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Part I:
Solvability and nilpotence: the beginnings and motivation

Part Il
Abelianness and Centrality: examples and module representation

Part |11

The commutator in specific
varieties
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The commutator
Centralizing relation for congruences «, 3,9 of an algebra A:

C(a, B;0) iff
for every term t(x1,...,Xm,¥1,--.,¥n) and every a Zb U=y
2 t(a,7) = t(b,a) = t(b,7)

t(a, )

The commutator [« 5] is the smallest ¢ such that C(a, 3;9).
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The commutator
Centralizing relation for congruences «, 3,9 of an algebra A:
Cla, 3;0) iff

B
for every term t(x1,...,Xm, Y1,.-.,Yn) and every a Zbou=

t(a, @) 2 t(a,7) = t(b,d)= t(b,7)

The commutator [« 5] is the smallest ¢ such that C(a, 3;9).
A congruence « of A is called

e abelian if C(a, @;0,4), ie., if [a,a] = 0a.

o central if C(c,14;04), i.e., if [, 14] = 0a.

An algebra A is called solvable, resp. nilpotent, if there are congruences «;
such that

Oa=apg<ar <...<ap=1x

and a1/ is an abelian, resp. central congruence of A/«;, for all i.
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QUANDLES



Quandles
A binary algebra (Q, x,\) is called a quandle if
() x*x=x
(I1) for all x,y there is a unique u such that xxu =y

() x*(y*xz) = (x*y)*(x*2z)
(b ~ <>\{wx
x v\ iy

y

wie BN

z ‘D‘(‘}*ﬂ z (1’Ky) (2%%)

Motivation: knot theory

8
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Quandles

A binary algebra (Q, x,\) is called a quandle if

() x*x=x

(1) for all x,y there is a unique u such that x x u =y
() x*(y*xz) = (x*y)*(x*2z)

Examples:
. . . o _1
@ group conjugation: (G, %), x x y = xyx
o affine forms over abelian groups: (G,x), x*xy = (1 — f)(x) + f(y)
o ...

o latin quandles = (left) self-distributive quasigroups [since 1923!]
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Quandles and associated groups

A binary algebra (Q, *,\) is called a quandle if
@ X*kX =X

@ all left translations Ly(y) = x * y are automorphisms.

Left multiplication group, displacement group:

LMIt(Q) = (Lx : x € Q) < Aut(Q)
Dis(Q) = (LxL, " : x,¥ € Q) < LMIt(Q)

Q is connected if LMIt(Q) acts transitively.
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Commutator theory for quandles

[Bonatto, S. 2021]
Let N(Q) = {N < Dis(Q) : N is normal in LMIt(Q)}
There is a Galois correspondence

Con(Q) +— N(Q)

a — Dis, = (LXL;1 txay)
ay = {(x,y) : LXL;1 eN} <+ N
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Commutator theory for quandles
[Bonatto, S. 2021]

Let N(Q) = {N < Dis(Q) : N is normal in LMIt(Q)}

There is a Galois correspondence

Con(Q) +— N(Q)

a — Dis, = (LXL;1 txay)
ay = {(x,y): LXL;1 eN}«+— N

Proposition

TFAE for congruences «, 8 of a quandle Q:
© « centralizes 3 over 0q, i.e., C(a, 3;00)
@ [Disq,, Disg] = 1 and Disg acts a-semiregularly on Q

a-semiregularly means g(a) = a = g(b) = b for every b =3
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Abelian, nilpotent, and solvable quandles

[Jedlitka, Pilitowska, S, Zamojska-Dzienio, 2018] [Bonatto, S, 2021]

quandle Dis(Q)
affine < abelian, semiregular, " balanced”

4 I

abelian <& abelian, semiregular
U I

nilpotent < nilpotent
4 I

solvable <« solvable

Moreover, for finite connected faithful quandles:
nilpotent = direct product of connected quandles of prime power size.
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Application: enumeration of quandles
Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMIt(Q) is solvable.

Corollary: Finite latin quandles are solvable.
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Application: enumeration of quandles
Theorem: [Alexander Stein, 2001]
If Q is a finite latin quandle, then LMIt(Q) is solvable

Corollary: Finite latin quandles are solvable.

Theorem: [Sherman Stein, 1957]

There are no latin quandles of order = 2 (mod 4).
Proof:

1) Assume it is simple. Then

solvable = abelian = affine = order pX = contradiction [Joyce, 1982]

2) Take the smallest counterexample, take a non-trivial congruence, either
the factor or a block are smaller of this order.
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Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMIt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

Theorem: [Sherman Stein, 1957]

There are no latin quandles of order = 2 (mod 4).
Proof:

1) Assume it is simple. Then

solvable = abelian = affine = order pX = contradiction [Joyce, 1982]

2) Take the smallest counterexample, take a non-trivial congruence, either
the factor or a block are smaller of this order.

