−−−−→

∏
i∈I

Li
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PMV-algebras and unital ℓ-groups

A lattice-ordered group (ℓ-group) is an algebra (G;∨,∧, +,−, 0) such that
(G;∨,∧) is a lattice, (G;+,−, 0) is a group, and + is an order-preserving map.

0 ≤ u ∈ G is said to be a strong unit if
∀g ∈ G, ∃n ∈ N : g ≤ nu

A pair (G, u) with a fixed strong unit u, is said to be a unital ℓ-group.

Γ(G, c) [Georgescu and Iorgulescu, 2001]
If (G;∨,∧, +,−, 0) is an ℓ-group, given 0 ≤ c, an interval

[0, c] := {x ∈ G | 0 ≤ x ≤ c}
x ⊕ y = (x + y) ∧ c, x ⊙ y = (x − c + y) ∨ 0,

x− = c − x, x∼ = −x + c.

form a PMV-algebra which is denoted by Γ(G, c) = ( [0, c]; ⊕,− ,∼ , 0, c).
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PMV-algebras and ℓ-groups

[Dvurečenskij, 2002], using Bosbach’s notion of a semiclan, proved that every
PMV-algebra is isomorphic to Γ(G, u) for some unital ℓ-group (G, u).

Categorical equivalence [Dvurečenskij, 2002]
The category of unital ℓ-groups (UG) is categorically equivalent to the
category of PMV-algebras (PMV).

Γ : UG → PMV Ψ : PMV → UG
Γ(G, u) = (Γ(G, u); ⊕,− ,∼ , 0, u)

Γ(f : G → H) = f |
Γ (G,u) .
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2 - Square roots : Definition and
main properties
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Definition of square root on PMV-algebras

A square root on MV-algebras was originally defined in [Höhle, 1995]. It is a
unary operation on an MV-algebra M satisfying (Sq1) and (Sq2) below.

Definition
Let (M; ⊕,− ,∼ , 0, 1) be a PMV-algebra. A mapping r : M → M is said to be a
square root if it satisfies the following conditions :
(Sq1) for all x ∈ M, r(x) ⊙ r(x) = x ;
(Sq2) for each x, y ∈ M, y ⊙ y ≤ x implies y ≤ r(x) ;
(Sq3) for each x ∈ M, r(x−) = r(x) → r(0) and r(x∼) = r(x) ⇝ r(0).

r is a weak square root if it satisfies only (Sq1) and (Sq2). For MV-algebras
these notions coincide but for PMV-algebras they could be different.

(1) Each square root is a one-to-one map.
(2) If a PMV-algebra M has a square root, then the square root is unique.
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Main Properties of square roots on PMV-algebras

Let r be a square root on a PMV-algebra (M; ⊕,− ,∼ , 0, 1). For each x, y ∈ M
(1) x ≤ y implies that r(x) ≤ r(y).
(2) r(x) ∧ r(y) = r(x ∧ y).
(3) r(x) → r(y) ≤ r(x → y) and r(x) ⇝ r(y) ≤ r(x⇝ y). Moreover,
r(x) ⊙ r(y) ≤ r(x ⊙ y) for all x, y ∈ M if and only if r(x) → r(y) = r(x → y)
and r(x) ⇝ r(y) = r(x⇝ y).
(4) r(x ∨ y) = r(x) ∨ r(y).
(5) r(x ⊙ y) ≤ (r(x) ⊙ r(y)) ∨ r(0) and r(x ⊙ x) = (r(x) ⊙ r(x)) ∨ r(0).
(6) If a, b ∈ M, a ≤ b, then r( [a, b]) = [r(a), r(b)]. So, r(M) = [r(0), 1].
(7) r(x ⊕ y) ≥ (r(x) ⊙ r(0)−) ⊕ r(y).
(8) x ≤ x ∨ r(0) = r(x ⊙ x) ≤ r(x).
(9) r(x) ≤ x ⊕ r(0) = r(0) ⊕ x = r(x ⊕ x).
(10) x ⊕ r(x) = r(x) ⊕ x.
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Some Examples

(i) If M is a Boolean algebra, then the identity map IdM : M → M is a square
root.
(ii) Take a linearly ordered (or representable) two-divisible unital group
(G, u), where u/2 ∈ C(G).

s : Γ(G, u) → Γ(G, u) s(x) = x + u
2

, x ∈ M,

The example also works if (G, u) is a two-divisible unital ℓ-group which
enjoys unique extraction of roots, that is x/n is unique.
(iii) Let M be a direct product of a family {Mi}i∈I of PMV-algebra with square
roots. Then M has a square root.

x = (xi)i ∈ M =
∏

i

Mi, s(x) = (si(xi))i

where si is a unique square root on Mi.
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Examples

(iv) Let M = Γ(G, u), where (G, u) is a linearly ordered (or representable)
two-divisible unital ℓ-group. Then

r(x) = x − u
2

+ u, x ∈ M,

is a weak square root on M.

