The Omega-Reducibility of Certain Pseudovarieties of Ordered Monoids

Jana Volaříková

Department of Mathematics, Faculty of Applied Informatics, Tomas Bata University in Zlín, Czech Republic
1. Pseudovariety of ordered monoids: what is it?

2. ω-reducibility: what is it?

3. Which pseudovarieties are of my interest and why?

4. How to prove the ω-reducibility of a certain pseudovariety V?

5. Briefly about the ω-reducibility of more complex pseudovarieties.
1. Pseudovariety of ordered monoids – what is it?
1 Pseudovariety of ordered monoids – what is it?
2 \(\omega \)-reducibility – what is it?
Outline

1. Pseudovariety of ordered monoids – what is it?
2. ω-reducibility – what is it?
3. Which pseudovarieties are of my interest and why?
1. Pseudovariety of ordered monoids – what is it?
2. ω-reducibility – what is it?
3. Which pseudovarieties are of my interest and why?
4. How to prove the ω-reducibility of a certain pseudovariety $V_{1/2}$?
1. Pseudovariety of ordered monoids – what is it?
2. ω-reducibility – what is it?
3. Which pseudovarieties are of my interest and why?
4. How to prove the ω-reducibility of a certain pseudovariety $V_{1/2}$?
5. Briefly about the ω-reducibility of more complex pseudovarieties
Ordered monoid \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is compatible with the multiplication, i.e.,
\[
\forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2.
\]
Pseudovariety of Ordered Monoids

- **Ordered monoid** \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is *compatible* with the multiplication, i.e.,

\[
\forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \implies s_1 \cdot s_2 \leq t_1 \cdot t_2.
\]

Example

A bounded semilattice:
Pseudovariety of Ordered Monoids

- **Ordered monoid** \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is *compatible* with the multiplication, i.e.,
 \[
 \forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2.
 \]

Example

A bounded semilattice: \((M, \wedge, 1, \leq)\)
Ordered monoid \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is compatible with the multiplication, i.e., \(\forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2\).

Example

A bounded semilattice: \((M, \wedge, 1, \leq)\) \ldots \(s \leq t \iff s \wedge t = s\)
Ordered monoid \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is **compatible** with the multiplication, i.e.,

\[\forall s_1, s_2, t_1, t_2 \in M : (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2.\]

Example

A bounded semilattice: \((M, \wedge, 1, \leq)\) \(\ldots\) \(s \leq t \iff s \wedge t = s\)

- \(1 = \text{the biggest element} = \text{the neutral element}:\)
 \[\forall s \in M : s \leq 1 \iff s \wedge 1 = s\]
Pseudovariety of Ordered Monoids

- *Ordered monoid* $(M, \cdot, 1, \leq)$: $(M, \cdot, 1)$ monoid, \leq is a partial order on M, which is *compatible* with the multiplication, i.e.,
 \[
 \forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2.
 \]

Example

A bounded semilattice: $(M, \land, 1, \leq)$...

- $1 =$ the biggest element $= =$ the neutral element:
 \[
 \forall s \in M: s \leq 1 \iff s \land 1 = s
 \]

- \leq is compatible with \land:
 \[
 \forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \land s_2 \leq t_1 \land t_2
 \]
Ordered monoid \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is compatible with the multiplication, i.e.,
\[
\forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \implies s_1 \cdot s_2 \leq t_1 \cdot t_2.
\]

Example

A bounded semilattice: \((M, \land, 1, \leq)\) . . . \(s \leq t \iff s \land t = s\)

- \(1 = \) the biggest element = the neutral element:
 \[
 \forall s \in M: s \leq 1 \iff s \land 1 = s
 \]

- \(\leq\) is compatible with \(\land\):
 \[
 \forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \implies s_1 \land s_2 \leq t_1 \land t_2
 \]

- A pseudovariety of ordered monoids is a class of finite monoids which is closed under taking submonoids, finite direct products and images in homomorphisms of ordered monoids.
Pseudovariety of Ordered Monoids

- **Ordered monoid**
 \((M, \cdot, 1, \leq)\): \((M, \cdot, 1)\) monoid, \(\leq\) is a partial order on \(M\), which is compatible with the multiplication, i.e.,
 \[\forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \cdot s_2 \leq t_1 \cdot t_2.\]

Example

A bounded semilattice: \((M, \wedge, 1, \leq)\) ... \(s \leq t \iff s \wedge t = s\)

- 1 = the biggest element = the neutral element:
 \[\forall s \in M: s \leq 1 \iff s \wedge 1 = s\]

- \(\leq\) is compatible with \(\wedge\):
 \[\forall s_1, s_2, t_1, t_2 \in M: (s_1 \leq t_1, s_2 \leq t_2) \Rightarrow s_1 \wedge s_2 \leq t_1 \wedge t_2\]

- A pseudovariety of ordered monoids is a class of finite monoids which is closed under taking submonoids, finite direct products and images in homomorphisms of ordered monoids.

Example

Pseudovariety of finite (bounded) semilattices
Pseudowords and ω-Words

- A ... a finite set (alphabet)
A ... a finite set (alphabet), A^* the free monoid over A, ...
Pseudowords and ω-Words

- A ... a finite set (alphabet), A^* the free monoid over A,
 \widehat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*)

ω: $x \mapsto x_\omega = \lim_{n \to \infty} x^n$

An unary operation on \widehat{A}^*, on a finite monoid M equipped with the discrete metric.

Note that x_ω is the unique idempotent power of x.

Denote by ω a signature $\omega = \{_\cdot_\cdot, 1, _\omega\}$.

Then the monoids \widehat{A}^* and M can be viewed as ω-algebras.

Elements of the ω-subalgebra of the ω-algebra \widehat{A}^* generated by A are called ω-words.

Example $A = \{a, b\}$ ($ab_\omega bba_\omega aaa_\omega b$ is an ω-word over A)

Jana Volaříková

Omega-Reducibility
A ... a finite set (alphabet), A^* the free monoid over A,
\hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.
Pseudowords and ω-Words

- A ... a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.
- $\omega: x \mapsto x^\omega = \lim_{n \to \infty} x^n! \ldots$ an unary operation
Pseudowords and ω-Words

- A ... a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.

