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Pseudovariety of Ordered Monoids

Ordered monoid (M, ·, 1,≤): (M, ·, 1) monoid, ≤ is a partial

order on M, which is compatible with the multiplication, i.e.,

∀s1, s2, t1, t2 ∈ M : (s1 ≤ t1, s2 ≤ t2) ⇒ s1 · s2 ≤ t1 · t2.

Example

A bounded semilattice: (M,∧, 1,≤) . . . s ≤ t ⇔ s ∧ t = s

1 = the biggest element = the neutral element:

∀s ∈ M : s ≤ 1 ⇔ s ∧ 1 = s

≤ is compatible with ∧:
∀s1, s2, t1, t2 ∈ M : (s1 ≤ t1, s2 ≤ t2) ⇒ s1 ∧ s2 ≤ t1 ∧ t2

A pseudovariety of ordered monoids is a class of �nite monoids

which is closed under taking submonoids, �nite direct products

and images in homomorphisms of ordered monoids.

Example

Pseudovariety of �nite (bounded) semilattices
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Pseudowords and ω-Words

A . . . a �nite set (alphabet)

, A∗ the free monoid over A,

Â∗ the free pro�nite monoid over A (the metric completion

of (A∗, d) with respect to a speci�c metric d on A∗), elements

of Â∗ are called pseudowords.
_ω : x 7→ xω = limn→∞ xn! . . . an unary operation

on Â∗,
on a �nite monoid M equipped with the discrete metric.

Note that xω is the unique idempotent power of x .
(xω idempotent: xω · xω = xω)
Denote by ω a signature ω = {_ ·_, 1,_ω}.
Then the monoids Â∗ and M can be viewed as ω-algebras.
Elements of the ω-subalgebra of the ω-algebra Â∗ generated
by A are called ω-words.

Example

A = {a, b}
(abωbba)ωaaaωb is an ω-word over A
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Then the monoids Â∗ and M can be viewed as ω-algebras.
Elements of the ω-subalgebra of the ω-algebra Â∗ generated
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Â∗ the free pro�nite monoid over A (the metric completion

of (A∗, d) with respect to a speci�c metric d on A∗), elements
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on Â∗,
on a �nite monoid M equipped with the discrete metric.

Note that xω is the unique idempotent power of x .
(xω idempotent: xω · xω = xω)
Denote by ω a signature ω = {_ ·_, 1,_ω}.
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on Â∗,
on a �nite monoid M equipped with the discrete metric.

Note that xω is the unique idempotent power of x .
(xω idempotent: xω · xω = xω)
Denote by ω a signature ω = {_ ·_, 1,_ω}.
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on Â∗,
on a �nite monoid M equipped with the discrete metric.

Note that xω is the unique idempotent power of x .
(xω idempotent: xω · xω = xω)
Denote by ω a signature ω = {_ ·_, 1,_ω}.
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Validity of Inequalities

Let V be a pseudovariety of ordered monoids, u, v ∈ Â∗.

Then V |= u ≤ v (= inequality u ≤ v is valid in V) i�

for every �nite ordered monoid M ∈ V (considered to be
equipped with the discrete metric) and

every continuous homomorphism α : Â∗ → M,

the inequality α(u) ≤ α(v) holds.
A class of �nite ordered monoids is a pseudovariety i� it is

de�nable by a set of inequalities of pseudowords. (Reiterman,

1982, Pin + Weil, 1996)

Example

Pseudovariety Sl of �nite meet-semilattices:

Sl = Jaa = a, ab = ba, a ≤ 1K
Sl |= (abωbba)ωaaaωb = ba
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the inequality α(u) ≤ α(v) holds.

A class of �nite ordered monoids is a pseudovariety i� it is

de�nable by a set of inequalities of pseudowords. (Reiterman,

1982, Pin + Weil, 1996)

Example

Pseudovariety Sl of �nite meet-semilattices:

Sl = Jaa = a, ab = ba, a ≤ 1K
Sl |= (abωbba)ωaaaωb = ba
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ω-Reducibility

We say that a pseudovariety of ordered monoids V is ω-reducible if,

for every ordered monoid M ∈ V,

for every onto continuous homomorpism α : Â∗ � M, and

for every inequality u ≤ v of pseudowords that is valid in V,

there exists an inequality u′ ≤ v ′ of ω-words that is also valid in V

and �has the same α-imprint in M�, i.e.,

α(u′) = α(u), α(v ′) = α(v).
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Pseudovarieties of My Interest

A pseudovariety of ordered monoids V is said to be locally �nite if

for every �nite alphabet A, the �relatively free monoid in V�

A∗/ ≡V is �nite, where u ≡V v ⇔ V |= u = v .

