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Pseudovariety of ordered monoids — what is it?
w-reducibility — what is it?

Which pseudovarieties are of my interest and why?

© 000

How to prove the w-reducibility of a certain pseudovariety
Va7

Briefly about the w-reducibility of more complex
pseudovarieties

o
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Pseudovariety of Ordered Monoids

e Ordered monoid (M,-,1,<): (M,-,1) monoid, < is a partial
order on M, which is compatible with the multiplication, i.e.,
Vs, 0, ti, b EM: (s <t1, <) = s1-5 <t b
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Pseudovariety of Ordered Monoids

e Ordered monoid (M,-,1,<): (M,-,1) monoid, < is a partial
order on M, which is compatible with the multiplication, i.e.,
Vs, 0, ti, b EM: (s <t1, <) = s1-5 <t b
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v

e A pseudovariety of ordered monoids is a class of finite monoids
which is closed under taking submonoids, finite direct products
and images in homomorphisms of ordered monoids.
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Pseudovariety of Ordered Monoids

e Ordered monoid (M,-,1,<): (M,-,1) monoid, < is a partial
order on M, which is compatible with the multiplication, i.e.,
Vs, 0, ti, b EM: (s <t1, <) = s1-5 <t b

A bounded semilattice: (M,A,1,<) ... s<t&osAt=s

@ 1 = the biggest element = the neutral element:
VseM:s<1 & sAl=s

o < is compatible with A:
Vs, %, t1,t0 € M: (51 < t, s < t2) = s1 A < t1 At

v

e A pseudovariety of ordered monoids is a class of finite monoids
which is closed under taking submonoids, finite direct products
and images in homomorphisms of ordered monoids.

Pseudovariety of finite (bounded) semilattices
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Pseudowords and w-Words

@ A ...a finite set (alphabet), A* the free monoid over A,
A* the free profinite monoid over A (the metric completion
of (A*, d) with respect to a specific metric d on A*), elements
of A* are called pseudowords.
0 “ixm—x¥Y=lim, x"™ ... an unary operation
e on //4\*
e on a finite monoid M equipped with the discrete metric.
Note that x“ is the unique idempotent power of x.
(x* idempotent: x“ - x¥ = x¥)
o Denote by w a signature w={ - |1, “}.
o Then the monoids A* and M can be viewed as w-algebras.
o Elements of the w-subalgebra of the w-algebra A* generated
by A are called w-words.

A= {a, b}

(ab®bba)“aaa”b is an w-word over A
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Validity of Inequalities

o Let V be a pseudovariety of ordered monoids, u, v € A%
Then V = u < v (= inequality u < v is valid in V) iff
o for every finite ordered monoid M € V (considered to be
equipped with the discrete metric) and
e every continuous homomorphism «: A M,

the inequality a(u) < a(v) holds.
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@ A class of finite ordered monoids is a pseudovariety iff it is
definable by a set of inequalities of pseudowords. (Reiterman,
1982, Pin + Weil, 1996)
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Validity of Inequalities

o Let V be a pseudovariety of ordered monoids, u, v € A%
Then V = u < v (= inequality u < v is valid in V) iff
o for every finite ordered monoid M € V (considered to be
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Validity of Inequalities

o Let V be a pseudovariety of ordered monoids, u, v € A%
Then V = u < v (= inequality u < v is valid in V) iff
o for every finite ordered monoid M € V (considered to be
equipped with the discrete metric) and
e every continuous homomorphism «: A M,
the inequality a(u) < a(v) holds.
@ A class of finite ordered monoids is a pseudovariety iff it is
definable by a set of inequalities of pseudowords. (Reiterman,
1982, Pin + Weil, 1996)

Pseudovariety Sl of finite meet-semilattices:

o Sl =[aa=a,ab= ba,a<1]
o S| = (ab*bba)“aaa”b = ba
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We say that a pseudovariety of ordered monoids V is w-reducible if,
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w-Reducibility

We say that a pseudovariety of ordered monoids V is w-reducible if,
o for every ordered monoid M €V,

e for every onto continuous homomorpism a: A* — M, and
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w-Reducibility

We say that a pseudovariety of ordered monoids V is w-reducible if,
o for every ordered monoid M €V,
e for every onto continuous homomorpism «: A* = M, and

o for every inequality u < v of pseudowords that is valid in V,
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w-Reducibility