- $\omega: x \mapsto x^\omega = \lim_{n \to \infty} x^n!$... an unary operation on \hat{A}^*,
Pseudowords and ω-Words

- A ... a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.
- $\omega: x \mapsto x^\omega = \lim_{n \to \infty} x^n! \ldots$ an unary operation
 - on \hat{A}^*,
 - on a finite monoid M equipped with the discrete metric.
Pseudowords and ω-Words

- A . . . a finite set (alphabet), A^* the free monoid over A, \widehat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \widehat{A}^* are called pseudowords.
- $\omega : x \mapsto x^\omega = \lim_{n \to \infty} x^n$! . . . an unary operation
 - on \widehat{A}^*,
 - on a finite monoid M equipped with the discrete metric.

Note that x^ω is the unique idempotent power of x.
Pseudowords and ω-Words

- A . . . a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.

$\omega: x \mapsto x^\omega = \lim_{n \to \infty} x^n$. . . an unary operation

- on \hat{A}^*,
- on a finite monoid M equipped with the discrete metric.

Note that x^ω is the unique idempotent power of x. (x^ω idempotent: $x^\omega \cdot x^\omega = x^\omega$)
Pseudowords and \(\omega \)-Words

- A \ldots a finite set (alphabet), \(A^* \) the free monoid over \(A \),
 \(\widehat{A}^* \) the free profinite monoid over \(A \) (the metric completion of \((A^*, d) \) with respect to a specific metric \(d \) on \(A^* \)), elements of \(\widehat{A}^* \) are called \textit{pseudowords}.
- \(\omega : x \mapsto x^\omega = \lim_{n \to \infty} x^n ! \ldots \) an unary operation
 - on \(\widehat{A}^* \),
 - on a finite monoid \(M \) equipped with the discrete metric.

Note that \(x^\omega \) is the unique idempotent power of \(x \).
(\(x^\omega \) idempotent: \(x^\omega \cdot x^\omega = x^\omega \))

- Denote by \(\omega \) a signature \(\omega = \{ _ \cdot _, 1, _^\omega \} \).
Pseudowords and ω-Words

- A ... a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.
- $\omega: x \mapsto x^\omega = \lim_{n \to \infty} x^n$... an unary operation
 - on \hat{A}^*,
 - on a finite monoid M equipped with the discrete metric.

Note that x^ω is the unique idempotent power of x. (x^ω idempotent: $x^\omega \cdot x^\omega = x^\omega$)

- Denote by ω a signature $\omega = \{_ \cdot _, 1, _^\omega\}$.
- Then the monoids \hat{A}^* and M can be viewed as ω-algebras.
Pseudowords and \(\omega \)-Words

- \(A \) is a finite set (alphabet), \(A^* \) the free monoid over \(A \), \(\hat{A}^* \) the free profinite monoid over \(A \) (the metric completion of \((A^*, d)\) with respect to a specific metric \(d \) on \(A^* \)), elements of \(\hat{A}^* \) are called pseudowords.

- \(\omega \) is an unary operation on \(\hat{A}^* \), on a finite monoid \(M \) equipped with the discrete metric.

Note that \(x^\omega \) is the unique idempotent power of \(x \).

\((x^\omega \text{ idempotent}: x^\omega \cdot x^\omega = x^\omega)\)

- Denote by \(\omega \) a signature \(\omega = \{_ \cdot _, 1, _\} \).

- Then the monoids \(\hat{A}^* \) and \(M \) can be viewed as \(\omega \)-algebras.

- Elements of the \(\omega \)-subalgebra of the \(\omega \)-algebra \(\hat{A}^* \) generated by \(A \) are called \(\omega \)-words.
Pseudowords and ω-Words

- $A \ldots$ a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called pseudowords.
- $\omega: x \mapsto x^\omega = \lim_{n \to \infty} x^n \ldots$ an unary operation
 - on \hat{A}^*,
 - on a finite monoid M equipped with the discrete metric.
Note that x^ω is the unique idempotent power of x. (x^ω idempotent: $x^\omega \cdot x^\omega = x^\omega$)
- Denote by ω a signature $\omega = \{_, _, 1, \omega\}$.
- Then the monoids \hat{A}^* and M can be viewed as ω-algebras.
- Elements of the ω-subalgebra of the ω-algebra \hat{A}^* generated by A are called ω-words.

Example

- $A = \{a, b\}$
Pseudowords and ω-Words

- A ... a finite set (alphabet), A^* the free monoid over A, \hat{A}^* the free profinite monoid over A (the metric completion of (A^*, d) with respect to a specific metric d on A^*), elements of \hat{A}^* are called *pseudowords*.

- $_\omega : x \mapsto x^\omega = \lim_{n \to \infty} x^n! \ldots$ an unary operation
 - on \hat{A}^*,
 - on a finite monoid M equipped with the discrete metric.

Note that x^ω is the unique idempotent power of x.
(x^ω idempotent: $x^\omega \cdot x^\omega = x^\omega$)
- Denote by ω a signature $\omega = \{_ \cdot _, 1, _\omega\}$.
- Then the monoids \hat{A}^* and M can be viewed as ω-algebras.
- Elements of the ω-subalgebra of the ω-algebra \hat{A}^* generated by A are called ω-*words*.

Example

- $A = \{a, b\}$
- $(ab^\omega bba)^\omega aaa^\omega b$ is an ω-word over A
Validity of Inequalities

- Let V be a pseudovariety of ordered monoids, $u, v \in \hat{A}^*$.

Example: Pseudovariety S_l of finite meet-semilattices:

$$S_l = \{a, ba = ab, a \leq 1\}$$

$$S_l | = \langle ab \omega bba \omega aaaa \omega b \rangle = ba$$
Let V be a pseudovariety of ordered monoids, $u, v \in \hat{A}^*$. Then $V \models u \leq v$ (= inequality $u \leq v$ is valid in V) iff
Validity of Inequalities

Let V be a pseudovariety of ordered monoids, $u, v \in \hat{A}^*$. Then $V \models u \leq v$ (= inequality $u \leq v$ is valid in V) iff

- for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
Let V be a pseudovariety of ordered monoids, $u, v \in \hat{A}^*$. Then $V \models u \leq v$ (equality $u \leq v$ is valid in V) iff

- for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
- every continuous homomorphism $\alpha: \hat{A}^* \to M$,
Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A}^*$. Then $V \models u \leq v$ (= inequality $u \leq v$ is valid in V) iff

- for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
- every continuous homomorphism $\alpha: \widehat{A}^* \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.
Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A^*}$. Then $V \models u \leq v$ (= inequality $u \leq v$ is valid in V) iff