(v) If 1 < |G| is an ℓ-group, then M = Γ(Z−→× G, (1, 0)) has no weak square
roots.
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Theorem : Square roots and homomorphisms

Homomorphisms - Normal ideals
Let f : M → N be a homomorphism of PMV-algebras and r be a square root
on M. Then f (M) has a square root :

𝜏 : Im(f ) → Im(f ), 𝜏(f (x)) = f (r(x)), ∀x ∈ M

So, given a normal ideal I of a PMV-algebra M with a square root r

rI :
M
I

→ M
I

rI (
x
I
) = r(x)

I
, ∀x ∈ M

is a square root on
M
I

.
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3 - Characterization of
PMV-algebras with square roots
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Strict PMV-algebra and Boolean point

Proposition
Let r be a square root on a PMV-algebra (M; ⊕,− ,∼ , 0, 1). Then there exists a
unique idempotent element v ∈ B(M) such that

r(0)− = v ∨ r(0) = r(0)∼, v = r(0)− ⊙ r(0)− .

Consider a PMV-algebra (M; ⊕,− ,∼ , 0, 1) with a (week) square root r. From
r(0) ⊙ r(0) = 0, we get that r(0) ≤ r(0)− ∧ r(0)∼ = r(0)− = r(0)∼.

Definition
A square root r is called strict if r(0) = r(0)−.
A PMV-algebra with a strict square root is called a strict PMV-algebra.
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Main characterization theorem

Theorem
Let r : M → M be a square root on a PMV-algebra (M; ⊕,− ,∼ , 0, 1). Then M
satisfies only one of the following statements :

(i) The PMV-algebra M is a Boolean algebra.
(ii) The PMV-algebra M is a strict PMV-algebra.

(iii) M � M1 × M2, where M1 is a Boolean algebra and M2 is a strict
PMV-algebra. Moreover, the Boolean algebra M1 and the strict
PMV-algebra M2 are uniquely determined by M up to isomorphism.
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Main characterization theorem

The detail of the proof takes a long time. Sketch of proof. v := r(0)− ⊙ r(0)−

* If v = 1, M is a Boolean algebra.

* If v = 0, then M is a strict PMV-algebra.

* Otherwise, M � [0, v] × [0, v−], [0, v] is a Boolean algebra and [0, v−]
is a strict PMV-algebra.
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4 - Representations of Square
Roots on Representable

Symmetric PMV-algebras
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Representation

Now, we want to study square root on a representable and symmetric
PMV-algebra using group addition.

Theorem 3.1 : Linearly ordered
M = Γ(G, u) : linearly ordered symmetric PMV-algebra with a square root r.
(i) If r(0) = 0, then r = IdM.
(ii) If r(0) > 0, for each element x ∈ M, the element (x + u)/2 exists in M, and
r(x) = (x + u)/2 for x ∈ M, where + denotes the group addition in G.

Theorem 3.2 : Strict
Let M = Γ(G, u) be a representable symmetric PMV-algebra with a strict
square root r. Then (x + u)/2 exists for each x ∈ M, and

r(x) = x + u
2

, x ∈ M, (+ is the group addition in G)
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Representation Theorem

Theorem 3.3 : General case for representing symmetric PMV-algebras
Let M = Γ(G, u) be a representable symmetric PMV-algebra with a square
root r : M → M, where (G, u) is a unital ℓ-group. Then

r(x) = (x ∧ v) ∨ (x ∧ v−) + v−

2
, ∀x ∈ M

where v = r(0)− ⊙ r(0)−.

Theorem
Let M = Γ(G, u) be a representable PMV-algebra with a strict square root r.
Then M is symmetric, two-divisible, and u/2 ∈ C(G).

In Theorem 3.1– 3.2, the assumption “M is symmetric” is superfluous
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Relation between strongly atomless and strictness

Definition (similar to [Belluce, 1995])
A PMV-algebra M is strongly atomless if for each non-zero element x ∈ M,
there exists a normal prime ideal P such that x ∉ P and x/P is not an atom of
M/P.

Each strongly atomless PMV-algebra is representable, since
∩{P ∈ Spec(M) : P is normal} = {0}.

In addition, each strongly atomless PMV-algebra is atomless.

Theorem : Relation between strict and strongly atomless
If M is strongly atomless PMV-algebra with a square root r, then r is strict.

On the class of PMV-algebras with square roots :
Strongly atomless → Strictness
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Strongly atomless property

[Höhle, 1995, Thm 6.17] proved that if M is a complete MV-algebra, then
strict MV-algebra ⇔ strongly atomless

We are ready to show the converse for a more general case, not necessarily for
complete MV-algebras.

Theorem
On the class of representable PMV-algebra :

Strictness → Strongly atomless
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Weak Square Roots that is Not Square Roots

Example 1

Let G2 = R2.

(x1, y1) + (x2, y2) = (x1 + x2, ex2y1 + y2), −(x, y) = (−x,−e−xy)

(0, 0) is the neutral element. We endow G2 with the lexicographic order.
(i) G2 is linearly ordered
(ii) u2 = (1, 0) is a strong unit of G2
(iii) G2 is two-divisible with (x, y)/2 = (x/2, y/(ex/2 + 1)).
(iv) M2 = Γ(G2, u2) is a non-symmetric pseudo MV-algebra

(x, y)− = (1 − x,−e−xy) (x, y)∼ = (1 − x,−e−x+1y)

r(x, y) = ((x, y) − (1, 0))/2 + (1, 0) = ( x + 1
2

,
y

e(x−1)/2 + 1
) is a weak square

and M has no square root.
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