# Square roots and their applications on pseudo MV-algebras 

Anatolij Dvurečenskij Omid Zahiri

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

SSAOS 2023 - Stará Lesná, Slovakia
September 2023


## Content

(1) Introduction
(2) Square roots : Definition and main properties
(3) Characterization of PMV-algebras with square roots
(4) Representations of Square Roots on Representable Symmetric PMV-algebras

## 1 - Introduction

## Psudo MV-algebra (PMV-algebra)

A non-commutative generalization of MV-algebras was introduced by [Georgescu and Iorgulescu, 2001] as an algebraic counterpart of the non-commutative Łukasiewicz logic.

## Definition [Georgescu and Iorgulescu, 2001]

A PMV-algebra is an algebra $\left(M ; \oplus,{ }^{-}, \sim, 0,1\right)$ of type $(2,1,1,0,0)$ such that the following axioms hold for all $x, y, z \in M$,
$(\mathrm{A} 1) x \oplus(y \oplus z)=(x \oplus y) \oplus z$,
(A2) $x \oplus 0=0 \oplus x=x$,
(A3) $x \oplus 1=1 \oplus x=1$,
(A4) $1^{-}=1^{\sim}=0$,
(A5) $\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-}$,
(A6) $\left(x^{-}\right)^{\sim}=x$,
(A7) $x \oplus\left(x^{\sim} \odot y\right)=y \oplus\left(y^{\sim} \odot x\right)=\left(x \odot y^{-}\right) \oplus y=\left(y \odot x^{-}\right) \oplus x$,
(A8) $x \odot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \odot y$,
where $x \odot y=\left(y^{-} \oplus x^{-}\right)^{\sim}$.

Additional binary operations (implications) :

$$
x \rightarrow y:=x^{-} \oplus y, \quad x \leadsto y:=y \oplus x^{\sim} .
$$

Each PMV-algebra $M$ with the following partial order relation is a bounded distributive lattice.

$$
x \leq y \Leftrightarrow x \odot y^{-}=0 \Leftrightarrow y^{\sim} \odot x=0
$$

## Boolean skeleton

An element $x$ of a PMV-algebra $M$ is called a Boolean element if $x \oplus x=x$.

$$
\mathrm{B}(M)=\{x \in M: x \oplus x=x\}
$$

$\mathrm{B}(M)$ is a Boolean algebra and a subalgebra of $M$.

A PMV-algebra $\left(M ; \oplus,^{\sim},-, 0,1\right)$ is said to be symmetric if $x^{\sim}=x^{-}, \forall x \in M$.

## Ideals and Representable PMV-algebras

A non-empty subset $I$ of a PMV-algebra $M$ is called an ideal if (1) for each $y \in M, y \leq x \in I$ implies that $y \in I$; (2) $I$ is closed under $\oplus$.
An ideal $I$ of $M$ is said to be
(i) prime if $x \wedge y \in I$ implies $x \in I$ or $y \in I$;
(ii) normal if $x \oplus I=I \oplus x$ for any $x \in M$, where $x \oplus I:=\{x \oplus i \mid i \in I\}$ and $I \oplus x=\{i \oplus x \mid i \in I\}$.

## Representable PMV-algebra

A PMV-algebra $M$ is said to be representable if $M$ is a subdirect product of a system of linearly ordered PMV-algebras.


## PMV-algebras and unital $\ell$-groups

A lattice-ordered group ( $\ell$-group) is an algebra ( $G ; \vee, \wedge,+,-, 0$ ) such that $(G ; \vee, \wedge)$ is a lattice, $(G ;+,-, 0)$ is a group, and + is an order-preserving map.
$0 \leq u \in G$ is said to be a strong unit if

$$
\forall g \in G, \exists n \in \mathbb{N}: g \leq n u
$$

A pair $(G, u)$ with a fixed strong unit $u$, is said to be a unital $\ell$-group.

## $\Gamma(G, c)$ [Georgescu and Iorgulescu, 2001]

If $(G ; \vee, \wedge,+,-, 0)$ is an $\ell$-group, given $0 \leq c$, an interval

$$
\begin{gathered}
{[0, c]:=\{x \in G \mid 0 \leq x \leq c\}} \\
x \oplus y=(x+y) \wedge c, \quad x \odot y=(x-c+y) \vee 0, \\
x^{-}=c-x, \quad x^{\sim}=-x+c .
\end{gathered}
$$

form a PMV-algebra which is denoted by $\Gamma(G, c)=\left([0, c] ; \oplus,,^{\sim}, 0, c\right)$.