- for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
- every continuous homomorphism $\alpha: \widehat{A^*} \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

A class of finite ordered monoids is a pseudovariety iff it is definable by a set of inequalities of pseudowords. (Reiterman, 1982, Pin + Weil, 1996)
Let V be a pseudovariety of ordered monoids, $u, v \in \widehat{A}^*$. Then $V \models u \leq v$ (= inequality $u \leq v$ is valid in V) iff

- for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
- every continuous homomorphism $\alpha: \widehat{A}^* \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

A class of finite ordered monoids is a pseudovariety iff it is definable by a set of inequalities of pseudowords. (Reiterman, 1982, Pin + Weil, 1996)

Example

Pseudovariety SI of finite meet- semilattices:

- $\mathsf{SI} = [aa = a, ab = ba, a \leq 1]$
Validity of Inequalities

Let V be a pseudovariety of ordered monoids, $u, v \in \hat{A}^*$. Then $V \models u \leq v$ (\(\Rightarrow\) inequality $u \leq v$ is valid in V) iff

- for every finite ordered monoid $M \in V$ (considered to be equipped with the discrete metric) and
- every continuous homomorphism $\alpha : \hat{A}^* \to M$,

the inequality $\alpha(u) \leq \alpha(v)$ holds.

A class of finite ordered monoids is a pseudovariety iff it is definable by a set of inequalities of pseudowords. (Reiterman, 1982, Pin + Weil, 1996)

Example

Pseudovariety SI of finite meet-semilattices:

- $SI = [aa = a, ab = ba, a \leq 1]$
- $SI \models (ab^\omega bba)^\omega aaa^\omega b = ba$
We say that a pseudovariety of ordered monoids V is ω-reducible if,
We say that a pseudovariety of ordered monoids V is ω-reducible if,

for every ordered monoid $M \in V$,

- for every onto continuous homomorphism $\alpha : \hat{A} \to M$, and
- for every inequality $u \leq v$ of pseudowords that is valid in V, there exists an inequality $u' \leq v'$ of ω-words that is also valid in V and has the same α-imprint in M, i.e., $\alpha(u') = \alpha(u), \alpha(v') = \alpha(v)$.

We say that a pseudovariety of ordered monoids V is ω-reducible if,

- for every ordered monoid $M \in V$,
- for every onto continuous homomorphism $\alpha : \hat{A}^* \to M$, and
We say that a pseudovariety of ordered monoids V is ω-reducible if,

- for every ordered monoid $M \in V$,
- for every onto continuous homomorphism $\alpha : \hat{A}^* \rightarrow M$, and
- for every inequality $u \leq v$ of pseudowords that is valid in V,
We say that a pseudovariety of ordered monoids V is ω-reducible if,

- for every ordered monoid $M \in V$,
- for every onto continuous homomorphism $\alpha: \hat{A}^* \to M$, and
- for every inequality $u \leq v$ of pseudowords that is valid in V, there exists an inequality $u' \leq v'$ of ω-words that is also valid in V and “has the same α-imprint in M”, i.e.,

$$\alpha(u') = \alpha(u), \quad \alpha(v') = \alpha(v).$$
Pseudovarieties of My Interest

A pseudovariety of ordered monoids V is said to be locally finite if for every finite alphabet A, the relatively free monoid in V is finite, where $u \equiv v \iff \exists m \geq 1 : u = v^m = v$.

Example: Pseudovariety of finite semilattices:

$A = \{a, b\} (A^* / \equiv_{\text{Sl}} \cdot) \sim = \{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup$

Pseudovarieties corresponding to half levels of concatenation hierarchies with a locally finite basis:

V_0 is an arbitrary locally finite pseudovariety of monoids $V_1 / 2 := J_{\omega + 1} \leq u \omega \vdash V_0 \vdash u = v \star K \forall n \geq 1 : V_{n+1} / 2 := J_{\omega + 1} \leq u \omega \vdash V_n / 2 \vdash v \leq u$.

$V_n / 2$ is ω-reducible \Rightarrow it suffices to consider u, v to be ω-words $\Rightarrow V_{n+1} / 2$ is denable by inequalities of ω-words.
A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the ”relatively free monoid in V” A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.
A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the ”relatively free monoid in V” A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

Example

Pseudovariety of finite semilattices:
A pseudovariety of ordered monoids V is said to be \textit{locally finite} if for every finite alphabet A, the "relatively free monoid in $V" A^*/\equiv_V$ is finite, where $u \equiv_V v \iff V \models u = v$.

\textbf{Example}

Pseudovariety of finite semilattices:

- $A = \{a, b\}$
A pseudovariety of ordered monoids V is said to be \textit{locally finite} if for every finite alphabet A, the ”relatively free monoid in V” A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

Example

Pseudovariety of finite semilattices:

- $A = \{a, b\}$
- $(A^*/\equiv_{SI}, \cdot) \cong (\{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup)$
A pseudovariety of ordered monoids V is said to be \textit{locally finite} if for every finite alphabet A, the "relatively free monoid in V" A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

Example

Pseudovariety of finite semilattices:
- $A = \{a, b\}$
- $\left(A^*/\equiv_{SI}, \cdot \right) \cong (\{\{a\}, \{b\}, \{a, b\}, \emptyset \}, \cup)$

Pseudovarieties corresponding to half levels of “concatenation hierarchies” with a \textit{locally finite} basis:
A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the ”relatively free monoid in V” A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

Example

Pseudovariety of finite semilattices:
- $A = \{a, b\}$
- $\left(A^*/\equiv_{\text{SI}}, \cdot \right) \cong \left(\{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup \right)$

Pseudovarieties corresponding to half levels of “concatenation hierarchies” with a *locally finite* basis:
- V_0 is an arbitrary *locally finite* pseudovariety of monoids
A pseudovariety of ordered monoids V is said to be \emph{locally finite} if for every finite alphabet A, the "relatively free monoid in $V"$ A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

\textbf{Example}

Pseudovariety of finite semilattices:
- $A = \{a, b\}$
- $\left(A^*/\equiv_{SI}, \cdot \right) \cong \left(\{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup \right)$

Pseudovarieties corresponding to half levels of "concatenation hierarchies" with a \emph{locally finite} basis:
- V_0 is an arbitrary \emph{locally finite} pseudovariety of monoids
- $V_{1/2} := \left[u^{\omega+1} \leq u^\omega v u^\omega \mid V_0 \models u = v \right]$
A pseudovariety of ordered monoids V is said to be \textit{locally finite} if for every finite alphabet A, the "relatively free monoid in $V"$ A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

\begin{itemize}
 \item $A = \{a, b\}$
 \item $\left(A^*/\equiv_{SI}, \cdot \right) \cong \left(\{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup \right)$
\end{itemize}

