The Omega-Reducibility of Certain Pseudovarieties of Ordered Monoids

Jana Volaříková

Department of Mathematics, Faculty of Applied Informatics, Tomas Bata University in Zlín Czech Republic

Outline

(日) (종) (종) (종)

æ

Pseudovariety of ordered monoids – what is it?

Pseudovariety of ordered monoids – what is it?
 ω-reducibility – what is it?

- Pseudovariety of ordered monoids what is it?
- 2 ω -reducibility what is it?
- Which pseudovarieties are of my interest and why?

- Pseudovariety of ordered monoids what is it?
- 2 ω -reducibility what is it?
- Which pseudovarieties are of my interest and why?
- How to prove the ω -reducibility of a certain pseudovariety $V_{1/2}$?

- Pseudovariety of ordered monoids what is it?
- 2 ω -reducibility what is it?
- Which pseudovarieties are of my interest and why?
- How to prove the ω -reducibility of a certain pseudovariety $V_{1/2}$?
- Briefly about the ω-reducibility of more complex pseudovarieties

Ordered monoid (M, ·, 1, ≤): (M, ·, 1) monoid, ≤ is a partial order on M, which is compatible with the multiplication, i.e., ∀s₁, s₂, t₁, t₂ ∈ M: (s₁ ≤ t₁, s₂ ≤ t₂) ⇒ s₁ · s₂ ≤ t₁ · t₂.

• Ordered monoid $(M, \cdot, 1, \leq)$: $(M, \cdot, 1)$ monoid, \leq is a partial order on M, which is compatible with the multiplication, i.e., $\forall s_1, s_2, t_1, t_2 \in M$: $(s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2$.

Example

A bounded semilattice:

Ordered monoid (M, ·, 1, ≤): (M, ·, 1) monoid, ≤ is a partial order on M, which is compatible with the multiplication, i.e., ∀s₁, s₂, t₁, t₂ ∈ M: (s₁ ≤ t₁, s₂ ≤ t₂) ⇒ s₁ · s₂ ≤ t₁ · t₂.

Example

A bounded semilattice: $(M, \land, 1, \leq)$

Ordered monoid (M, ·, 1, ≤): (M, ·, 1) monoid, ≤ is a partial order on M, which is compatible with the multiplication, i.e., ∀s₁, s₂, t₁, t₂ ∈ M: (s₁ ≤ t₁, s₂ ≤ t₂) ⇒ s₁ · s₂ ≤ t₁ · t₂.

Example

A bounded semilattice: $(M, \land, 1, \leq) \ldots s \leq t \Leftrightarrow s \land t = s$

Ordered monoid (M, ·, 1, ≤): (M, ·, 1) monoid, ≤ is a partial order on M, which is compatible with the multiplication, i.e., ∀s₁, s₂, t₁, t₂ ∈ M: (s₁ ≤ t₁, s₂ ≤ t₂) ⇒ s₁ · s₂ ≤ t₁ · t₂.

Example

A bounded semilattice: $(M, \land, 1, \leq) \ldots s \leq t \Leftrightarrow s \land t = s$

• 1 = the biggest element = the neutral element: $\forall s \in M : s \leq 1 \iff s \land 1 = s$

Ordered monoid (M, ·, 1, ≤): (M, ·, 1) monoid, ≤ is a partial order on M, which is compatible with the multiplication, i.e., ∀s₁, s₂, t₁, t₂ ∈ M: (s₁ ≤ t₁, s₂ ≤ t₂) ⇒ s₁ · s₂ ≤ t₁ · t₂.

Example

A bounded semilattice: $(M, \land, 1, \leq) \ldots s \leq t \Leftrightarrow s \land t = s$

- 1 = the biggest element = the neutral element: $\forall s \in M : s \leq 1 \iff s \land 1 = s$
- \leq is compatible with \wedge : $\forall s_1, s_2, t_1, t_2 \in M$: $(s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \wedge s_2 \leq t_1 \wedge t_2$

• Ordered monoid $(M, \cdot, 1, \leq)$: $(M, \cdot, 1)$ monoid, \leq is a partial order on M, which is compatible with the multiplication, i.e., $\forall s_1, s_2, t_1, t_2 \in M$: $(s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2$.

Example

A bounded semilattice: $(M, \land, 1, \leq) \ldots s \leq t \Leftrightarrow s \land t = s$

- 1 = the biggest element = the neutral element: $\forall s \in M : s \leq 1 \iff s \land 1 = s$
- \leq is compatible with \wedge : $\forall s_1, s_2, t_1, t_2 \in M$: $(s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \wedge s_2 \leq t_1 \wedge t_2$
- A *pseudovariety of ordered monoids* is a class of *finite* monoids which is closed under taking submonoids, *finite* direct products and images in homomorphisms of ordered monoids.