## PMV-algebras and $\ell$-groups

[Dvurečenskij, 2002], using Bosbach's notion of a semiclan, proved that every PMV-algebra is isomorphic to $\Gamma(G, u)$ for some unital $\ell$-group $(G, u)$.

## Categorical equivalence [Dvurečenskij, 2002]

The category of unital $\ell$-groups $(\mathcal{U G})$ is categorically equivalent to the category of PMV-algebras $(\mathcal{P M V})$.

$$
\begin{array}{r}
\Gamma: \mathcal{U} \mathcal{G} \rightarrow \mathcal{P} \mathcal{M V} \quad \Psi: \mathcal{P} \mathcal{M V} \rightarrow \mathcal{U} \mathcal{G} \\
\Gamma(G, u)=\left(\Gamma(G, u) ; \oplus,^{-}, \sim, 0, u\right) \\
\Gamma(f: G \rightarrow H)=\left.f\right|_{\Gamma(G, u)}
\end{array}
$$

2 - Square roots : Definition and

## main properties

## Definition of square root on PMV-algebras

A square root on MV-algebras was originally defined in [Höhle, 1995]. It is a unary operation on an MV-algebra $M$ satisfying (Sq1) and (Sq2) below.

## Definition

Let $\left(M ; \oplus,,^{-}, 0,1\right)$ be a PMV-algebra. A mapping $r: M \rightarrow M$ is said to be a square root if it satisfies the following conditions :
(Sq1) for all $x \in M, r(x) \odot r(x)=x$;
(Sq2) for each $x, y \in M, y \odot y \leq x$ implies $y \leq r(x)$;
(Sq3) for each $x \in M, r\left(x^{-}\right)=r(x) \rightarrow r(0)$ and $r\left(x^{\sim}\right)=r(x) \rightsquigarrow r(0)$.
$r$ is a weak square root if it satisfies only (Sq1) and (Sq2). For MV-algebras these notions coincide but for PMV-algebras they could be different.
(1) Each square root is a one-to-one map.
(2) If a PMV-algebra $M$ has a square root, then the square root is unique.

## Main Properties of square roots on PMV-algebras

Let $r$ be a square root on a PMV-algebra $\left(M ; \oplus,{ }^{-}, \sim, 0,1\right)$. For each $x, y \in M$ (1) $x \leq y$ implies that $r(x) \leq r(y)$.
(2) $r(x) \wedge r(y)=r(x \wedge y)$.
(3) $r(x) \rightarrow r(y) \leq r(x \rightarrow y)$ and $r(x) \leadsto r(y) \leq r(x \leadsto y)$. Moreover,
$r(x) \odot r(y) \leq r(x \odot y)$ for all $x, y \in M$ if and only if $r(x) \rightarrow r(y)=r(x \rightarrow y)$
and $r(x) \leadsto r(y)=r(x \leadsto y)$.
(4) $r(x \vee y)=r(x) \vee r(y)$.
(5) $r(x \odot y) \leq(r(x) \odot r(y)) \vee r(0)$ and $r(x \odot x)=(r(x) \odot r(x)) \vee r(0)$.
(6) If $a, b \in M, a \leq b$, then $r([a, b])=[r(a), r(b)]$. So, $r(M)=[r(0), 1]$.
(7) $r(x \oplus y) \geq\left(r(x) \odot r(0)^{-}\right) \oplus r(y)$.
(8) $x \leq x \vee r(0)=r(x \odot x) \leq r(x)$.
(9) $r(x) \leq x \oplus r(0)=r(0) \oplus x=r(x \oplus x)$.
(10) $x \oplus r(x)=r(x) \oplus x$.

## Some Examples

(i) If $M$ is a Boolean algebra, then the identity map $\operatorname{Id}_{M}: M \rightarrow M$ is a square root.
(ii) Take a linearly ordered (or representable) two-divisible unital group $(G, u)$, where $u / 2 \in \mathbb{C}(G)$.

$$
s: \Gamma(G, u) \rightarrow \Gamma(G, u) \quad s(x)=\frac{x+u}{2}, \quad x \in M
$$

The example also works if ( $G, u$ ) is a two-divisible unital $\ell$-group which enjoys unique extraction of roots, that is $x / n$ is unique. (iii) Let $M$ be a direct product of a family $\left\{M_{i}\right\}_{i \in I}$ of PMV-algebra with square roots. Then $M$ has a square root.

$$
x=\left(x_{i}\right)_{i} \in M=\prod_{i} M_{i}, \quad s(x)=\left(s_{i}\left(x_{i}\right)\right)_{i}
$$

where $s_{i}$ is a unique square root on $M_{i}$.