Pseudovarieties corresponding to half levels of "concatenation hierarchies" with a \textit{locally finite} basis:
\begin{itemize}
 \item V_0 is an arbitrary \textit{locally finite} pseudovariety of monoids
 \item $V_{1/2} := \left[u^{\omega+1} \leq u^\omega v u^\omega \mid V_0 \models u = v \right]$
 \item $\forall n \geq 1: V_{n+1/2} := \left[u^{\omega+1} \leq u^\omega v u^\omega \mid V_{n-1/2} \models v \leq u \right]$
\end{itemize}
A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the ”relatively free monoid in V” A^*/\equiv_V is finite, where $u \equiv_V v \iff V \models u = v$.

Example

Pseudovariety of finite semilattices:
- $A = \{a, b\}$
- $(A^*/\equiv_{Sl}, \cdot) \cong (\{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup)$

Pseudovarieties corresponding to half levels of “concatenation hierarchies” with a *locally finite* basis:
- V_0 is an arbitrary *locally finite* pseudovariety of monoids
- $V_{1/2} := \{u^{\omega+1} \leq u^\omega v u^\omega \mid V_0 \models u = v\}$
- $\forall n \geq 1: V_{n+1/2} := \{u^{\omega+1} \leq u^\omega v u^\omega \mid V_{n-1/2} \models v \leq u\}$

$V_{n-1/2}$ is ω-reducible \Rightarrow it suffices to consider u, v to be ω-words.
Pseudovarieties of My Interest

A pseudovariety of ordered monoids V is said to be *locally finite* if for every finite alphabet A, the "relatively free monoid in $V" A^*/\equiv_V$ is finite, where $u \equiv_V v \iff V \models u = v$.

Example

Pseudovariety of finite semilattices:

- $A = \{a, b\}$
- $(A^*/\equiv_{SL}, \cdot) \cong (\{\{a\}, \{b\}, \{a, b\}, \emptyset\}, \cup)$

Pseudovarieties corresponding to half levels of "concatenation hierarchies" with a *locally finite* basis:

- V_0 is an arbitrary *locally finite* pseudovariety of monoids
- $V_{1/2} := \{u^\omega + 1 \leq u^\omega \nu u^\omega \mid V_0 \models u = v\}$
- $\forall n \geq 1: V_{n+1/2} := \{u^\omega + 1 \leq u^\omega \nu u^\omega \mid V_{n-1/2} \models v \leq u\}$

$V_{n-1/2}$ is ω-reducible \Rightarrow it suffices to consider u, v to be ω-words $\Rightarrow V_{n+1/2}$ is definable by inequalities of ω-words.
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

GIVEN: locally finite pseudovariety V_0, finite alphabet A, finite ordered monoid M, continuous homomorphism $\alpha: \hat{A}^* \rightarrow M$.

Construct the V_0-completion αV_0 of the homomorphism α:

$$\alpha V_0: \hat{A}^* \rightarrow M \times A^*/\equiv V_0 \ x \rightarrow (\alpha(x), [x] \equiv V_0)$$

Construct the image $M \alpha V_0$ of αV_0.

OUTPUT of Step 1:

$\forall x, y \in \hat{A}^*$:

$$\alpha V_0(x) = \alpha V_0(y) \Rightarrow x \equiv V_0 y.$$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:
- locally finite pseudovariety V_0,
Proof of the \(\omega \)-Reducibility of \(V_{1/2} \) - Step 1

- Proof of the \(\omega \)-reducibility of \(V_{1/2} \) inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:

- locally finite pseudovariety \(V_0 \),
- finite alphabet \(A \),
- continuous homomorphism \(\alpha : \hat{A}^* \to M \times A^*/\equiv \).
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:
- locally finite pseudovariety V_0,
- finite alphabet A,
- finite ordered monoid M,

\begin{align*}
\text{OUTPUT of Step 1:} & \\
\text{V}_{0}\text{-compatible onto continuous homomorphism } & \alpha_{V_0} \colon \hat{A}^* \rightarrow M \\
\text{such that } & \forall x, y \in \hat{A}^* : \alpha_{V_0}(x) = \alpha_{V_0}(y) \Rightarrow x \equiv V_0 y.
\end{align*}
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:
- locally finite pseudovariety V_0,
- finite alphabet A,
- finite ordered monoid M,
- continuous homomorphism $\alpha : \hat{A}^* \rightarrow M$.

OUTPUT of Step 1: V_0-compatible onto continuous homomorphism $\alpha : \hat{A}^* \rightarrow M$.
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:
- locally finite pseudovariety V_0,
- finite alphabet A,
- finite ordered monoid M,
- continuous homomorphism $\alpha : \hat{A}^* \rightarrow M$.

Construct the V_0-completion α_{V_0} of the homomorphism α:
- $\alpha_{V_0} : \hat{A}^* \rightarrow M \times A^*/\equiv_{V_0}$
- $x \mapsto (\alpha(x), [x]_{\equiv_{V_0}})$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:
- locally finite pseudovariety V_0,
- finite alphabet A,
- finite ordered monoid M,
- continuous homomorphism $\alpha : \hat{A}^* \rightarrow M$.

Construct the V_0-completion α_{V_0} of the homomorphism α:
- $\alpha_{V_0} : \hat{A}^* \rightarrow M \times A^*/\equiv_{V_0}$
 - $x \mapsto (\alpha(x), [x]_{\equiv_{V_0}})$

Construct the image $M_{\alpha_{V_0}}$ of α_{V_0}.
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1

- Proof of the ω-reducibility of $V_{1/2}$ inspired by the approach of Place and Zeitoun in their papers (2014–2019) on certain properties of levels of concatenation hierarchies.

GIVEN:
- locally finite pseudovariety V_0,
- finite alphabet A,
- finite ordered monoid M,
- continuous homomorphism $\alpha : \hat{A}^* \rightarrow M$.

Construct the V_0-completion α_{V_0} of the homomorphism α:
- $\alpha_{V_0} : \hat{A}^* \rightarrow M \times A^*/\equiv_{V_0}$
- $x \mapsto (\alpha(x), [x]_{\equiv_{V_0}})$

Construct the image $M_{\alpha_{V_0}}$ of α_{V_0}.

