Abstract commutator theory in concrete classes

David Stanovský

Charles University, Prague, Czech Republic

Summer School on Algebras and Ordered Sets, September 2023

Part I:

Solvability and nilpotence: the beginnings and motivation

Part II:

Abelianness and Centrality: examples and module representation

Part III: The commutator in specific varieties

The commutator

Centralizing relation for congruences α, β, δ of an algebra *A*:

 $C(\alpha, \beta; \delta)$ iff

for every term $t(x_1, \ldots, x_m, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b$, $u_i \stackrel{\beta}{\equiv} v_i$

$$t(a, \bar{u}) \stackrel{\delta}{\equiv} t(a, \bar{v}) \Rightarrow t(b, \bar{u}) \stackrel{\delta}{\equiv} t(b, \bar{v})$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$.

The commutator

Centralizing relation for congruences α, β, δ of an algebra *A*:

 $C(\alpha, \beta; \delta)$ iff

for every term $t(x_1, \ldots, x_m, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b$, $u_i \stackrel{\beta}{\equiv} v_i$

$$t(a, \overline{u}) \stackrel{\delta}{\equiv} t(a, \overline{v}) \Rightarrow t(b, \overline{u}) \stackrel{\delta}{\equiv} t(b, \overline{v})$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$.

A congruence α of A is called

- abelian if $C(\alpha, \alpha; 0_A)$, i.e., if $[\alpha, \alpha] = 0_A$.
- central if $C(\alpha, 1_A; 0_A)$, i.e., if $[\alpha, 1_A] = 0_A$.

An algebra A is called *solvable*, resp. *nilpotent*, if there are congruences α_i such that

$$\mathbf{0}_{\mathcal{A}} = \alpha_{\mathbf{0}} \leq \alpha_{\mathbf{1}} \leq \ldots \leq \alpha_{\mathbf{k}} = \mathbf{1}_{\mathcal{A}}$$

and α_{i+1}/α_i is an *abelian*, resp. *central* congruence of A/α_i , for all *i*.

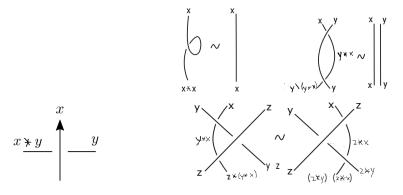
QUANDLES

Quandles

A binary algebra $(Q, *, \setminus)$ is called a *quandle* if

(I) x * x = x
(II) for all x, y there is a unique u such that x * u = y
(III) x * (y * z) = (x * y) * (x * z)

Motivation: knot theory



Quandles

A binary algebra $(Q, *, \backslash)$ is called a *quandle* if (1) x * x = x(11) for all x, y there is a unique u such that x * u = y(111) x * (y * z) = (x * y) * (x * z)

Examples:

- group conjugation: (G, *), $x * y = xyx^{-1}$
- affine forms over abelian groups: (G, *), x * y = (1 f)(x) + f(y)

• ...

• latin quandles = (left) self-distributive quasigroups [since 1923!]

Quandles and associated groups

A binary algebra $(Q, *, \setminus)$ is called a *quandle* if

•
$$x * x = x$$

• all left translations $L_x(y) = x * y$ are automorphisms.

Left multiplication group, displacement group:

$$ext{LMlt}(\mathcal{Q}) = \langle L_x : x \in \mathcal{Q} \rangle \leq ext{Aut}(\mathcal{Q}) \\ ext{Dis}(\mathcal{Q}) = \langle L_x L_y^{-1} : x, y \in \mathcal{Q} \rangle \leq ext{LMlt}(\mathcal{Q})$$

Q is connected if LMlt(Q) acts transitively.

Commutator theory for quandles

[Bonatto, S. 2021]

Let $N(Q) = \{N \leq \text{Dis}(Q) : N \text{ is normal in } \text{LMlt}(Q)\}$

There is a Galois correspondence

$$Con(Q) \longleftrightarrow N(Q)$$

$$\alpha \to \text{Dis}_{\alpha} = \langle L_x L_y^{-1} : x \alpha y \rangle$$

$$\alpha_N = \{ (x, y) : L_x L_y^{-1} \in N \} \leftarrow N$$

Commutator theory for quandles

[Bonatto, S. 2021]