We say that a pseudovariety of ordered monoids V is w-reducible if,
o for every ordered monoid M €V,
e for every onto continuous homomorpism «: A* = M, and
o for every inequality u < v of pseudowords that is valid in V,

there exists an inequality v/ < v/ of w-words that is also valid in V
and “has the same a-imprint in M", i.e.,
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Pseudovarieties of My Interest

A pseudovariety of ordered monoids V is said to be locally finite if
for every finite alphabet A, the "relatively free monoid in V"
A*/ =y is finite, where u=y v & Vi u=v.
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Pseudovariety of finite semilattices:
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A pseudovariety of ordered monoids V is said to be locally finite if
for every finite alphabet A, the "relatively free monoid in V"
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° (A*/Eg,-) = ({{a},{b},{a, b},@},u)

Pseudovarieties corresponding to half levels of “concatenation
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Pseudovarieties of My Interest

A pseudovariety of ordered monoids V is said to be locally finite if
for every finite alphabet A, the "relatively free monoid in V"
A*/ =y is finite, where u=y v & Vi u=v.

Pseudovariety of finite semilattices:

o A= {a,b}
° (A*/Eg,-) = ({{a},{b},{a, b},@},u)

Pseudovarieties corresponding to half levels of “concatenation
hierarchies” with a locally finite basis:
@ Vg is an arbitrary locally finite pseudovariety of monoids
o Vi = [u™ <uvi® | Vo = u= V]
0 Vn>1:V,yy = Jutt < v | Vi_12 F v <]

V—1/2 is w-reducible =it suffices to consider u, v to be
w-words = V15 is definable by inequalities of w-words.
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

Jana Volarikova Omega-Reducibility



Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:

o locally finite pseudovariety Vy,
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:
o locally finite pseudovariety Vy,
o finite alphabet A,
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:

o locally finite pseudovariety Vy,

o finite alphabet A,

o finite ordered monoid M,
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:

o locally finite pseudovariety Vy,

o finite alphabet A,

o finite ordered monoid M,

@ continuous homomorphism «a: A* = M.
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:

o locally finite pseudovariety Vy,

o finite alphabet A,

o finite ordered monoid M,

@ continuous homomorphism «a: A* = M.

Construct the Vo-completion ay, of the homomorphism a:
0 ay,: A* = M x A*/ =y,
° x = (a(x), [X]Evo)
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:

o locally finite pseudovariety Vy,

o finite alphabet A,

o finite ordered monoid M,

@ continuous homomorphism «a: A* = M.

Construct the Vo-completion ay, of the homomorphism a:
0 ay,: A* = M x A*/ =y,
° x = (a(x), [X]Evo)

Construct the image Mq,, of av,.
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Proof of the w-Reducibility of Vy/, - Step 1

@ Proof of the w-reducibility of Vy /, inspired by the approach
of Place and Zeitoun in their papers (2014-2019) on certain
properties of levels of concatenation hierarchies.

GIVEN:

o locally finite pseudovariety Vy,

o finite alphabet A,

o finite ordered monoid M,

@ continuous homomorphism «a: A* = M.

Construct the Vo-completion ay, of the homomorphism a:
0 ay,: A* = M x A*/ =y,
° x = (a(x), [X]Evo)

Construct the image Mq,, of av,.

OUTPUT of Step 1: -
Vo-compatible onto continuous homomorphism ay,: A* — M, :

Vx,y € A% ayy(x) = ayy(¥) = x=v, y.
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Proof of the w-Reducibility of Vy/, - Step 1 — Example
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e Vo = Sl (pseudovariety of finite semilattices),
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A={a, b},
o M= (ab

aa=1,ab= bb=b),
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b

Cayley graph of monoid M:

N

——
U a,b

b
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b

Cayley graph of monoid M: Cayley graph of monoid M,,:

1
\_/a / X
T b
O e \lb la
b a
g ab— ba

U a,b

b
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o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b

Cayley graph of monoid M: Cayley graph of monoid M,,:

1
\_/a / X
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O e \lb la
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g ab— ba
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b

Cayley graph of monoid M: Cayley graph of monoid M,,:

1
\_/a / X
bk 7 b
O e \lb la
b a
g ab— ba

SlfEaa=1 U b

b
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b

Cayley graph of monoid M: Cayley graph of monoid M,,:

1
N AN,
x %a A/a\ ?
b b 5] b
() an \lb la
b a
g ab ba
Slaa=1 Lbj b
Sl=ab=0»b
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Proof of the w-Reducibility of Vy/, - Step 1 — Example

e Vo = Sl (pseudovariety of finite semilattices),
o A= {a, b},

e M= (a,b|aa=1,ab= bb=b),

o a: A* — M defined by afa)=a, a(b)=0>b

Cayley graph of monoid M: Cayley graph of monoid M,,:

