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Orthogonality – the omnipresent notion

Motivation

In the Hilbert space model of quantum physics, the
one-dimensional subspaces correspond to the pure states.

The collection of one-dimensional subspaces comes along with
the relation ⊥ of orthogonality.

Given nothing but ⊥, we are able to reconstruct the Hilbert
space model. So we may ask: what is this binary relation like?

Foulis’s suggestion

The minimalist program: develop the theory of sets endowed
with a symmetric and irreflexive binary relation.

————————————————————————————
J. R. Dacey, “Orthomodular spaces”, Ph.D. Thesis, 1968.



Orthosets

Definition

An orthoset (with 0) is a set X together with a binary relation
⊥ and a constant 0 such that:

⊥ is symmetric,

e ⊥ e if and only if e = 0,

0 ⊥ e for any e ∈ X.

The guiding examples

Let H be a Hilbert space.

H, together with ⊥ and the zero vector 0, is an orthoset.

Let P (H) = {⟨x⟩ : x ∈ H} and let ⟨x⟩ ⊥ ⟨y⟩ if x ⊥ y.
Then P (H), together with ⊥ and the zero subspace {0},
is an orthoset.



Orthosets and ortholattices

For a subset A of an orthoset X, let

A⊥ = {x ∈ X : x ⊥ a for all a ∈ A}.

Then P(X)→ P(X), A 7→ A⊥⊥ is a closure operator.
The sets closed w.r.t. ⊥⊥ are called orthoclosed.

An ortholattice is a lattice equipped with an order-reversing
involution ⊥ sending each a to a complement of a.

Lemma

The set C(X) of orthoclosed subsets of X
is a complete ortholattice.



Irredundancy of orthosets

Let X be an orthoset. Two elements e, f ∈ X are called
equivalent, and we write e ∼ f , if

x ⊥ e iff x ⊥ f for any x ∈ X.

In other words, e ∼ f iff {e}⊥ = {f}⊥.

Definition

We call an orthoset X irredundant if ∼ is the equality.

Let X̃ = X/∼, equipped with the induced orthogonality
relation and with 0/∼ = {0}.

Lemma

For any orthoset, X̃ is an irredundant orthoset.
Moreover, C(X̃) and C(X) are isomorphic.



Atomisticity of orthosets

Definition

We call an orthoset X atomistic if, for any e, f ̸= 0,

{e}⊥ ⊆ {f}⊥ implies {e}⊥ = {f}⊥.

If X is atomistic, so is C(X).

Lemma

We have a one-to-one correspondence:

atomistic, irredundant
orthosets

C−−−−→
atom space←−−−−−−−

complete atomistic
ortholattices



Hermitian spaces

Definition

A ⋆-sfield is a division ring together with
an involutive antiautomorphism.

Let H be a linear space over a ⋆-sfield K.
(·, ·) : H ×H → K is called an anisotropic Hermitian form if:

(αx+ βy, z) = α (x, z) + β (y, z) ,

(z, αx+ βy) = (z, x)α⋆ + (z, y)β⋆,

(x, y) = (y, x)⋆ ,

(x, x) = 0 ⇒ x = 0.

Then H equipped with (·, ·) is called a Hermitian space.



Hermitian spaces and ortholattices

For any subset A of a Hermitian space H,

A⊥ = {u ∈ H : u ⊥ a for all a ∈ A}

is a linear subspace called orthoclosed.

Let C(H) be the ortholattice of orthoclosed subspaces of H.

Theorem (cf. Maeda-Maeda)

For a Hermitian space H, C(H) is a complete atomistic
ortholattice that is moreover irreducible and has the covering
property.

Conversely, let L be a complete atomistic ortholattice that is
moreover irreducible and has the covering property. Assume
that L has length ⩾ 4. Then L is isomorphic to C(H) for some
Hermitian space H.



–, with finitary conditions only

Theorem (J. Paseka, Th. V.)

Let L be a complete ortholattice such that:

L is atomistic,

for any distinct atoms p and q, there is an atom r ⊥ p such
that p ∨ q = p ∨ r,

for any distinct atoms p and q, there is a third atom
r ⩽ p ∨ q,

L has length ⩾ 4.

Then L is isomorphic to C(H) for some Hermitian space H.