Let $N(Q) = \{N \leq \text{Dis}(Q) : N \text{ is normal in } \text{LMlt}(Q)\}$

There is a Galois correspondence

$$Con(Q) \longleftrightarrow N(Q)$$

$$\alpha \to \text{Dis}_{\alpha} = \langle L_x L_y^{-1} : x \alpha y \rangle$$

$$\alpha_N = \{ (x, y) : L_x L_y^{-1} \in N \} \leftarrow N$$

Proposition

TFAE for congruences α, β of a quandle Q:

- α centralizes β over 0_Q , i.e., $C(\alpha, \beta; 0_Q)$
- 2 $[Dis_{\alpha}, Dis_{\beta}] = 1$ and Dis_{β} acts α -semiregularly on Q

$$\alpha$$
-semiregularly means $g(a) = a \Rightarrow g(b) = b$ for every $b \stackrel{\alpha}{\equiv} a$

Abelian, nilpotent, and solvable quandles

[Jedlička, Pilitowska, S, Zamojska-Dzienio, 2018] [Bonatto, S, 2021]

quandle		$\mathrm{Dis}(\mathcal{Q})$
affine	\Leftrightarrow	abelian, semiregular, "balanced"
\Downarrow		\Downarrow
abelian	\Leftrightarrow	abelian, semiregular
\Downarrow		\Downarrow
nilpotent	\Leftrightarrow	nilpotent
\Downarrow		\Downarrow
solvable	\Leftrightarrow	solvable

Moreover, for finite connected faithful quandles: nilpotent \Rightarrow direct product of connected quandles of prime power size.

Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

```
Theorem: [Sherman Stein, 1957]
There are no latin quandles of order \equiv 2 \pmod{4}.
Proof:
1) Assume it is simple. Then
solvable \Rightarrow abelian \Rightarrow affine \Rightarrow order p^k \Rightarrow contradiction [Joyce, 1982]
2) Take the smallest counterexample, take a non-trivial congruence, either
the factor or a block are smaller of this order.
```

Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then $\operatorname{LMlt}(Q)$ is solvable.

Corollary: Finite latin quandles are solvable.

```
Theorem: [Sherman Stein, 1957]

There are no latin quandles of order \equiv 2 \pmod{4}.

Proof:

1) Assume it is simple. Then

solvable \Rightarrow abelian \Rightarrow affine \Rightarrow order p^k \Rightarrow contradiction [Joyce, 1982]

2) Take the smallest counterexample, take a non-trivial congruence, either

the factor or a block are smaller of this order.
```

More complicated results: [Bianco, Bonatto, around 2020] Classification of latin quandles of order pq, connected quandles of order p^3 , ...

Application: coloring knots by latin quandles

Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

Corollary: Knots with trivial Alexander polynomial are not colorable by any finite latin quandle.

Proof idea:

(1) Bae's theorem: a knot admits a non-trivial coloring by an affine quandle if and only if its Alexander polynomial is non-trivial.
(2) Lemma: If c is a non-trivial coloring of K by a quandle Q, and Q = ⟨Im(c)⟩, then K is colorable by every simple factor of Q.
→ If Q is finite latin, it is solvable, hence all simple factors are affine, and the two facts contradict.

LOOPS

Loops

= "non-associative groups"

= (Q, \cdot, /, \backslash, 1) such that 1 is a unit, $/, \backslash$ are division operations wrt \cdot

Translations:

$$L_x(y) = x \cdot y, \quad R_x(y) = y \cdot x$$

Multiplication group:

$$\operatorname{Mlt}(Q) = \langle L_x, R_x : x \in Q \rangle \leq S_Q$$

Inner mapping group:

$$\mathrm{Inn}(Q) = (\mathrm{Mlt}(Q))_1 = \langle L_{x,y}, R_{x,y}, T_x : x, y \in Q \rangle \leq \mathrm{Mlt}(Q)$$

where

$$L_{x,y}(z) = (xy) \setminus x(yz), \quad R_{x,y}(z) = (zy)x/(yx), \quad T_x(z) = x \setminus zx$$

"Naive" commutator theory

[Albert, Bruck, 1940s]

Easy fact: congruences correspond to normal subloops, i.e., subloops invariant with respect to action of Inn(Q).

The center:

$$Z(Q) = \operatorname{Fix}(\operatorname{Inn}(Q)) =$$

 $= \{a: ax = xa, a(xy) = (ax)y, x(ay) = (xa)y, x(ya) = (xy)a \text{ for all } x, y\}.$

A loop Q is called *(classically) solvable*, resp. *nilpotent*, if there are normal subloops N_i such that

$$1 = N_0 \le N_1 \le \dots \le N_k = Q$$

and N_{i+1}/N_i is an *abelian group*, resp. *contained in the center* $Z(Q/N_i)$, for all *i*.