OUTPUT of Step 1:
V_0-compatible onto continuous homomorphism $\alpha_{V_0} : \hat{A}^* \rightarrow M_{\alpha_{V_0}}$:
\[\forall x, y \in \hat{A}^* : \alpha_{V_0}(x) = \alpha_{V_0}(y) \Rightarrow x \equiv_{V_0} y. \]
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example
Proof of the \(\omega \)-Reducibility of \(V_{1/2} \) - Step 1 – Example

- \(V_0 = \text{SI} \) (pseudovariety of finite semilattices),
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = SI$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{Sl}$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{Sl}$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha: \hat{A}^* \to M$ defined by $\alpha(a) = a, \alpha(b) = b$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = Sl$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha : \hat{A}^* \to M$ defined by $\alpha(a) = a$, $\alpha(b) = b$

Cayley graph of monoid M:
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{SI}$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha: \widehat{A}^* \to M$ defined by $\alpha(a) = a$, $\alpha(b) = b$

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{\text{SI}}}$:

1. $V_0 = \text{SI}$ (pseudovariety of finite semilattices),
2. $A = \{a, b\}$,
3. $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
4. $\alpha: \widehat{A}^* \to M$ defined by $\alpha(a) = a$, $\alpha(b) = b$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{Sl}$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha: \hat{A}^* \rightarrow M$ defined by $\alpha(a) = a, \alpha(b) = b$

Cayley graph of monoid M:
Cayley graph of monoid $M_{\alpha_{\text{Sl}}}$:

- $\text{Sl} \nvdash aa = 1$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{Sl}$ (pseudovariety of finite semilattices),
- $A = \{a, b\},$
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle,$
- $\alpha: \tilde{A}^* \to M$ defined by $\alpha(a) = a, \alpha(b) = b$

Cayley graph of monoid M:

Cayley graph of monoid $M_{\alpha_{\text{Sl}}}$:

$\text{Sl} \nmid aa = 1$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{Sl}$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha : \hat{A}^* \to M$ defined by $\alpha(a) = a$, $\alpha(b) = b$

Cayley graph of monoid M: Cayley graph of monoid $M_{\alpha_{\text{Sl}}}$:

Sl $\not\models aa = 1$
Sl $\not\models ab = b$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 1 – Example

- $V_0 = \text{SI}$ (pseudovariety of finite semilattices),
- $A = \{a, b\}$,
- $M = \langle a, b \mid aa = 1, ab = bb = b \rangle$,
- $\alpha : \hat{A}^* \to M$ defined by $\alpha(a) = a, \alpha(b) = b$

Cayley graph of monoid M:

Cayley graph of monoid $M_{\alpha_{\text{SI}}}$:

$\text{SI} \not\models aa = 1$

$\text{SI} \not\models ab = b$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties V_n:

$V_0 \subseteq V_1 \subseteq V_2 \subseteq V_3 \subseteq V_4 \subseteq \cdots \subseteq V_{1/2} = \bigcup_{n=1}^{\infty} V_n$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha V_0}|^2 |M_{\alpha V_0}|$. Let $V_{N_{1/2}} = u \leq v$. Then there exist ω-words u', v' satisfying $V_{1/2} = u' \leq v'$, $\alpha_{V_0}(u) = \alpha_{V_0}(u')$, $\alpha_{V_0}(v) = \alpha_{V_0}(v')$. This theorem implies that the pseudovariety $V_{1/2}$ is ω-reducible.

Proven by the induction on the height of a factorization tree of word u for α_{V_0}.

Jana Volaříková

Omega-Reducibility
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V^n_{1/2}$.
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

- $V_{1/2}^0 \subseteq V_{1/2}^1 \subseteq V_{1/2}^2 \subseteq V_{1/2}^3 \subseteq V_{1/2}^4 \subseteq \cdots$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V^n_{1/2}$:

- $V^0_{1/2} \subseteq V^1_{1/2} \subseteq V^2_{1/2} \subseteq V^3_{1/2} \subseteq V^4_{1/2} \subseteq \ldots$
- $V_{1/2} = \bigcup_{n=1}^{\infty} V^n_{1/2}$
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V^n_{1/2}$:

- $V^0_{1/2} \subseteq V^1_{1/2} \subseteq V^2_{1/2} \subseteq V^3_{1/2} \subseteq V^4_{1/2} \subseteq \cdots$
- $V_{1/2} = \bigcup_{n=1}^{\infty} V^n_{1/2}$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha V_0}| \cdot 2^{|M_{\alpha V_0}|}$. Let $V^N_{1/2} \models u \leq v$. Then there exist ω-words u', v' satisfying

- $V_{1/2} \models u' \leq v'$,
- $\alpha_{V_0}(u) = \alpha_{V_0}(u')$, $\alpha_{V_0}(v) = \alpha_{V_0}(v')$.

Jan a Volaříková

Omega-Reducibility
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V^n_{1/2}$:

- $V^0_{1/2} \subseteq V^1_{1/2} \subseteq V^2_{1/2} \subseteq V^3_{1/2} \subseteq V^4_{1/2} \subseteq \cdots$
- $V_{1/2} = \bigcup_{n=1}^{\infty} V^n_{1/2}$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha_{V_0}}| \cdot 2^{|M_{\alpha_{V_0}}|}$. Let $V^N_{1/2} \models u \leq v$. Then there exist ω-words u', v' satisfying

- $V_{1/2} \models u' \leq v'$,
- $\alpha_{V_0}(u) = \alpha_{V_0}(u')$, $\alpha_{V_0}(v) = \alpha_{V_0}(v')$.

This theorem implies that the pseudovariety $V_{1/2}$ is ω-redicible.
Proof of the ω-Reducibility of $V_{1/2}$ - Step 2

Stratification of $V_{1/2}$ into locally finite pseudovarieties $V_{1/2}^n$:

- $V_{1/2}^0 \subseteq V_{1/2}^1 \subseteq V_{1/2}^2 \subseteq V_{1/2}^3 \subseteq V_{1/2}^4 \subseteq \cdots$
- $V_{1/2} = \bigcup_{n=1}^{\infty} V_{1/2}^n$

Theorem (J. V.)