• Ordered monoid $(M, \cdot, 1, \leq)$: $(M, \cdot, 1)$ monoid, \leq is a partial order on M, which is compatible with the multiplication, i.e., $\forall s_1, s_2, t_1, t_2 \in M$: $(s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2$.

Example

A bounded semilattice: $(M, \land, 1, \leq) \ldots s \leq t \Leftrightarrow s \land t = s$

- 1 = the biggest element = the neutral element: $\forall s \in M : s \leq 1 \iff s \land 1 = s$
- \leq is compatible with \wedge : $\forall s_1, s_2, t_1, t_2 \in M$: $(s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \wedge s_2 \leq t_1 \wedge t_2$
- A *pseudovariety of ordered monoids* is a class of *finite* monoids which is closed under taking submonoids, *finite* direct products and images in homomorphisms of ordered monoids.

Example

Pseudovariety of finite (bounded) semilattices

• A ... a finite set (alphabet)

• $A \dots$ a finite set (alphabet), A^* the free monoid over A,

• $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*)

A...a finite set (alphabet), A* the free monoid over A,
 Â* the free profinite monoid over A (the metric completion of (A*, d) with respect to a specific metric d on A*), elements of Â* are called *pseudowords*.

- A...a finite set (alphabet), A* the free monoid over A,
 Â* the free profinite monoid over A (the metric completion of (A*, d) with respect to a specific metric d on A*), elements of Â* are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation

- $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of $\widehat{A^*}$ are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

- A...a finite set (alphabet), A* the free monoid over A,
 Â* the free profinite monoid over A (the metric completion of (A*, d) with respect to a specific metric d on A*), elements of Â* are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,
 - on a finite monoid *M* equipped with the discrete metric.

- A...a finite set (alphabet), A* the free monoid over A,
 Â* the free profinite monoid over A (the metric completion of (A*, d) with respect to a specific metric d on A*), elements of Â* are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x.

- $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of $\widehat{A^*}$ are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x. $(x^{\omega} \text{ idempotent: } x^{\omega} \cdot x^{\omega} = x^{\omega})$

- $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of $\widehat{A^*}$ are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x. $(x^{\omega} \text{ idempotent: } x^{\omega} \cdot x^{\omega} = x^{\omega})$

• Denote by ω a signature $\omega = \{_ \cdot _, 1, _^{\omega}\}$.

- $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of $\widehat{A^*}$ are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x. $(x^{\omega} \text{ idempotent: } x^{\omega} \cdot x^{\omega} = x^{\omega})$

- Denote by ω a signature $\omega = \{_ \cdot _, 1, _^{\omega}\}$.
- Then the monoids $\widehat{A^*}$ and M can be viewed as ω -algebras.

- $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of $\widehat{A^*}$ are called *pseudowords*.
- $_^{\omega}: x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x. $(x^{\omega} \text{ idempotent: } x^{\omega} \cdot x^{\omega} = x^{\omega})$

- Denote by ω a signature $\omega = \{_ \cdot _, 1, _^{\omega}\}.$
- Then the monoids $\widehat{A^*}$ and M can be viewed as ω -algebras.
- Elements of the ω-subalgebra of the ω-algebra A* generated by A are called ω-words.

- A...a finite set (alphabet), A* the free monoid over A,
 Â* the free profinite monoid over A (the metric completion of (A*, d) with respect to a specific metric d on A*), elements of Â* are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x. $(x^{\omega} \text{ idempotent: } x^{\omega} \cdot x^{\omega} = x^{\omega})$

- Denote by ω a signature $\omega = \{_ \cdot _, 1, _^{\omega}\}.$
- Then the monoids $\widehat{A^*}$ and M can be viewed as ω -algebras.
- Elements of the ω -subalgebra of the ω -algebra $\widehat{A^*}$ generated by A are called ω -words.

Example

•
$$A = \{a, b\}$$

- $A \dots$ a finite set (alphabet), A^* the free monoid over A, $\widehat{A^*}$ the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of $\widehat{A^*}$ are called *pseudowords*.
- $_^{\omega} : x \mapsto x^{\omega} = \lim_{n \to \infty} x^{n!} \dots$ an unary operation • on $\widehat{A^*}$,

• on a finite monoid M equipped with the discrete metric. Note that x^{ω} is the unique idempotent power of x. $(x^{\omega} \text{ idempotent: } x^{\omega} \cdot x^{\omega} = x^{\omega})$

- Denote by ω a signature $\omega = \{_ \cdot _, 1, _^{\omega}\}.$
- Then the monoids $\widehat{A^*}$ and M can be viewed as ω -algebras.
- Elements of the ω-subalgebra of the ω-algebra A* generated by A are called ω-words.