David Stanovský

"The" commutator theory

[S, Vojtěchovský, 2014] [Barnes, 2023]

Main theorem:

 $[A,B] = \operatorname{Ng}(I_{u_1,u_2}(a) \setminus I_{v_1,v_2}(a) : I \in \{L, R, T\}, u_i \setminus v_i \in B, a \in A).$

Consequently,

•
$$[N, Q] = 1$$
 iff $N \le Z(Q)$,

• [N,N] = 1 iff $I_{u_1,u_2}|_N = I_{v_1,v_2}|_N$ for every $I \in \{L, R, T\}, u_i \setminus v_i \in B$.

• [N, N] = 1 iff $\varphi|_N \in Aut(N)$ for every $\varphi \in Inn(Q)$ and certain commutators/associators vanish.

Hence, comparing to the "naive" definitions,

- centrality and nilpotence agree,
- abelianness and solvability disagree.

[Drápal 2023] solvability agrees in Moufang loops

Nilpotent loops

• $|Q| = p^k \Rightarrow Q$ is nilpotent

- true for groups [quite easy]
- true for Moufang loops [quite difficult, Glaubermann, Wright 1968]
- false in general: loops of order p are abelian groups or counterexamples
- Q finite nilpotent $\Rightarrow Q \simeq \prod Q_p$ where Q_p are nilp. loops of order p^k
 - true for groups [not difficult]
 - true for Moufang loops [quite difficult, Glaubermann, Wright 1968]
 - false in general: a loop of order 6 is nilpotent, directly indecomposable

 \Rightarrow supernilpotence ???

Higher commutator, supernilpotence

 $C_n(\alpha_1, ..., \alpha_{n-1}; \beta; \gamma)$ iff for every term t and every $\bar{a}_i \stackrel{\alpha_i}{\equiv} \bar{b}_i, \ \bar{u} \stackrel{\beta}{\equiv} \bar{v}$

$$egin{aligned} t(ar{x}_1,...,ar{x}_n,ar{u}) &\stackrel{\delta}{=} t(ar{x}_1,...,ar{x}_n,ar{v}) & orall (ar{x}_1,...,ar{x}_n) \in \{ar{a}_1,ar{b}_1\} imes ... imes \{ar{a}_n,ar{b}_n\} \ &
otag \{(ar{b}_1,...,ar{b}_n)\} \ &
otag \{(ar{b}_1,...,ar{b}_n)\} \ &
otag \} \end{aligned}$$

$$t(\bar{b}_1,...,\bar{b}_n,\bar{u}) \stackrel{\delta}{\equiv} t(\bar{b}_1,...,\bar{b}_n,\bar{v}).$$

The *n*-ary commutator $[\alpha_1, ..., \alpha_n]$ is the smallest δ such that $C_n(\alpha_1, ..., \alpha_{n-1}; \alpha_n; \delta)$.

 $\mathsf{Fact:} \ [\alpha_1,...,\alpha_n] \ge [\alpha_1, [\alpha_2, [..., [\alpha_{n-1}, \alpha_n]]]] \quad (\mathsf{in Mal'tsev varieties})$

Higher commutator, supernilpotence

 $C_n(\alpha_1, ..., \alpha_{n-1}; \beta; \gamma)$ iff for every term t and every $\bar{a}_i \stackrel{\alpha_i}{\equiv} \bar{b}_i, \ \bar{u} \stackrel{\beta}{\equiv} \bar{v}$

$$egin{aligned} t(ar{x}_1,...,ar{x}_n,ar{u}) &\stackrel{\delta}{\equiv} t(ar{x}_1,...,ar{x}_n,ar{v}) & orall (ar{x}_1,...,ar{x}_n) \in \{ar{a}_1,ar{b}_1\} imes ... imes \{ar{a}_n,ar{b}_n\} \ &
otag \{(ar{b}_1,...,ar{b}_n)\} \ &
otag \{(ar{b}_1,...,ar{b}_n)\} \ &
otag \} \end{aligned}$$

$$t(\bar{b}_1,...,\bar{b}_n,\bar{u}) \stackrel{\delta}{\equiv} t(\bar{b}_1,...,\bar{b}_n,\bar{v}).$$

The *n*-ary commutator $[\alpha_1, ..., \alpha_n]$ is the smallest δ such that $C_n(\alpha_1, ..., \alpha_{n-1}; \alpha_n; \delta)$.