Let $u, v \in A^*$ be arbitrary words and $N = 1 + 9 \cdot |M_{\alpha V_0}| \cdot 2^{|M_{\alpha V_0}|}$. Let $V_{1/2}^N \models u \leq v$. Then there exist ω-words u', v' satisfying

- $V_{1/2} \models u' \leq v'$,
- $\alpha_{V_0}(u) = \alpha_{V_0}(u')$, $\alpha_{V_0}(v) = \alpha_{V_0}(v')$.

- This theorem implies that the pseudovariety $V_{1/2}$ is ω-redicible.
- Proven by the induction on the height of a factorization tree of word u for α_{V_0}.
FACTORIZATION TREE of word \(u \in A^* \) for \(\alpha_{SI} \)
FACTORIZATION TREE

of word $u \in A^*$ for α_{SI}

- labeled rooted tree
FACTORIZATION TREE

of word \(u \in A^* \) for \(\alpha_{SI} \)

- labeled rooted tree
- root labeled by \(u \)

\[\text{height of this factorization tree} = 4 \]
FACTORIZATION TREE

of word $u \in A^*$ for α_{SI}

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$

of node $v \in A^*$:

$v = v_1 \ldots v_n$
FACTORIZATION TREE
of word $u \in A^*$ for α_{SI}

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$
 of node $v \in A^*$:
 $$v = v_1 \ldots v_n$$
- $n > 2 \implies \forall i: \alpha_{SI}(v_i) = e,$
 $$e \cdot e = e$$
FACTORIZATION TREE
of word \(u \in A^* \) for \(\alpha_{SI} \)

- labeled rooted tree
- root labeled by \(u \)
- descendants \(v_1, \ldots, v_n \in A^* \)
of node \(v \in A^* \):
 \[v = v_1 \ldots v_n \]
- \(n > 2 \Rightarrow \forall i: \alpha_{SI}(v_i) = e, \)
 \(e \cdot e = e \)
- leaves labeled by letters \(a, b \)
FACTORIZATION TREE
of word $u \in A^*$ for $\alpha_{\tilde{S}L}$

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 $v = v_1 \ldots v_n$
- $n > 2 \Rightarrow \forall i: \alpha_{\tilde{S}L}(v_i) = e,
 e \cdot e = e$
- leaves labeled by letters a, b

monoid $M_{\alpha_{\tilde{S}L}}$

```
  1  a  b
  a  a  b
  b  a  a
```

height of this factorization tree = 4
FACTORIZATION TREE of word $u \in \mathbb{A}^*$ for $\alpha_{\mathbb{A}^*}$

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in \mathbb{A}^*$ of node $v \in \mathbb{A}^*$:
 $v = v_1 \ldots v_n$
- $n > 2 \Rightarrow \forall i: \alpha_{\mathbb{A}^*}(v_i) = e$,
 $e \cdot e = e$
- leaves labeled by letters a, b

monoid $M_{\alpha_{\mathbb{A}^*}}$

2^{k+1}
FACTORIZATION TREE of word $u \in A^*$ for α_{Sl}

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 $v = v_1 \ldots v_n$
- $n > 2 \Rightarrow \forall i: \alpha_{Sl}(v_i) = e$, $e \cdot e = e$
- leaves labeled by letters a, b

monoid $M_{\alpha_{Sl}}$
FACTORIZATION TREE
of word \(u \in A^* \) for \(\alpha_{\text{Sl}} \)

- labeled rooted tree
- root labeled by \(u \)
- descendants \(v_1, \ldots, v_n \in A^* \) of node \(v \in A^* \):
 \[v = v_1 \ldots v_n \]
- \(n > 2 \Rightarrow \forall i: \alpha_{\text{Sl}}(v_i) = e, \)
 \[e \cdot e = e \]
- leaves labeled by letters \(a, b \)

monoid \(M_{\alpha_{\text{Sl}}} \)
FACTORIZATION TREE
of word $u \in A^*$ for α_{SI}

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 - $v = v_1 \ldots v_n$
- $n > 2 \Rightarrow \forall i: \alpha_{SI}(v_i) = e$
- leaves labeled by letters a, b

monoid $M_{\alpha_{SI}}$

height of this factorization tree = 4
FACTORIZATION TREE
of word $u \in A^*$ for α_{Sl}

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:

 \[v = v_1 \ldots v_n \]

- $n > 2 \Rightarrow \forall i: \alpha_{Sl}(v_i) = e,$

 \[e \cdot e = e \]

- leaves labeled by letters a, b

monoid $M_{\alpha_{Sl}}$
FACTORIZATION TREE
of word $u \in A^*$ for α_{S_1}

- labeled rooted tree
- root labeled by u
- descendants $v_1, \ldots, v_n \in A^*$ of node $v \in A^*$:
 $v = v_1 \ldots v_n$
- $n > 2 \Rightarrow \forall i: \alpha_{S_1}(v_i) = e,$
 $e \cdot e = e$
- leaves labeled by letters a, b

monoid $M_{\alpha_{S_1}}$

height of this factorization tree = 4
Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, $\alpha : A^* \rightarrow M$ a homomorphism. Then, for every word $u \in A^*$, there exists a factorization tree of u for α of height at most $3 \cdot |M|$.
Useful Statements

Theorem (Simon, 1990, Kufleitner, 2008)

Let \(A \) be a finite alphabet, \(M \) a finite monoid, \(\alpha: A^* \rightarrow M \) a homomorphism. Then, for every word \(u \in A^* \), there exists a factorization tree of \(u \) for \(\alpha \) of height at most \(3 \cdot |M| \).

- This theorem allows us to use the induction on the height of a factorization tree.
Theorem (Simon, 1990, Kufleitner, 2008)

Let A be a finite alphabet, M a finite monoid, $\alpha : A^* \to M$ a homomorphism. Then, for every word $u \in A^*$, there exists a factorization tree of u for α of height at most $3 \cdot |M|$.

- This theorem allows us to use the induction on the height of a factorization tree.

The following lemma will be useful.

Lemma (J. V.)

Let $u_1, \ldots, u_k, v \in A^*$ ($k \in \mathbb{N}$), $n \geq k - 1$. Let $V^n_{1/2} \models u_1 \ldots u_k \leq v$. Then there exist $v_1, \ldots, v_k \in A^*$ such that

- $v = v_1 \ldots v_k$,
- $V^{n-(k-1)}_{1/2} \models u_i \leq v_i$ for $i = 1, \ldots, k$.