Example

- $A = \{a, b\}$
- $(ab^{\omega}bba)^{\omega}aaa^{\omega}b$ is an ω -word over A

• Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$.

• Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then $V \models u \le v$ (= inequality $u \le v$ is valid in V) iff

- Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then V $\models u \le v$ (= inequality $u \le v$ is valid in V) iff
 - for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and

- Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then $V \models u \le v$ (= inequality $u \le v$ is valid in V) iff
 - for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and

• every *continuous* homomorphism $\alpha \colon \widehat{A^*} \to M$,

- Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then V $\models u \le v$ (= inequality $u \le v$ is valid in V) iff
 - for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
 - every *continuous* homomorphism $\alpha \colon \widehat{A^*} \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

- Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then $V \models u \le v$ (= inequality $u \le v$ is valid in V) iff
 - for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
 - every *continuous* homomorphism $\alpha \colon \widehat{A^*} \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

• A class of finite ordered monoids is a pseudovariety iff it is definable by a set of *inequalities of pseudowords*. (Reiterman, 1982, Pin + Weil, 1996)

- Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then V $\models u \le v$ (= inequality $u \le v$ is valid in V) iff
 - for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
 - every *continuous* homomorphism $\alpha \colon \widehat{A^*} \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

• A class of finite ordered monoids is a pseudovariety iff it is definable by a set of *inequalities of pseudowords*. (Reiterman, 1982, Pin + Weil, 1996)

Example

Pseudovariety SI of finite meet-semilattices:

•
$$SI = \llbracket aa = a, ab = ba, a \le 1 \rrbracket$$
Validity of Inequalities

- Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then V $\models u \le v$ (= inequality $u \le v$ is valid in V) iff
 - for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
 - every continuous homomorphism $\alpha \colon \widehat{A^*} \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

• A class of finite ordered monoids is a pseudovariety iff it is definable by a set of *inequalities of pseudowords*. (Reiterman, 1982, Pin + Weil, 1996)

Example

Pseudovariety SI of finite meet-semilattices:

•
$$\mathsf{SI} = \llbracket \mathsf{aa} = \mathsf{a}, \mathsf{ab} = \mathsf{ba}, \mathsf{a} \leq 1 \rrbracket$$

• SI
$$\models$$
 $(ab^{\omega}bba)^{\omega}aaa^{\omega}b=ba$

We say that a pseudovariety of ordered monoids V is $\omega\text{-}\textit{reducible}$ if,

We say that a pseudovariety of ordered monoids V is $\omega\text{-}\textit{reducible}$ if,

• for every ordered monoid $M \in V$,

We say that a pseudovariety of ordered monoids V is ω -reducible if,

- for every ordered monoid $M \in V$,
- for every onto continuous homomorpism $\alpha \colon \widehat{A^*} \twoheadrightarrow M$, and

We say that a pseudovariety of ordered monoids V is ω -reducible if,

- for every ordered monoid $M \in V$,
- for every onto continuous homomorpism $lpha\colon \widehat{A^*}\twoheadrightarrow M$, and
- for every inequality $u \leq v$ of *pseudowords* that is valid in V,

We say that a pseudovariety of ordered monoids V is ω -reducible if,

- for every ordered monoid $M \in V$,
- for every onto continuous homomorpism $lpha\colon \widehat{A^*}\twoheadrightarrow M$, and
- for every inequality $u \leq v$ of *pseudowords* that is valid in V,

there exists an inequality $u' \leq v'$ of ω -words that is also valid in V and "has the same α -imprint in M", i.e.,

$$\alpha(u') = \alpha(u), \ \alpha(v') = \alpha(v).$$

Jana Volaříková Omega-Reducibility

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right) \cong \left(\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right) \cong \left(\left\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

Pseudovarieties corresponding to half levels of *"concatenation hierarchies"* with a *locally finite* basis:

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right) \cong \left(\left\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

Pseudovarieties corresponding to half levels of *"concatenation hierarchies"* with a *locally finite* basis:

 $\bullet~V_0$ is an arbitrary *locally finite* pseudovariety of monoids

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right)\cong\left(\left\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

Pseudovarieties corresponding to half levels of *"concatenation hierarchies"* with a *locally finite* basis:

• V₀ is an arbitrary *locally finite* pseudovariety of monoids

•
$$V_{1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid V_0 \models u = v \rrbracket$$

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right)\cong\left(\left\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

Pseudovarieties corresponding to half levels of *"concatenation hierarchies"* with a *locally finite* basis:

ullet V₀ is an arbitrary *locally finite* pseudovariety of monoids

•
$$V_{1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid V_0 \models u = v \rrbracket$$

•
$$\forall n \ge 1$$
: $\mathsf{V}_{n+1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid \mathsf{V}_{n-1/2} \models v \le u \rrbracket$

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right) \cong \left(\left\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

Pseudovarieties corresponding to half levels of *"concatenation hierarchies"* with a *locally finite* basis:

 $\bullet~V_0$ is an arbitrary *locally finite* pseudovariety of monoids

•
$$V_{1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid V_0 \models u = v \rrbracket$$

•
$$\forall n \ge 1$$
: $\mathsf{V}_{n+1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid \mathsf{V}_{n-1/2} \models v \le u \rrbracket$

 $V_{n-1/2}$ is ω -reducible \Rightarrow it suffices to consider u, v to be ω -words

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \Leftrightarrow V \models u = v$.