1
\_/a
b b 2 aaé/\a

b
b ba R oL
() an \ lb la
b a
g ab ba
Slaa=1 @) b

Sl ab=b b
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Proof of the w-Reducibility of Vy/, - Step 2
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Proof of the w-Reducibility of Vy/, - Step 2

Stratification of Vy /5 into locally finite pseudovarieties Vf/z:
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Proof of the w-Reducibility of Vy/, - Step 2

Stratification of Vy /5 into locally finite pseudovarieties Vf/z:

° V‘f/2 Cvi/2 Cvf/2 Cvf/2 Cvi‘/2
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Proof of the w-Reducibility of Vy/, - Step 2

Stratification of Vy /5 into locally finite pseudovarieties Vf/z:
0 1 2 3 4
o V9, CVl,CV2,CV3, CVi,C

o Vi =Upl V1/2
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Proof of the w-Reducibility of Vy/, - Step 2

Stratification of Vy /5 into locally finite pseudovarieties Vf/z:

° V(1)/2 < Vi/z < Vf/z < Vi’/z < Vzl‘/z c.-

o Vi =Un1 Vi)

Theorem (J. V.)

Let u,v € A* be arbitrary words and N =1+9-|M,,, |- olMeve
Let V{V/2 = u < v. Then there exist w-words u', v’ satisfying
o VipEu <V,

0 avy() = ave(1), ave(v) = ave(V).

vo
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Proof of the w-Reducibility of Vy/, - Step 2

Stratification of Vy /5 into locally finite pseudovarieties Vf/z:

° V(1)/2 < Vi/z < Vf/z < Vi’/z < Vzl‘/z c.-

o Vi =Un1 Vi)

Theorem (J. V.)

Let u,v € A* be arbitrary words and N =1+9-|M,,, |- olMeve
Let V{V/2 = u < v. Then there exist w-words u', v’ satisfying
o VipEu <V,

0 avy() = ave(1), ave(v) = ave(V).

vo

o This theorem implies that the pseudovariety Vi, is w-redicible.
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Proof of the w-Reducibility of Vy/, - Step 2

Stratification of Vy /5 into locally finite pseudovarieties Vf/z:

° V(1)/2 < Vi/z < Vf/z < Vi’/z < Vzl‘/z c.-

o Vi =Un1 Vi)

Theorem (J. V.)

Let u,v € A" be arbitrary words and N =1+9 - [Ma, |- olMeve
Let V{V/2 = u < v. Then there exist w-words u', v’ satisfying
° Vi Ed <V,

0 avy() = ave(1), ave(v) = ave(V).

o This theorem implies that the pseudovariety Vi, is w-redicible.

@ Proven by the induction on the height of a factorization tree
of word u for av,.
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FACTORIZATION TREE
of word u € A* for ag

o labeled rooted tree
@ root labeled by u

@ descendants v,...,v, € A*
of node v € A*:
V=1Vv1...V,

] n>2:>Vi:as|(v,-):e,
e-e=e
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e-e=e

leaves labeled by letters a, b
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of word u € A* for ag
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root labeled by u

descendants vy, .
of node v € A*:
V=1Vv1...V,
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co,Vp €AY

leaves labeled by letters a, b
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FACTORIZATION TREE
of word u € A* for ag

labeled rooted tree
root labeled by u

descendants vy, .
of node v € A*:
V=1Vv1...V,
n>2=YVi: as|(v;) = e,
e-e=e

co,Vp €AY

leaves labeled by letters a, b

monoid M,

a...a/2K+1 \
T T~
aa PR PR e aa

a...ab
——

ab
/N
a b
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(<]
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FACTORIZATION TREE
of word u € A* for ag

labeled rooted tree
root labeled by u

descendants vy, .
of node v € A*;
V=V]...Vp

co,Vp €AY

n>2:>Vi:as|(v,-):e,
e-e=e

leaves labeled by letters a, b

monoid M,

a...a__— 21 T

/ N\ /
a a o .. a

a...ab
——

ab
/N

a a b

\
a



FACTORIZATION TREE
of word u € A* for ag

labeled rooted tree

(]

(]

root labeled by u

(]

descendants vy, .
of node v € A*:
V=V]...Vp

e n>2=Vi: as|(v,-):e,
e-e=e

co,Vp €AY

o leaves labeled by letters a, b

monoid M,

a...a__— 21 T

/ N\ /
a a o .. a

a...ab
——

ab
/N

a a b

\
a

height of this factorization tree = 4



Useful Statements

Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, «: A* — M
a homomorphism. Then, for every word u € A*, there exists
a factorization tree of u for . of height at most 3 - |[M)|.
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Useful Statements

Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, «: A* — M
a homomorphism. Then, for every word u € A*, there exists
a factorization tree of u for . of height at most 3 - |[M)|.