Omega-Reducibility
\[V_{1/2}^N \models a\ldots a b \leq a\ldots a b \]
$V_{1/2}^N \models a \ldots a b \leq a \ldots a b$

2^{N+1}

2^{N+2}
$V_{1/2}^N \models a\ldots a\, b \leq a\ldots a\, b$

2^{N+1}

2^{N+2}
$$V_{1/2}^N \models a \ldots a \, b \leq a \ldots a \, b$$
\[V_{1/2}^N \models a \ldots a \ b \leq a \ldots a \ b \rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]
\[V_{1/2}^N \models a \ldots a \ b \leq a \ldots a \ b \rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]
$V_{1/2}^N \models a\ldots a\ b \leq a\ldots a\ b \rightarrow V_{1/2}^{N-1} \models a\ldots a \leq a\ldots a,\ ab \leq ab$
\(V_{1/2}^N \models a\ldots a b \leq a\ldots a b \rightarrow V_{1/2}^{N-1} \models a\ldots a \leq a\ldots a, \ ab \leq ab \)
\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b \rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]
\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b \rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b \rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

\[
\begin{array}{c}
\text{a} \ldots \text{a} \\
\text{a} \ldots \text{a} \\
\text{a} \\
\text{a}
\end{array}
\]
\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b \rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[2^{N+1} \quad 2^{N+2} \quad 2^N \quad 2^{N+1} \]

\[V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

\[2^{N-4} \quad 2^{N-3} \]
\[V^{N}_{1/2} \models a \ldots a b \leq a \ldots a b \rightarrow V^{N-1}_{1/2} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[2^{N+1} \quad 2^{N+2} \quad 2^{N} \quad 2^{N+1} \]

\[a \ldots a \]

\[2^N \]

\[a \]

\[aa \]

\[a \]

\[a \]

\[\ldots \]

\[ab \]

\[a \]

\[\]

\[b \]

\[a \]
$V_{1/2}^N \models \underbrace{a \ldots a}_{2^N} b \leq \underbrace{a \ldots a}_{2^N + 2} b \rightarrow V_{1/2}^{N-1} \models \underbrace{a \ldots a}_{2^N} \leq \underbrace{a \ldots a}_{2^N + 1}, \ ab \leq ab$

$\rightarrow V_{1/2}^{N-3} \models \underbrace{a a}_{2^N-4} \leq \underbrace{a a}_{2^N-3}, \ \underbrace{a \ldots a}_{2^N} \leq \underbrace{a \ldots a}_{2^N-1}, \ a a \leq a a, \ a \leq a, \ b \leq b$
\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b \]
\[
\begin{array}{c}
2^{N+1} \\
2^{N+2}
\end{array}
\]

\[\rightarrow \quad V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]
\[
\begin{array}{c}
2^N \\
2^{N+1}
\end{array}
\]

\[\rightarrow \quad V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]
\[
\begin{array}{c}
2^{N-4} \\
2^{N-3}
\end{array}
\]

\[\rightarrow \quad V_{1/2}^{N-4} \models a \leq a, \ a \leq a \]
\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b\]
\[2^{N+1} \quad 2^{N+2}\]

\[\rightarrow \quad V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab\]
\[2^N \quad 2^{N+1}\]

\[\rightarrow \quad V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b\]
\[2^{N-4} \quad 2^{N-3}\]

\[\rightarrow \quad V_{1/2}^{N-4} \models a \leq a, \ a \leq a\]

• \[V_{1/2} \models a \leq a\]
$V_{1/2}^N \models a \ldots a \ b \leq a \ldots a \ b$

\[2^N + 1 \quad 2^N + 2 \]

\[\rightarrow \ V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[2^N \quad 2^N + 1 \]

\[\rightarrow \ V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

\[2^{N-4} \quad 2^{N-3} \]

\[\bullet \ V_{1/2} \models aa \leq aa \]

\[\rightarrow \ V_{1/2}^{N-4} \models a \leq a, \ a \leq a \]

\[\bullet \ V_{1/2} \models a \leq a \]
\(V^{N-1}_{1/2} \models a \ldots a \leq a \ldots a, \ ab \leq ab \)

\(V^{N-3}_{1/2} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \)

- \(V_{1/2} \models aa \leq aa \)
- \(V_{1/2} \models a \leq a, \ b \leq b \)

\(V^{N-4}_{1/2} \models a \leq a, \ a \leq a \)

- \(V_{1/2} \models a \leq a \)
\(V_{1/2}^N \models a \ldots a \, b \leq a \ldots a \, b \)

\[\begin{array}{c}
2^N + 1 \\
2^N + 2
\end{array} \]

\[\vdash V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \, ab \leq ab \]

\[\begin{array}{c}
2^N \\
2^N + 1
\end{array} \]

\[V_{1/2} : = \left[u^{\omega + 1} \leq u^\omega \, vu^\omega \mid V_0 \models u = v \right] \]

\[\vdash V_{1/2}^{N-3} \models aa \leq aa, \, a \ldots a \leq a \ldots a, \, aa \leq aa, \quad a \leq a, \, b \leq b \]

\[\begin{array}{c}
2^{N-4} \\
2^{N-3}
\end{array} \]

- \(V_{1/2} \models aa \leq aa \)
- \(V_{1/2} \models a \leq a, \, b \leq b \)

\[\vdash V_{1/2}^{N-4} \models a \leq a, \, a \leq a \]

- \(V_{1/2} \models a \leq a \)
\[V_{1/2} \models a \ldots a b \leq a \ldots a b \]

\[2^{N+1} \quad 2^{N+2} \]

→ \[V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[2^N \quad 2^{N+1} \]

\[V_{1/2} := \left[u^{\omega+1} \leq u^\omega vu^\omega \mid V_0 \models u = v \right] \]

- \[V_0 = \text{SI} \models aa = a \]

→ \[V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

- \[V_{1/2} \models aa \leq aa \]

- \[V_{1/2} \models a \leq a, \ b \leq b \]

→ \[V_{1/2}^{N-4} \models a \leq a, \ a \leq a \]