## Examples

(iv) Let $M=\Gamma(G, u)$, where ( $G, u)$ is a linearly ordered (or representable) two-divisible unital $\ell$-group. Then

$$
r(x)=\frac{x-u}{2}+u, \quad x \in M,
$$

is a weak square root on $M$.
(v) If $1<|G|$ is an $\ell$-group, then $M=\Gamma(\mathbb{Z} \overrightarrow{\times} G,(1,0))$ has no weak square roots.

## Theorem : Square roots and homomorphisms

## Homomorphisms - Normal ideals

Let $f: M \rightarrow N$ be a homomorphism of PMV-algebras and $r$ be a square root on $M$. Then $f(M)$ has a square root :

$$
\tau: \operatorname{Im}(f) \rightarrow \operatorname{Im}(f), \quad \tau(f(x))=f(r(x)), \quad \forall x \in M
$$

So, given a normal ideal $I$ of a PMV-algebra $M$ with a square root $r$

$$
r_{I}: \frac{M}{I} \rightarrow \frac{M}{I} \quad r_{I}\left(\frac{x}{I}\right)=\frac{r(x)}{I}, \quad \forall x \in M
$$

is a square root on $\frac{M}{I}$.

## 3 - Characterization of PMV-algebras with square roots

## Strict PMV-algebra and Boolean point

## Proposition

Let $r$ be a square root on a PMV-algebra $\left(M ; \oplus,,^{\sim}, 0,1\right)$. Then there exists a unique idempotent element $v \in \mathrm{~B}(M)$ such that

$$
r(0)^{-}=v \vee r(0)=r(0)^{\sim}, \quad v=r(0)^{-} \odot r(0)^{-}
$$

Consider a PMV-algebra $\left(M ; \oplus,,^{-}, \sim, 0,1\right)$ with a (week) square root $r$. From $r(0) \odot r(0)=0$, we get that $r(0) \leq r(0)^{-} \wedge r(0)^{\sim}=r(0)^{-}=r(0)^{\sim}$.

## Definition

A square root $r$ is called strict if $r(0)=r(0)^{-}$.
A PMV-algebra with a strict square root is called a strict PMV-algebra.

## Main characterization theorem

## Theorem

Let $r: M \rightarrow M$ be a square root on a PMV-algebra $\left(M ; \oplus,{ }^{-}, \sim, 0,1\right)$. Then $M$ satisfies only one of the following statements:
(i) The PMV-algebra $M$ is a Boolean algebra.
(ii) The PMV-algebra $M$ is a strict PMV-algebra.
(iii) $M \cong M_{1} \times M_{2}$, where $M_{1}$ is a Boolean algebra and $M_{2}$ is a strict PMV-algebra. Moreover, the Boolean algebra $M_{1}$ and the strict PMV-algebra $M_{2}$ are uniquely determined by $M$ up to isomorphism.


## Main characterization theorem

The detail of the proof takes a long time. Sketch of proof. $v:=r(0)^{-} \odot r(0)^{-}$ * If $v=1, M$ is a Boolean algebra.

* If $v=0$, then $M$ is a strict PMV-algebra.
* Otherwise, $M \cong[0, v] \times\left[0, v^{-}\right],[0, v]$ is a Boolean algebra and $\left[0, v^{-}\right]$ is a strict PMV-algebra.


## 4 - Representations of Square Roots on Representable Symmetric PMV-algebras

## Representation

Now, we want to study square root on a representable and symmetric PMV-algebra using group addition.

## Theorem 3.1 : Linearly ordered

$M=\Gamma(G, u)$ : linearly ordered symmetric PMV-algebra with a square root $r$.
(i) If $r(0)=0$, then $r=\mathrm{Id}_{M}$.
(ii) If $r(0)>0$, for each element $x \in M$, the element $(x+u) / 2$ exists in $M$, and $r(x)=(x+u) / 2$ for $x \in M$, where + denotes the group addition in $G$.