 $\mathsf{Fact:} \ [\alpha_1,...,\alpha_n] \ge [\alpha_1, [\alpha_2, [..., [\alpha_{n-1}, \alpha_n]]]] \quad (\mathsf{in Mal'tsev varieties})$

An algebra is *k*-supernilpotent if $[1_A, ..., 1_A] = 0_A$.

Supernilpotence - a better "definition"

Theorem: [Aichinger, Mudrinski, 2010] In Mal'tsev varieties,

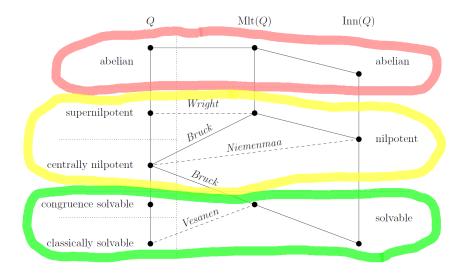
- an algebra is k-supernilpotent if and only if all absorbing polynomials of arity > k are constant.
- ② a finite algebra is k-supernilpotent if and only if A ≃ ∏ A_p where A_p is a nilpotent algebra of order power of p

A polynomial is *absorbing* if $p(a_1, ..., a_n) = 1$ whenever at least one $a_i = 1$. Examples: [x, y], [x, y, z], $L_{x,y}(z)/z$, ..., [xy, u]/([x, u][y, u]), ... Theorem: [Aichinger, Ecker, 2006; S, Vojtěchovský 2023] A group is *k*-supernilpotent iff *k*-nilpotent.

In general, not at all.

- k-supernilpotence \Rightarrow k-nilpotence
- ② nilpotence ⇒ supernilpotence
- \bigcirc the degree of supernilpotence can be >> degree of nilpotence

Big picture



Equational basis for 1,2-supernilpotence

Let [x, y] and [x, y, z] be any terms such that, in all loops,

$$\llbracket x, y \rrbracket = 1 \iff xy = yx$$
$$\llbracket x, y, z \rrbracket = 1 \iff x(yz) = (xy)z$$

Example: the standard commutator and associator

$$\llbracket x, y \rrbracket = (yx) \setminus (xy), \ \llbracket x, y, z \rrbracket = x(yz) \setminus (xy)z$$

Equational basis for 1,2-supernilpotence

Let $[\![x, y]\!]$ and $[\![x, y, z]\!]$ be any terms such that, in all loops,

$$\llbracket x, y \rrbracket = 1 \iff xy = yx$$
$$\llbracket x, y, z \rrbracket = 1 \iff x(yz) = (xy)z$$

Example: the standard commutator and associator

$$\llbracket x, y \rrbracket = (yx) \setminus (xy), \ \llbracket x, y, z \rrbracket = x(yz) \setminus (xy)z$$

Easy facts:

1-supernilpotence: $[\![x, y]\!] = [\![x, y, z]\!] = 1$ (abelian groups) 2-supernilpotence: $[\![x, [\![y, z]\!]]\!] = [\![x, y, z]\!] = 1$ (2-nilpotent groups) A group is *k*-nilpotent if and only if $[x_1, [x_2, [..., [x_k, x_{k+1}]]]] = 1$

Equational basis for 3-supernilpotence

[S, Vojtěchovský, 2023]

TFAE for a loop Q:

- Q is 3-supernilpotent
- Q satisfies the following identities for all $[\![.,.]\!],$ $[\![.,.,.]\!]$
- Q satisfies the following identities for the standard $[\![.,.]\!],\,[\![.,.,.]\!]$

$$1 = [x, [y, u, v]]$$
(1)

$$1 = [x, y, [u, v, w]] = [x, [u, v, w], y] = [[u, v, w], x, y]$$
(2)

$$1 = [x, y, [u, v]] = [x, [u, v], y] = [[u, v], x, y]$$
(3)

$$1 = [x, [y, [u, v]]] = [x, [[u, v], y]]$$
(4)

$$1 = [[y, [u, v]], x] = [[[[u, v], y]], x]$$
(5)

$$1 = [[x, y], [u, v]]$$
(6)

$$[xy, u, v] = [x, u, v] [y, u, v]$$
(6)

$$[xy, u, v] = [u, x, v] [y, u, v]$$
(7)

$$[u, xy, v] = [u, x, v] [u, y, v]$$
(8)

$$[u, v, xy] = [u, v, x] [u, v, y]$$
(9)