Example

Pseudovariety of �nite semilattices:

A = {a, b}(
A∗/≡Sl, ·

)
∼=
({
{a}, {b}, {a, b}, ∅

}
,∪
)

Pseudovarieties corresponding to half levels of �concatenation

hierarchies� with a locally �nite basis:

V0 is an arbitrary locally �nite pseudovariety of monoids

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK
∀n ≥ 1 : Vn+1/2 := Juω+1 ≤ uωvuω | Vn−1/2 |= v ≤ uK

Vn−1/2 is ω-reducible ⇒ it su�ces to consider u, v to be

ω-words⇒ Vn+1/2 is de�nable by inequalities of ω-words.
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Proof of the ω-Reducibility of V1/2 - Step 1

Proof of the ω-reducibility of V1/2 inspired by the approach

of Place and Zeitoun in their papers (2014�2019) on certain

properties of levels of concatenation hierarchies.

GIVEN:

locally �nite pseudovariety V0,

�nite alphabet A,

�nite ordered monoid M,

continuous homomorphism α : Â∗ � M.

Construct the V0-completion αV0
of the homomorphism α:

αV0
: Â∗ → M × A∗/ ≡V0

x 7→
(
α(x), [x ]≡V0

)
Construct the image MαV0

of αV0
.

OUTPUT of Step 1:

V0-compatible onto continuous homomorphism αV0
: Â∗ � MαV0

:

∀x , y ∈ Â∗ : αV0
(x) = αV0

(y) ⇒ x ≡V0
y .
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(x) = αV0

(y) ⇒ x ≡V0
y .

Jana Vola°íková Omega-Reducibility



Proof of the ω-Reducibility of V1/2 - Step 1

Proof of the ω-reducibility of V1/2 inspired by the approach

of Place and Zeitoun in their papers (2014�2019) on certain

properties of levels of concatenation hierarchies.

GIVEN:

locally �nite pseudovariety V0,

�nite alphabet A,

�nite ordered monoid M,

continuous homomorphism α : Â∗ � M.
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Construct the V0-completion αV0
of the homomorphism α:

αV0
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Proof of the ω-Reducibility of V1/2 - Step 1 � Example

V0 = Sl (pseudovariety of �nite semilattices),

A = {a, b},
M = 〈a, b | aa = 1, ab = bb = b〉,
α : Â∗ → M de�ned by α(a) = a, α(b) = b

Cayley graph of monoid M:

1
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a
a
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b��
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YY

a
++ ba

a,b

kk

Sl 6|= aa = 1

Sl 6|= ab = b

Cayley graph of monoid MαSl :
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a
66

b ''
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Proof of the ω-Reducibility of V1/2 - Step 2

Strati�cation of V1/2 into locally �nite pseudovarieties Vn
1/2:

V0

1/2 ⊆ V1

1/2 ⊆ V2

1/2 ⊆ V3

1/2 ⊆ V4

1/2 ⊆ · · ·
V1/2 =

⋃∞
n=1

Vn
1/2

Theorem (J. V.)

Let u, v ∈ A∗ be arbitrary words and N = 1+ 9 · |MαV0
| · 2|MαV0

|
.

Let VN
1/2 |= u ≤ v . Then there exist ω-words u′, v ′ satisfying

V1/2 |= u′ ≤ v ′,

αV0
(u) = αV0

(u′), αV0
(v) = αV0

(v ′).

This theorem implies that the pseudovariety V1/2 is ω-redicible.

Proven by the induction on the height of a factorization tree

of word u for αV0
.
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FACTORIZATION TREE

of word u ∈ A∗ for αSl

labeled rooted tree

root labeled by u

descendants v1, . . . , vn ∈ A∗

of node v ∈ A∗:
v = v1 . . . vn

n > 2⇒ ∀i : αSl(vi ) = e,
e · e = e

leaves labeled by letters a, b

monoid MαSl

1

a
��

b

��
aa

a
66

b ''

a
auu

b
��

b bee

a
��

ab

b

YY

a
++ ba

a,b

kk

a . . . a︸ ︷︷ ︸
2K+1

b

a . . . a︸ ︷︷ ︸
2K

ab

aa . . . . . . . . . aa a b

a a a a. . .

height of this factorization tree = 4
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Useful Statements

Theorem (Simon, 1990, Ku�eitner, 2008)

Let A be a �nite alphabet, M a �nite monoid, α : A∗ → M
a homomorphism. Then, for every word u ∈ A∗, there exists

a factorization tree of u for α of height at most 3 · |M|.

This theorem allows us to use the induction on the height of a

factorization tree.

The following lemma will be useful.

Lemma (J. V.)

Let u1, . . . , uk , v ∈ A∗ (k ∈ N), n ≥ k − 1. Let

Vn
1/2 |= u1 . . . uk ≤ v . Then there exist v1, . . . , vk ∈ A∗ such that

v = v1 . . . vk ,

V
n−(k−1)
1/2 |= ui ≤ vi for i = 1, . . . , k .