Example

Pseudovariety of finite semilattices:

•
$$A = \{a, b\}$$

•
$$\left(A^*/\equiv_{\mathsf{SI}},\cdot\right)\cong\left(\left\{\{a\},\{b\},\{a,b\},\emptyset\},\cup\right)$$

Pseudovarieties corresponding to half levels of *"concatenation hierarchies"* with a *locally finite* basis:

 $\bullet~V_0$ is an arbitrary *locally finite* pseudovariety of monoids

•
$$V_{1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid V_0 \models u = v \rrbracket$$

• $\forall n \ge 1 : V_{n+1/2} := \llbracket u^{\omega+1} \le u^{\omega} v u^{\omega} \mid V_{n-1/2} \models v \le u \rrbracket$

 $V_{n-1/2}$ is ω -reducible \Rightarrow it suffices to consider u, v to be ω -words $\Rightarrow V_{n+1/2}$ is definable by inequalities of ω -words.

- 《圖》 《문》 《문》

• Proof of the ω -reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

• locally finite pseudovariety V₀,

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- locally finite pseudovariety V₀,
- finite alphabet A,

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- \bullet locally finite pseudovariety V₀,
- finite alphabet A,
- finite ordered monoid *M*,

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- locally finite pseudovariety V₀,
- finite alphabet A,
- finite ordered monoid *M*,
- continuous homomorphism $\alpha : \widehat{A^*} \twoheadrightarrow M$.

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- locally finite pseudovariety V_0 ,
- finite alphabet A,
- finite ordered monoid *M*,
- continuous homomorphism $\alpha : \widehat{A^*} \twoheadrightarrow M$.

Construct the V₀-completion α_{V_0} of the homomorphism α :

•
$$\alpha_{V_0} \colon \widehat{A^*} \to M \times A^* / \equiv_{V_0}$$

• $x \mapsto (\alpha(x), [x]_{\equiv_{V_0}})$

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- locally finite pseudovariety V_0 ,
- finite alphabet A,
- finite ordered monoid *M*,
- continuous homomorphism $\alpha : \widehat{A^*} \twoheadrightarrow M$.

Construct the V₀-completion α_{V_0} of the homomorphism α :

•
$$\alpha_{V_0} \colon \widehat{A^*} \to M \times A^* / \equiv_{V_0}$$

•
$$x \mapsto (\alpha(x), [x]_{\equiv v_0})$$

Construct the image $M_{\alpha_{V_0}}$ of α_{V_0} .

 Proof of the ω-reducibility of V_{1/2} inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- locally finite pseudovariety V₀,
- finite alphabet A,
- finite ordered monoid *M*,
- continuous homomorphism $\alpha : \widehat{A^*} \twoheadrightarrow M$.

Construct the V₀-completion α_{V_0} of the homomorphism α :

•
$$\alpha_{V_0} : \widehat{A^*} \to M \times A^* / \equiv_{V_0}$$

• $x \mapsto (\alpha(x), [x]_{\equiv V_0})$

Construct the image $M_{\alpha_{V_0}}$ of α_{V_0} .

OUTPUT of Step 1: V_0 -compatible onto continuous homomorphism $\alpha_{V_0}: \widehat{A^*} \to M_{\alpha_{V_0}}:$ $\forall x, y \in \widehat{A^*}: \alpha_{V_0}(x) = \alpha_{V_0}(y) \Rightarrow x \equiv_{V_0} y.$

Jana Volaříková 🛛 Omega-Reducibility

- 세례 에 관 에 관 에 관 에

• $V_0 = SI$ (pseudovariety of finite semilattices),

 $\bullet \ V_0 = SI \ (pseudovariety \ of \ finite \ semilattices),$

•
$$A = \{a, b\},$$

• $V_0 = SI$ (pseudovariety of finite semilattices),

•
$$A = \{a, b\},$$

• $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,

- $V_0 = SI$ (pseudovariety of finite semilattices),
- $A = \{a, b\},$
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha : \widehat{A^*} \to M$ defined by $\alpha(a) = a$, $\alpha(b) = b$