@ This theorem allows us to use the induction on the height of a
factorization tree.
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Useful Statements

Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, «: A* — M
a homomorphism. Then, for every word u € A*, there exists
a factorization tree of u for o of height at most 3 - |[M|.

@ This theorem allows us to use the induction on the height of a
factorization tree.

The following lemma will be useful.

Let ug,...,ug,ve A* (ke N), n>k—1. Let

Vf/z = uy...ux < v. Then there exist v1,...,vx € A* such that
OV =uy...Vv,
° Vf/;(k*l) Eu<vifori=1,... k.

Jana Volarikova Omega-Reducibility



1/2)23 .ab<a.
——

ab

2N
+1 2N42
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2N 41

a...ab
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U2#a .ab<a...ab

2N 41 2N 42
a...ab
——
2N 41 \\\\\\\\\\\
a...a__—
- ab
2N
a...ab
——

2N 2
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- ab
2N
a...ab

2N 2
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1/2
2N 41 2N 42 2"’ 2N 41
a...ab
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/ ‘ N / N\
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a...ab
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a...a__— M2 T—0n

N1 ab
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a...ab
N——
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a...a
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a...ab
——"
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2N 41 \
d...a
va — ab
T 2
aa aa a b
a...ab
——
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/ o2N41 \ ab
a aa



1/2)23 .ab<a...ab Nt
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, < ab

N
2N41 2N42 +
2N 2N 1

VN3_

1/2 Faa<aa a...a<a...a,aa<a
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2N
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2N 2N41

N—3
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o Vi Faa<aa
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1/2
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<
1/2 = a3 .ab<a...ab
2’V+1 2N4-2

1/2 ):a .a<a...a, ab<ab
2N V41

Vi = [T < v | Vo |= u = V]

—~ VvN- Izaagaa,a...a<a...a,aa§aa, a<a, b<b

1/2 =
2N_4 2N_3
o Vi Faa<aa
°V1/2):a§a, bSb

—>V1/2 Fa<a a<a

o VipFa<a



a .ab<a...ab
1/2 ): ——
2’V+1 2N 42

1/2 ):a .a<a...a, ab<ab
2N V41

Vi = [T < v | Vo |= u = V]
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<
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2’V+1 2N4-2

Viv/zl):a .a<a...a, ab< ab

2N 2N4+1

Vi = [T < v | Vo |= u = V]
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N—1
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1/2 = a3 b<a...ab
2’V+1 2N4-2
o Vi, |= (aa)**tab < (aa)¥a(aa)”ab
N—1
= Vip ):a .a<a...a, ab< ab
2N V41
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—~ VN~
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2N_4 2N_3
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1/2 = a3 .ab<a...ab
2’V+1 2N 42
o Vi, |= (aa)**tab < (aa)¥a(aa)”ab
N—1
= Vip ):a .a<a...a, ab< ab
2N 2N41
Vijp = [t < v | Vo |= u = V]

o Vog=SllEaa=a— V) (aa)™ < (aa)¥a(aa)”
("] V1/2 ): ab S ab

—~ VN~

1 Izaagaa,a...a<a...a,aa§aa, a<a, b<b
/2 —— T =

2N_4 2N_3
o Vi Faa<aa

°V1/2):a§a,b§b

—>V1/2 Fa<a a<a

o VipFa<a
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w-Reducibility of V3, and Vs,

Vi/2
w-reducibility
of pairs of words

1/2
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w-Reducibility of V3, and Vs,

Vi/2 V32
w-reducibility w-reducibility
of pairs of words | of chains of words

w
v ‘3/2
1/2 v
u 1/2
u
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Vi/2
w-reducibility
of pairs of words

V3o
w-reducibility
of chains of words

w-Reducibility of V3, and Vs,

Vs 2
w-reducibility
of (finite) ordered
sets of words

1/2

3/2

1/2

I
3/2
5/2\ .1/2

3/2

5/2\ 1/2
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Thank you for your attention.
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