## Theorem 3.2 : Strict

Let $M=\Gamma(G, u)$ be a representable symmetric PMV-algebra with a strict square root $r$. Then $(x+u) / 2$ exists for each $x \in M$, and

$$
r(x)=\frac{x+u}{2}, \quad x \in M, \quad(+ \text { is the group addition in } G)
$$

## Representation Theorem

## Theorem 3.3 : General case for representing symmetric PMV-algebras

Let $M=\Gamma(G, u)$ be a representable symmetric PMV-algebra with a square root $r: M \rightarrow M$, where $(G, u)$ is a unital $\ell$-group. Then

$$
r(x)=(x \wedge v) \vee \frac{\left(x \wedge v^{-}\right)+v^{-}}{2}, \quad \forall x \in M
$$

where $v=r(0)^{-} \odot r(0)^{-}$.

## Theorem

Let $M=\Gamma(G, u)$ be a representable PMV-algebra with a strict square root $r$. Then $M$ is symmetric, two-divisible, and $u / 2 \in \mathbb{C}(G)$.

In Theorem 3.1-3.2, the assumption " $M$ is symmetric" is superfluous

## Relation between strongly atomless and strictness

## Definition (similar to [Belluce, 1995])

A PMV-algebra $M$ is strongly atomless if for each non-zero element $x \in M$, there exists a normal prime ideal $P$ such that $x \notin P$ and $x / P$ is not an atom of $M / P$.

Each strongly atomless PMV-algebra is representable, since

$$
\cap\{P \in \operatorname{Spec}(M): P \text { is normal }\}=\{0\} .
$$

In addition, each strongly atomless PMV-algebra is atomless.

## Theorem : Relation between strict and strongly atomless

If $M$ is strongly atomless PMV-algebra with a square root $r$, then $r$ is strict.
On the class of PMV-algebras with square roots : Strongly atomless $\rightarrow$ Strictness

## Strongly atomless property

[Höhle, 1995, Thm 6.17] proved that if $M$ is a complete MV-algebra, then strict MV-algebra $\Leftrightarrow$ strongly atomless

We are ready to show the converse for a more general case, not necessarily for complete MV-algebras.

## Theorem

On the class of representable PMV-algebra :
Strictness $\rightarrow$ Strongly atomless

## Weak Square Roots that is Not Square Roots

## Example 1

Let $G_{2}=\mathbb{R}^{2}$.

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, \mathrm{e}^{x_{2}} y_{1}+y_{2}\right), \quad-(x, y)=\left(-x,-\mathrm{e}^{-x} y\right)
$$

$(0,0)$ is the neutral element. We endow $G_{2}$ with the lexicographic order.
(i) $G_{2}$ is linearly ordered
(ii) $u_{2}=(1,0)$ is a strong unit of $G_{2}$
(iii) $G_{2}$ is two-divisible with $(x, y) / 2=\left(x / 2, y /\left(\mathrm{e}^{x / 2}+1\right)\right)$.
(iv) $M_{2}=\Gamma\left(G_{2}, u_{2}\right)$ is a non-symmetric pseudo MV-algebra

$$
\begin{array}{r}
(x, y)^{-}=\left(1-x,-e^{-x} y\right) \quad(x, y)^{\sim}=\left(1-x,-e^{-x+1} y\right) \\
r(x, y)=((x, y)-(1,0)) / 2+(1,0)=\left(\frac{x+1}{2}, \frac{y}{\mathrm{e}^{(x-1) / 2}+1}\right) \text { is a weak square }
\end{array}
$$ and $M$ has no square root.

## References

Ambrosio, R. (1999).
Strict mv-algebras.
Journal of mathematical analysis and applications, 237(1) :320-326.
Belluce, L. P. (1995).
$\alpha$-complete mv-algebras.
pages 7-21.
Bělohlávek, R. (2003).
Some properties of residuated lattices, volume 53, pages 161-171.
Institute of Mathematics, Academy of Sciences of the Czech Republic.
Chang, C. C. (1958).
Algebraic analysis of many valued logics.
Transactions of the American Mathematical society, 88(2) :467-490.
Cignoli, R. L., d'Ottaviano, I. M., and Mundici, D. (2013).
Algebraic foundations of many-valued reasoning, volume 7.
Springer Science \& Business Media.
Dvurečenskij, A. (2002).
Pseudo mv-algebras are intervals in -groups.
Journal of the Australian Mathematical Society, 72(3) :427-446.
Georgescu, G. and Iorgulescu, A. (2001).
Pseudo-mv algebras.
Mult.-Valued Log, 6(1-2) :95-135.
Höhle, U. (1995).
Commutative, residuated 1 -monoids.

## Thank You for Your Attention