• $V_0 = SI$ (pseudovariety of finite semilattices),

•
$$A = \{a, b\},$$

• $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,

•
$$\alpha : \widehat{A^*} \to M$$
 defined by $\alpha(a) = a, \ \alpha(b) = b$

Cayley graph of monoid *M*:

• $V_0 = SI$ (pseudovariety of finite semilattices),

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{SI}}$:

• $V_0 = SI$ (pseudovariety of finite semilattices),

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{SI}}$:

• $V_0 = SI$ (pseudovariety of finite semilattices),

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{SI}}$:

• $V_0 = SI$ (pseudovariety of finite semilattices),

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{SI}}$:

• $V_0 = SI$ (pseudovariety of finite semilattices),

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{SI}}$:

b

Jana Volaříková 🛛 Omega-Reducibility

- 세례 에 관 에 관 에 관 에

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

 $\begin{array}{l} \text{Stratification of } \mathsf{V}_{1/2} \text{ into locally finite pseudovarieties } \mathsf{V}_{1/2}^n \\ \bullet \ \mathsf{V}_{1/2}^0 \subseteq \mathsf{V}_{1/2}^1 \subseteq \mathsf{V}_{1/2}^2 \subseteq \mathsf{V}_{1/2}^3 \subseteq \mathsf{V}_{1/2}^4 \subseteq \cdots \end{array}$

副下 《臣下 《臣下

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

•
$$V_{1/2}^0 \subseteq V_{1/2}^1 \subseteq V_{1/2}^2 \subseteq V_{1/2}^3 \subseteq V_{1/2}^4 \subseteq \cdots$$

• $V_{1/2} = \bigcup_{n=1}^{\infty} V_{1/2}^n$

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

•
$$V_{1/2}^0 \subseteq V_{1/2}^1 \subseteq V_{1/2}^2 \subseteq V_{1/2}^3 \subseteq V_{1/2}^4 \subseteq \cdots$$

• $V_{1/2} = \bigcup_{n=1}^{\infty} V_{1/2}^n$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha_{V_0}}| \cdot 2^{|M_{\alpha_{V_0}}|}$. Let $V_{1/2}^N \models u \leq v$. Then there exist ω -words u', v' satisfying

•
$$V_{1/2} \models u' \leq v'$$
,

•
$$\alpha_{V_0}(u) = \alpha_{V_0}(u'), \ \alpha_{V_0}(v) = \alpha_{V_0}(v').$$

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

•
$$V_{1/2}^0 \subseteq V_{1/2}^1 \subseteq V_{1/2}^2 \subseteq V_{1/2}^3 \subseteq V_{1/2}^4 \subseteq \cdots$$

• $V_{1/2} = \bigcup_{n=1}^{\infty} V_{1/2}^n$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha_{V_0}}| \cdot 2^{|M_{\alpha_{V_0}}|}$. Let $V_{1/2}^N \models u \leq v$. Then there exist ω -words u', v' satisfying

•
$$V_{1/2} \models u' \leq v'$$
,

•
$$\alpha_{V_0}(u) = \alpha_{V_0}(u'), \ \alpha_{V_0}(v) = \alpha_{V_0}(v').$$

• This theorem implies that the pseudovariety $V_{1/2}$ is ω -redicible.

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

•
$$V_{1/2}^0 \subseteq V_{1/2}^1 \subseteq V_{1/2}^2 \subseteq V_{1/2}^3 \subseteq V_{1/2}^4 \subseteq \cdots$$

• $V_{1/2} = \bigcup_{n=1}^{\infty} V_{1/2}^n$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha_{V_0}}| \cdot 2^{|M_{\alpha_{V_0}}|}$. Let $V_{1/2}^N \models u \leq v$. Then there exist ω -words u', v' satisfying

•
$$V_{1/2} \models u' \leq v'$$
,

•
$$\alpha_{V_0}(u) = \alpha_{V_0}(u'), \ \alpha_{V_0}(v) = \alpha_{V_0}(v').$$

- This theorem implies that the pseudovariety $V_{1/2}$ is ω -redicible.
- Proven by the induction on the height of a factorization tree of word u for α_{V0}.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

• labeled rooted tree

- labeled rooted tree
- root labeled by *u*

- labeled rooted tree
- root labeled by *u*
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

$$v = v_1 \dots v_n$$

- FACTORIZATION TREE of word $u \in A^*$ for α_{SI}
- labeled rooted tree
- root labeled by *u*
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 - $v = v_1 \dots v_n$

•
$$n > 2 \Rightarrow \forall i : \alpha_{SI}(v_i) = e,$$

 $e \cdot e = e$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

- FACTORIZATION TREE of word $u \in A^*$ for α_{SI}
- labeled rooted tree
- root labeled by *u*
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 - $v = v_1 \dots v_n$
- $n > 2 \Rightarrow \forall i : \alpha_{SI}(v_i) = e,$ $e \cdot e = e$
- leaves labeled by letters a, b