————————————————————————————
J. Paseka, Th. Vetterlein, Linear orthosets and orthogeometries,
Int. J. Theor. Phys. 2023.



Linear orthosets

Definition

An orthoset (X,⊥) is called linear if,
for any distinct e, f ̸= 0, there is a g ∈ X such that
exactly one of f and g is orthogonal to e and {e, f}⊥ = {e, g}⊥.

Theorem (J. Paseka, Th. V.)

For any Hermitian space H, the orthoset (P (H),⊥) is linear.
Conversely, for any linear orthoset X of rank ⩾ 4, there is a
Hermitian space H such that X is isomorphic to P (H).

Consequently, we have a one-to-one correspondence:

linear orthosets
(rank ⩾ 4)

−−−−−→
P←−−−−

Hermitian spaces
(dimension ⩾ 4)



Categories

Problem

Can we extend the correspondence between orthosets and
Hermitian spaces to include structure-preserving maps?

Approaches in this context:

Faure, Fröhlicher: category of orthogeometries with
partial maps preserving collinearity and orthogonality;

J. Paseka, Th. V.: category of normal orthosets with
maps preserving orthogonality and Boolean substructures;

C. Heunen, A. Kornell, et al.: category of Hilbert
spaces with bounded linear maps.

————————————————————————————
C.-A. Faure, A. Frölicher, “Modern projective geometry”, Kluwer 2000.
J. Paseka, Th. Vetterlein, Categories of orthogonality spaces,
J. Pure Appl. Algebra 2021.
Ch. Heunen, A. Kornell, Axioms for the category of Hilbert spaces,
Proc. Natl. Acad. Sci. USA 2022.



Our choice of structure-preserving maps

Definition

Let f : X → Y be a map between orthosets.

Then g : Y → X is called an adjoint of f if,
for any x ∈ X and y ∈ Y

f(x) ⊥ y if and only if x ⊥ g(y).

A map possessing an adjoint is called adjointable.



Linear maps induce adjointable maps

Each linear map S : H1 → H2 between Hermitian spaces
induces the map

P (S) : P (H1)→ P (H2), ⟨u⟩ 7→ ⟨S(u)⟩

between the associated orthosets.

Proposition

Let S : H1 → H2 be a linear map between Hermitian spaces.
Assume that

either H1, H2 are finite-dimensional

or H1, H2 are Hilbert spaces and S is bounded.

Then P (S) is adjointable,
and P (S⋆) is the unique adjoint of P (S).

(Here, S⋆ is the adjoint of S in the usual sense).



Towards the converse

Adjointable maps preserve linear dependence:

Proposition

Let f : X → Y be adjointable. Then, for any x1, x2 ∈ X,

x ∈ {x1, x2}⊥⊥ implies f(x) ∈ {f(x1), f(x2)}⊥⊥.

Adjointable maps do not in general preserve orthogonality. But:

Proposition

Let f : X → Y be an adjointable bijection. Then f is an
isomorphism of orthosets if and only if f−1 is an adjoint of f .



Adjointable maps are induced by semilinear maps

Let H1 and H2 be Hermitian spaces over a ⋆-sfield F .

S : H1 → H2 is called semilinear if

S(u+ v) = S(u) + S(v) for u, v ∈ H1,

S(αu) = ασS(u) for u ∈ H1, α ∈ F ,
where σ : F → F is a homomorphism (of sfields).

From Faure and Frölicher’s version of the Fundamental
Theorem of Projective Geometry, we infer:

Theorem (J. Paseka, Th. V.)

Let f : P (H1)→ P (H2) be adjointable
and let im f not be contained in a subspace of rank ⩽ 2.
Then f is induced by a semilinear map S : H1 → H2.



Adjoints of inclusion maps

Definition

Let A be a subspace of an orthoset X. A map σ : X → A such
that, for any x ∈ X,

{a ∈ A : a ⊥ x} = {a ∈ A : a ⊥ σ(x)}

is called a Sasaki map.

Proposition

Let A be a subspace of an orthoset X.
Then σ : X → A is a Sasaki map if and only if σ is an adjoint of
the inclusion map ι : A→ X.

————————————————————————————
B. Lindenhovius, Th. Vetterlein, A characterisation of orthomodular spaces
by Sasaki maps, Int. J. Theor. Phys. 2023.