Jana Vola°íková Omega-Reducibility



Useful Statements

Theorem (Simon, 1990, Ku�eitner, 2008)

Let A be a �nite alphabet, M a �nite monoid, α : A∗ → M
a homomorphism. Then, for every word u ∈ A∗, there exists

a factorization tree of u for α of height at most 3 · |M|.

This theorem allows us to use the induction on the height of a

factorization tree.

The following lemma will be useful.

Lemma (J. V.)

Let u1, . . . , uk , v ∈ A∗ (k ∈ N), n ≥ k − 1. Let

Vn
1/2 |= u1 . . . uk ≤ v . Then there exist v1, . . . , vk ∈ A∗ such that

v = v1 . . . vk ,

V
n−(k−1)
1/2 |= ui ≤ vi for i = 1, . . . , k .

Jana Vola°íková Omega-Reducibility



Useful Statements

Theorem (Simon, 1990, Ku�eitner, 2008)

Let A be a �nite alphabet, M a �nite monoid, α : A∗ → M
a homomorphism. Then, for every word u ∈ A∗, there exists

a factorization tree of u for α of height at most 3 · |M|.

This theorem allows us to use the induction on the height of a

factorization tree.

The following lemma will be useful.

Lemma (J. V.)

Let u1, . . . , uk , v ∈ A∗ (k ∈ N), n ≥ k − 1. Let

Vn
1/2 |= u1 . . . uk ≤ v . Then there exist v1, . . . , vk ∈ A∗ such that

v = v1 . . . vk ,

V
n−(k−1)
1/2 |= ui ≤ vi for i = 1, . . . , k .

Jana Vola°íková Omega-Reducibility



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa

a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b → VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

a . . . a︸ ︷︷ ︸
2N+1

b

a . . . a︸ ︷︷ ︸
2N

ab

aa . . . . . . . . . aa a b

a a a a. . .

a . . . a︸ ︷︷ ︸
2N+2

b

a . . . a︸ ︷︷ ︸
2N+1

ab

aa aa a b

a a a a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a

→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



VN
1/2 |= a . . . a︸ ︷︷ ︸

2N+1

b ≤ a . . . a︸ ︷︷ ︸
2N+2

b

V1/2 |= (aa)ω+1ab ≤ (aa)ωa(aa)ωab

→ VN−1
1/2 |= a . . . a︸ ︷︷ ︸

2N

≤ a . . . a︸ ︷︷ ︸
2N+1

, ab ≤ ab

V1/2 := Juω+1 ≤ uωvuω | V0 |= u = vK

V0 = Sl |= aa = a→ V1/2 |= (aa)ω+1 ≤ (aa)ωa(aa)ω

V1/2 |= ab ≤ ab

→ VN−3
1/2 |= aa ≤ aa, a . . . a︸ ︷︷ ︸

2N−4

≤ a . . . a︸ ︷︷ ︸
2N−3

, aa ≤ aa, a ≤ a, b ≤ b

V1/2 |= aa ≤ aa

V1/2 |= a ≤ a, b ≤ b

→ VN−4
1/2 |= a ≤ a, a ≤ a

V1/2 |= a ≤ a



ω-Reducibility of V3/2 and V5/2

V1/2

ω-reducibility
of pairs of words

V3/2

ω-reducibility
of chains of words

V5/2

ω-reducibility
of (�nite) ordered

sets of words

u

v

1/2

u

v

w

1/2

3/2

•

•

•

•

•

•

•

• •

1/2

3/2

5/2

5/2

1/2

3/2

5/2
1/2

...

Jana Vola°íková Omega-Reducibility



ω-Reducibility of V3/2 and V5/2

V1/2

ω-reducibility
of pairs of words

V3/2

ω-reducibility
of chains of words

V5/2

ω-reducibility
of (�nite) ordered

sets of words

u

v

1/2

u

v

w

1/2

3/2

•

•

•

•

•

•

•

• •

1/2

3/2

5/2

5/2

1/2

3/2

5/2
1/2

...

Jana Vola°íková Omega-Reducibility



ω-Reducibility of V3/2 and V5/2

V1/2

ω-reducibility
of pairs of words

V3/2

ω-reducibility
of chains of words

V5/2

ω-reducibility
of (�nite) ordered

sets of words

u

v

1/2

u

v

w

1/2

3/2

•

•

•

•

•

•

•

• •

1/2

3/2

5/2

5/2

1/2

3/2

5/2
1/2

...

Jana Vola°íková Omega-Reducibility



ω-Reducibility of V3/2 and V5/2

V1/2

ω-reducibility
of pairs of words

V3/2

ω-reducibility
of chains of words

V5/2

ω-reducibility
of (�nite) ordered

sets of words

u

v

1/2

u

v

w

1/2

3/2

•

•

•

•

•

•

•

• •

1/2

3/2

5/2

5/2

1/2

3/2

5/2
1/2

...

Jana Vola°íková Omega-Reducibility



Thank you for your attention.

Jana Vola°íková Omega-Reducibility