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 - $v = v_1 \dots v_n$
- $n > 2 \Rightarrow \forall i : \alpha_{SI}(v_i) = e,$ $e \cdot e = e$
- leaves labeled by letters a, b

(日) (월) (분) (분)

$$\underbrace{a\ldots a}_{2^{K}+1}b$$

◆ロト ◆昼下 ◆臣下 ◆臣下 ○日下

height of this factorization tree = 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, $\alpha \colon A^* \to M$ a homomorphism. Then, for every word $u \in A^*$, there exists a factorization tree of u for α of height at most $3 \cdot |M|$.

Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, $\alpha : A^* \to M$ a homomorphism. Then, for every word $u \in A^*$, there exists a factorization tree of u for α of height at most $3 \cdot |M|$.

• This theorem allows us to use the induction on the height of a factorization tree.

Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, $\alpha : A^* \to M$ a homomorphism. Then, for every word $u \in A^*$, there exists a factorization tree of u for α of height at most $3 \cdot |M|$.

• This theorem allows us to use the induction on the height of a factorization tree.

The following lemma will be useful.

Lemma (J. V.)

Let
$$u_1, \ldots, u_k, v \in A^*$$
 $(k \in \mathbb{N}), n \ge k - 1$. Let
 $V_{1/2}^n \models u_1 \ldots u_k \le v$. Then there exist $v_1, \ldots, v_k \in A^*$ such that
• $v = v_1 \ldots v_k$,
• $V_{1/2}^{n-(k-1)} \models u_i \le v_i$ for $i = 1, \ldots, k$.

イロト イボト イヨト イヨト

 $\mathsf{V}_{1/2}^{\mathsf{N}}\models \underline{a\ldots a}\,b\leq \underline{a\ldots a}\,b$ 2^{N+1} $2^{N}+2$

 $\mathsf{V}_{1/2}^{\mathsf{N}}\models \underline{a\ldots a}\,b\leq \underline{a\ldots a}\,b$ 2^{N+1} $2^{N}+2$

 $\mathsf{V}_{1/2}^{\mathsf{N}}\models \underbrace{a\ldots a}{b} \leq \underbrace{a\ldots a}{b} b$ 2^{N+1} $2^{N}+2$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models \underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq \underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\underbrace{a\ldots a}_{2^{N}+2}b$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\underbrace{a\ldots a}_{2^{N}+2}b$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

→ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$V_{1/2}^{N} \models \underbrace{a \dots a}_{2^{N}+1} b \leq \underbrace{a \dots a}_{2^{N}+2} b \rightarrow V_{1/2}^{N-1} \models \underbrace{a \dots a}_{2^{N}} \leq \underbrace{a \dots a}_{2^{N}+1}, ab \leq ab$$
$$\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \underbrace{a \dots a}_{2^{N}-4} \leq \underbrace{a \dots a}_{2^{N}-3}, aa \leq aa, a \leq a, b \leq b$$

- * ロ > - * 母 > - * 母 > - ヨ - - の < で
$$V_{1/2}^{N} \models \underbrace{a \dots a}_{2^{N}+1} b \leq \underbrace{a \dots a}_{2^{N}+2} b \rightarrow V_{1/2}^{N-1} \models \underbrace{a \dots a}_{2^{N}} \leq \underbrace{a \dots a}_{2^{N}+1}, ab \leq ab$$
$$\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \underbrace{a \dots a}_{2^{N}-4} \leq \underbrace{a \dots a}_{2^{N}-3}, aa \leq aa, a \leq a, b \leq b$$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models \underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq \underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow V_{1/2}^{N-1} \models \underbrace{a \dots a}_{2^N} \leq \underbrace{a \dots a}_{2^{N+1}}, ab \leq ab$$

$$ightarrow \mathsf{V}_{1/2}^{N-3}\models$$
 aa \leq aa, $\underbrace{a\ldots a}_{2^N-4}\leq \underbrace{a\ldots a}_{2^N-3}$, aa \leq aa, $a\leq$ a, $b\leq$ b

$$ightarrow \mathsf{V}_{1/2}^{\mathsf{N}-\mathsf{4}} \models \mathsf{a} \leq \mathsf{a}, \, \mathsf{a} \leq \mathsf{a}$$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models\underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq\underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow \mathsf{V}_{1/2}^{\mathsf{N}-1} \models \underbrace{a \dots a}_{2^{\mathsf{N}}} \leq \underbrace{a \dots a}_{2^{\mathsf{N}}+1}, \ \mathsf{ab} \leq \mathsf{ab}$$