Adjointability and the linearity of orthosets

Theorem (B. Lindenhovius, Th. V.)

Let X be an irreducible atomistic orthoset of rank ⩾ 4.
Assume that, for any subspace A of X, the inclusion map
ι : A→ X has an adjoint.

Then X is linear. In fact, there is an orthomodular space H
such that X is isomorphic to P (H).



Adjoint maps and not irredundant orthosets

Adjointable maps preserve equivalence:

Lemma

Let f : X → Y be an adjointable map between orthosets.

Then x1 ∼ x2 implies f(x1) ∼ f(x2). Hence we can define

f̃ : X̃ → Ỹ , x̃ 7→ f̃(x).

Moreover, if g is an adjoint of f , then g̃ is the unique adjoint
of f̃ and vice versa.



Dagger categories

A dagger category is a category equipped with an operation ⋆

that assigns to each morphism f : X → Y a morphism
f⋆ : Y → X such that f⋆⋆ = f , (g ◦ f)⋆ = f⋆ ◦ g⋆, and id⋆ = id.

Basic examples:

PfHerF for a ⋆-sfield F :

◦ orthosets P (H), where H is a finite-dimensional Hermitian
space over F ,

◦ maps P (S) : P (H1)→ P (H2) for a linear S : H1 → H2,
◦ dagger P (S)⋆ = P (S⋆).

PHilF for F ∈ {R,C,H}:
◦ orthosets P (H), where H is a Hilbert space over F ,
◦ maps P (S) : P (H1)→ P (H2) for a bounded linear S,
◦ dagger P (S)⋆ = P (S⋆).

fBool:

◦ finite Boolean algebras;
◦ bijections between subsets of their atom spaces,
◦ dagger is inversion.



Some definitions for dagger categories

In a dagger category, 0 is a zero object if there is, for any
A, a unique morphism 0→ A (and hence also A→ 0).
We write 0A,B for A→ 0→ B.

A dagger biproduct of A and B is a coproduct

A A⊕B B
ιA ιB

such that ιA
⋆ ◦ ιA = idA, ιB

⋆ ◦ ιB = idB, and
ιB

⋆ ◦ ιA = 0A,B.

f is a dagger isomorphism if f⋆ ◦ f = id and f ◦ f⋆ = id.

A is called indecomposable if A is not the dagger biproduct
of a pair of non-zero objects.

————————————————————————————
Ch. Heunen, M. Karvonen, Limits in dagger categories,
Theory Appl. Categ. 2019.



A description of PfHerF

Theorem (J. Paseka, Th. V.)

Let C be a dagger category whose objects are orthosets of finite
rank, whose morphisms are maps between them, and whose
dagger assigns to each morphism an adjoint.

(1) C has finite dagger biproducts.

(2) Let A be a subspace of X. Then A and A⊥ belong to C

and A X A⊥ιA ι
A⊥

is the dagger biproduct of A
and A⊥, where ιA and ιA⊥ are the inclusion maps.

(3) Any singleton orthoset in C is indecomposable.

(4) Any two singleton orthosets in C are dagger isomorphic.

Let then C̃ be the category whose objects are X̃ for each
orthoset X in C, whose morphisms are f̃ for each morphism f
in C, and whose dagger assigns f̃⋆ to f̃ . Then C̃ is equivalent
either to fBool, or to PfHerF for some ⋆-sfield F .



Conclusion

Hilbert spaces – and more generally Hermitian spaces –
are characterised by their associated orthosets, so-called
linear orthosets.

Maps f : X → Y and g : Y → X between orthosets form an
adjoint pair provided that

f(x) ⊥ y iff x ⊥ g(y), x ∈ X, y ∈ Y.

Adjointable maps between linear orthosets correspond
closely to linear maps of Hermitian spaces.

The requirement that inclusion maps are adjointable even
replaces the linearity condition for orthosets.

As a consequence, we may describe the category of
(projective) finite-dimensional Hermitian spaces by means
of orthosets and adjointable maps.

The characterisation uses a biproduct but no tensor
product.



Outlook

Further issues:

Describe fHerF without the formation of a quotient.

To this end, discover the “internal structure” of the
equivalence classes of the orthosets in C subject to the
above conditions.

Describe the category of Hilbert spaces in a similar manner.

What happens when dropping the conditions involving
singleton orthosets?