- \[V_{1/2} \models a \leq a \]
\[V_{1/2}^{N} \models a \ldots a b \leq a \ldots a b \]
\[2^{N+1} \quad 2^{N+2} \]

\[\rightarrow V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]
\[2^{N} \quad 2^{N+1} \]

\[V_{1/2} := [u^{\omega+1} \leq u^{\omega} vu^{\omega} \mid V_{0} \models u = v] \]

\[\bullet \ V_{0} = Sl \models aa = a \rightarrow V_{1/2} \models (aa)^{\omega+1} \leq (aa)^{\omega} a(aa)^{\omega} \]

\[\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

\[\bullet \ V_{1/2} \models aa \leq aa \]

\[\bullet \ V_{1/2} \models a \leq a, \ b \leq b \]

\[\rightarrow V_{1/2}^{N-4} \models a \leq a, \ a \leq a \]

\[\bullet \ V_{1/2} \models a \leq a \]
\[V_{1/2}^N \models a \ldots a b \leq a \ldots a b \]

\[V_{1/2}^{N-1} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]

\[V_{1/2} := [u^{\omega+1} \leq u^\omega v u^\omega \mid V_0 \models u = v] \]

- \(V_0 = S1 \models aa = a \rightarrow V_{1/2} \models (aa)^{\omega+1} \leq (aa)^\omega a(aa)^\omega \)
- \(V_{1/2} \models ab \leq ab \)

\[V_{1/2}^{N-3} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

- \(V_{1/2} \models aa \leq aa \)
- \(V_{1/2} \models a \leq a, \ b \leq b \)

\[V_{1/2}^{N-4} \models a \leq a, \ a \leq a \]

- \(V_{1/2} \models a \leq a \)
\[V^{N}_{1/2} \models a \ldots a b \leq a \ldots a b \]
\[
\begin{array}{c}
2^N + 1 \\
2^N + 2
\end{array}
\]

- \(V^{N}_{1/2} \models (aa)^{\omega+1} ab \leq (aa)^{\omega} a(aa)^{\omega} ab \)

\[\rightarrow V^{N-1}_{1/2} \models a \ldots a \leq a \ldots a, \ ab \leq ab \]
\[
\begin{array}{c}
2^N \\
2^N + 1
\end{array}
\]

\[V^{N-1}_{1/2} \models [u^{\omega+1} \leq u^{\omega} vu^{\omega} \mid V_0 \models u = v] \]

- \(V_0 = S1 \models aa = a \rightarrow V^{N}_{1/2} \models (aa)^{\omega+1} \leq (aa)^{\omega} a(aa)^{\omega} \)
- \(V^{N}_{1/2} \models ab \leq ab \)

\[\rightarrow V^{N-3}_{1/2} \models aa \leq aa, \ a \ldots a \leq a \ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]
\[
\begin{array}{c}
2^N - 4 \\
2^N - 3
\end{array}
\]

- \(V^{N-3}_{1/2} \models aa \leq aa \)
- \(V^{N-3}_{1/2} \models aa \leq aa \)
- \(V^{N-3}_{1/2} \models a \leq a, \ b \leq b \)

\[\rightarrow V^{N-4}_{1/2} \models a \leq a, \ a \leq a \]

- \(V^{N-4}_{1/2} \models a \leq a \)
- \(V^{N-4}_{1/2} \models a \leq a \)
- \(V^{N-4}_{1/2} \models a \leq a \)
\[V_{1/2}^{N} \models a\ldots a b \leq a\ldots a b \]

\[
\begin{array}{c}
2^{N+1} & 2^{N+2} \\
\end{array}
\]

- \[V_{1/2} \models (aa)^{\omega+1} ab \leq (aa)^{\omega} a(aa)^{\omega} ab \]

\[\rightarrow V_{1/2}^{N-1} \models a\ldots a \leq a\ldots a, \ ab \leq ab \]

\[
\begin{array}{c}
2^{N} & 2^{N+1} \\
\end{array}
\]

\[V_{1/2} := [u^{\omega+1} \leq u^{\omega} v u^{\omega} \mid V_0 \models u = v] \]

- \[V_0 = Sl \models aa = a \rightarrow V_{1/2} \models (aa)^{\omega+1} \leq (aa)^{\omega} a(aa)^{\omega} \]
- \[V_{1/2} \models ab \leq ab \]

\[\rightarrow V_{1/2}^{N-3} \models aa \leq aa, \ a\ldots a \leq a\ldots a, \ aa \leq aa, \ a \leq a, \ b \leq b \]

\[
\begin{array}{c}
2^{N-4} & 2^{N-3} \\
\end{array}
\]

- \[V_{1/2} \models aa \leq aa \]
- \[V_{1/2} \models a \leq a, \ b \leq b \]

\[\rightarrow V_{1/2}^{N-4} \models a \leq a, \ a \leq a \]

- \[V_{1/2} \models a \leq a \]
ω-Reducibility of $V_{3/2}$ and $V_{5/2}$
\(\Omega \)-Reducibility of \(V_{3/2} \) and \(V_{5/2} \)

\(V_{1/2} \)

\(\omega \)-reducibility

of pairs of words

\[
\begin{array}{c}
v \\
1/2 \\
u
\end{array}
\]
\(\omega \)-Reducibility of \(V_{3/2} \) and \(V_{5/2} \)

<table>
<thead>
<tr>
<th>(V_{1/2})</th>
<th>(V_{3/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)-reducibility of pairs of words</td>
<td>(\omega)-reducibility of chains of words</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c}
\frac{v}{1/2} & \frac{w}{3/2} \\
\frac{u}{1/2} & \frac{v}{1/2} \\
\end{array}
\]
ω-Reducibility of $V_{3/2}$ and $V_{5/2}$

$V_{1/2}$

ω-reducibility of pairs of words

$V_{3/2}$

ω-reducibility of chains of words

$V_{5/2}$

ω-reducibility of (finite) ordered sets of words

\[
\begin{array}{ccc}
V_{1/2} & V_{3/2} & V_{5/2} \\
\omega\text{-reducibility of } & \omega\text{-reducibility of } & \omega\text{-reducibility of (finite) ordered sets of words} \\
of \textit{pairs of words} & of \textit{chains of words} & of \textit{sets of words} \\
\hline
v
\begin{array}{c}
1/2 \\
u
\end{array}
& w
\begin{array}{c}
3/2 \\
v
\end{array}
\begin{array}{c}
1/2 \\
u
\end{array}
& \vdots
\begin{array}{c}
1/2 \\
5/2
\end{array}
\begin{array}{c}
1/2 \\
n_3
\end{array}
\begin{array}{c}
3/2 \\
5/2
\end{array}
\begin{array}{c}
1/2 \\
n_5
\end{array}
\begin{array}{c}
3/2 \\
n_7
\end{array}
\begin{array}{c}
1/2 \\
n_9
\end{array}
\end{array}
\]
Thank you for your attention.