$$ightarrow \mathsf{V}_{1/2}^{N-3} \models aa \leq aa, \ \underbrace{a \dots a}_{2^N-4} \leq \underbrace{a \dots a}_{2^N-3}, \ aa \leq aa, \quad a \leq a, \ b \leq b$$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models\underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq\underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow \mathsf{V}_{1/2}^{\mathsf{N}-1} \models \underbrace{a \dots a}_{2^{\mathsf{N}}} \leq \underbrace{a \dots a}_{2^{\mathsf{N}}+1}, \ \mathsf{ab} \leq \mathsf{ab}$$

$$\rightarrow \mathsf{V}_{1/2}^{N-3} \models \mathsf{aa} \leq \mathsf{aa}, \, \underbrace{\mathsf{a} \dots \mathsf{a}}_{2^{N}-4} \leq \underbrace{\mathsf{a} \dots \mathsf{a}}_{2^{N}-3}, \, \mathsf{aa} \leq \mathsf{aa}, \quad \mathsf{a} \leq \mathsf{a}, \, b \leq b$$

• $V_{1/2} \models aa \leq aa$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models\underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq\underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow \mathsf{V}_{1/2}^{\mathsf{N}-1} \models \underbrace{a \dots a}_{2^{\mathsf{N}}} \leq \underbrace{a \dots a}_{2^{\mathsf{N}}+1}, \ \mathsf{ab} \leq \mathsf{ab}$$

$$\rightarrow \mathsf{V}_{1/2}^{N-3} \models aa \leq aa, \ \underbrace{a \dots a}_{2^N-4} \leq \underbrace{a \dots a}_{2^N-3}, \ aa \leq aa, \quad a \leq a, \ b \leq b$$

•
$$V_{1/2} \models aa \leq aa$$

• $V_{1/2} \models a \le a, \ b \le b$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models\underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq\underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow \mathsf{V}_{1/2}^{\mathsf{N}-1} \models \underbrace{a \dots a}_{2^{\mathsf{N}}} \leq \underbrace{a \dots a}_{2^{\mathsf{N}}+1}, \ \mathsf{ab} \leq \mathsf{ab} \\ \mathsf{V}_{1/2} := \llbracket u^{\omega+1} \leq u^{\omega} \mathsf{v} u^{\omega} \mid \mathsf{V}_0 \models u = \mathsf{v} \rrbracket$$

$$\begin{array}{l} \rightarrow \mathsf{V}_{1/2}^{N-3} \models aa \leq aa, \underbrace{a \dots a}_{2^{N}-4} \leq \underbrace{a \dots a}_{2^{N}-3}, aa \leq aa, \quad a \leq a, b \leq b \\ \bullet \mathsf{V}_{1/2} \models aa \leq aa \\ \bullet \mathsf{V}_{1/2} \models a \leq a, b \leq b \\ \rightarrow \mathsf{V}_{1/2}^{N-4} \models a \leq a, a \leq a \end{array}$$

•
$$V_{1/2} \models a \le a$$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models\underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq\underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow V_{1/2}^{N-1} \models \underbrace{a \dots a}_{2^N} \leq \underbrace{a \dots a}_{2^{N+1}}, \ ab \leq ab$$
$$V_{1/2} := \llbracket u^{\omega+1} \leq u^{\omega} v u^{\omega} \mid V_0 \models u = v \rrbracket$$
$$\bullet V_0 = \mathsf{SI} \models aa = a$$

$$\rightarrow \mathsf{V}_{1/2}^{N-3} \models \mathsf{aa} \leq \mathsf{aa}, \ \underbrace{\mathsf{a} \dots \mathsf{a}}_{2^{N}-4} \leq \underbrace{\mathsf{a} \dots \mathsf{a}}_{2^{N}-3}, \ \mathsf{aa} \leq \mathsf{aa}, \quad \mathsf{a} \leq \mathsf{a}, \ \mathsf{b} \leq \mathsf{b}$$

•
$$V_{1/2} \models aa \leq aa$$

• $V_{1/2} \models a \leq a, \ b \leq b$

 $\rightarrow \mathsf{V}_{1/2}^{\mathsf{N}-\mathsf{4}} \models \mathsf{a} \le \mathsf{a}, \ \mathsf{a} \le \mathsf{a} \\ \bullet \ \mathsf{V}_{1/2} \models \mathsf{a} \le \mathsf{a}$

$$\mathsf{V}_{1/2}^{\mathsf{N}}\models\underbrace{a\ldots a}_{2^{\mathsf{N}}+1}b\leq\underbrace{a\ldots a}_{2^{\mathsf{N}}+2}b$$

$$\rightarrow V_{1/2}^{N-1} \models \underbrace{a \dots a}_{2^N} \leq \underbrace{a \dots a}_{2^{N+1}}, \ ab \leq ab$$
$$V_{1/2} := \llbracket u^{\omega+1} \leq u^{\omega} v u^{\omega} \mid V_0 \models u = v \rrbracket$$
$$\bullet V_0 = \mathsf{SI} \models aa = a \rightarrow V_{1/2} \models (aa)^{\omega+1} \leq (aa)^{\omega} a (aa)^{\omega}$$

$$\rightarrow \mathsf{V}_{1/2}^{N-3} \models \mathsf{aa} \leq \mathsf{aa}, \underbrace{\mathsf{a} \dots \mathsf{a}}_{2^N-4} \leq \underbrace{\mathsf{a} \dots \mathsf{a}}_{2^N-3}, \, \mathsf{aa} \leq \mathsf{aa}, \quad \mathsf{a} \leq \mathsf{a}, \, b \leq b$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

•
$$V_{1/2} \models aa \leq aa$$

• $V_{1/2} \models a \leq a, \ b \leq b$

$$\mathsf{V}_{1/2}^{\mathsf{N}} \models \underbrace{a \dots a}_{2^{\mathsf{N}}+1} b \leq \underbrace{a \dots a}_{2^{\mathsf{N}}+2} b$$

$$\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \underbrace{a \dots a}_{2^N-4} \leq \underbrace{a \dots a}_{2^N-3}, aa \leq aa, a \leq a, b \leq b$$

•
$$V_{1/2} \models aa \le aa$$

• $V_{1/2} \models a \le a, \ b \le b$

$$V_{1/2}^{N} \models \underbrace{a \dots a}_{2^{N}+1}^{N} b \leq \underbrace{a \dots a}_{2^{N}+2}^{N} b \leq \underbrace{a \dots a}_{2^{N}+2}^{N} b \leq \underbrace{a \dots a}_{2^{N}+1}^{N} b \leq \underbrace{a \dots a}_{2^{N}}^{N} b \leq \underbrace{a \dots a}_{2^{N}+1}^{N} \leq \underbrace{a \dots a}_{$$

$$V_{1/2}^{N} \models \underbrace{a \dots a}_{2^{N}+1}^{N} b \leq \underbrace{a \dots a}_{2^{N}+2}^{N} b \leq \underbrace{(aa)^{\omega} a(aa)^{\omega} ab} \\ \rightarrow V_{1/2}^{N-1} \models \underbrace{a \dots a}_{2^{N}}^{N} \leq \underbrace{a \dots a}_{2^{N}+1}^{N}, ab \leq ab \\ V_{1/2} := \llbracket u^{\omega+1} \leq u^{\omega} v u^{\omega} \mid V_{0} \models u = v \rrbracket \\ \bullet V_{0} = \mathsf{SI} \models aa = a \rightarrow V_{1/2} \models (aa)^{\omega+1} \leq (aa)^{\omega} a(aa)^{\omega} \\ \bullet V_{1/2} \models ab \leq ab \\ \rightarrow V_{1/2}^{N-3} \models aa \leq aa, \underbrace{a \dots a}_{2^{N}-4}^{N} \leq \underbrace{a \dots a}_{2^{N}-3}^{N}, aa \leq aa, a \leq a, b \leq b \\ \bullet V_{1/2} \models a \leq aa \\ \bullet V_{1/2} \models a \leq a, b \leq b \\ \rightarrow V_{1/2}^{N-4} \models a \leq a, a \leq a \\ \bullet V_{1/2} \models a \leq a$$

ω -Reducibility of V_{3/2} and V_{5/2}

Jana Volaříková Omega-Reducibility

- 《圖》 《문》 《문》

$\omega\text{-Reducibility of }V_{3/2}$ and $V_{5/2}$

$$V_{1/2}$$

 ω -reducibility
of *pairs* of words

Jana Volaříková 🛛 Omega-Reducibility

《口》《聞》《臣》《臣》

$\omega\text{-Reducibility of }V_{3/2}$ and $V_{5/2}$

$V_{1/2} \ \omega$ -reducibility of <i>pairs</i> of words	V _{3/2} ω-reducibility of <i>chains</i> of words	
v 1/2 u	w 3/2 v 1/2 u	

ω -Reducibility of V $_{3/2}$ and V $_{5/2}$

_	$V_{1/2}$ ω -reducibility of <i>pairs</i> of words	$V_{3/2}$ ω -reducibility of <i>chains</i> of words	V _{5/2} ω-reducibility of (finite) <i>ordered</i> <i>sets</i> of words
	v 1/2 u	w 3/2 v 1/2 u	5/2 $1/23/25/2$ $1/23/23/21/25/2$ $1/2$

Thank you for your attention.