More complicated results: [Bianco, Bonatto, around 2020]

Classification of latin quandles of order pq, connected quandles of order
3
p>, ...
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Application: coloring knots by latin quandles

Theorem: [Alexander Stein, 2001]
If Q is a finite latin quandle, then LMIt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

Corollary: Knots with trivial Alexander polynomial are not colorable by any
finite latin quandle.

Proof idea:

(1) Bae's theorem: a knot admits a non-trivial coloring by an affine
quandle if and only if its Alexander polynomial is non-trivial.

(2) Lemma: If ¢ is a non-trivial coloring of K by a quandle @, and

Q = (Im(c)), then K is colorable by every simple factor of Q.

~ If @ is finite latin, it is solvable, hence all simple factors are affine, and
the two facts contradict.
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LOOPS



Loops
= “non-associative groups”

=(Q,-,/,\,1) such that 1 is a unit, /,\ are division operations wrt -

Translations:
Ly)=x-y, Ry)=y-x

Multiplication group:
MIt(Q) = (Lx, R : x € Q) < Sg
Inner mapping group:

Inn(Q) = (MIt(Q))1 = (L, Ry, Tx 1 X,y € Q) < MIt(Q)

where
Ley(z) = (xy)\x(yz), Rey(2) = (2y)x/(yx), Ti(z) = x\2x
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“Naive” commutator theory

[Albert, Bruck, 1940s]

Easy fact: congruences correspond to normal subloops, i.e., subloops
invariant with respect to action of Inn(Q).

The center:
Z(Q) = Fix(Inn(Q)) =
={a: ax = xa, a(xy) = (ax)y, x(ay) = (xa)y, x(ya) = (xy)a for all x, y}.

A loop Q is called (classically) solvable, resp. nilpotent, if there are normal
subloops N; such that

I1=No <M <. .<Ne=@Q

and N;1/N; is an abelian group, resp. contained in the center Z(Q/N;),
for all /.
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“The” commutator theory

[S, Vojt&chovsky, 2014] [Barnes, 2023]

Main theorem:

[A, Bl = Ng(lyy u,(a)\ Iy, vo(a) - 1 €{L,R, T}, ui\vi € B,a € A).

Consequently,
o [N,Q]=1iff N <Z(Q),
o [N,N]=1iff Iy u,|n = Iy v|n forevery I € {L,R, T}, uj\v; € B.
o [N,N]=1iff ¢|y € Aut(N) for every ¢ € Inn(Q) and certain
commutators/associators vanish.
Hence, comparing to the “naive” definitions,
@ centrality and nilpotence agree,

@ abelianness and solvability disagree.

[Drapal 2023] solvability agrees in Moufang loops
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Nilpotent loops

o |Q| =p" = Qs nilpotent
e true for groups [quite easy]
e true for Moufang loops [quite difficult, Glaubermann, Wright 1968]
o false in general: loops of order p are abelian groups or counterexamples

e Q finite nilpotent = Q ~ [ Qp where Qp are nilp. loops of order pX

e true for groups [not difficult]
e true for Moufang loops [quite difficult, Glaubermann, Wright 1968]
o false in general: a loop of order 6 is nilpotent, directly indecomposable

= supernilpotence 777
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Higher commutator, supernilpotence

Colag,...,cen1; B; ) iff for every term t and every 3;

t(Xe, ..., Xn, V) Y(Xe,..., %) € {31, b1} x ... x {3n, bn}

# {(b1, .., bn)}

t(X1, .vey X, O)

The n-ary commutator [cv, ..., ] is the smallest ¢ such that
Co(oa, ..., ap_1;ap; 9).

Fact: [al, c Oé,,] > [011, [az, [, [a,,_l, Ozn]]]] (in Mal'tsev varieties)
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Higher commutator, supernilpotence

Colag,...,cen1; B; ) iff for every term t and every 3;

t(Xe, ..., Xn, V) Y(Xe,..., %) € {31, b1} x ... x {3n, bn}

# {(b1, .., bn)}

t(X1, .vey X, O)

The n-ary commutator [cv, ..., ] is the smallest ¢ such that
Co(oa, ..., ap_1;ap; 9).

Fact: [al, c Oé,,] > [011, [az, [, [a,,_l, Ozn]]]] (in Mal'tsev varieties)

An algebra is k-supernilpotent if [14,...,14] = 0a.
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Supernilpotence — a better “definition”

Theorem: [Aichinger, Mudrinski, 2010]
In Mal'tsev varieties,

© an algebra is k-supernilpotent if and only if all absorbing polynomials
of arity > k are constant.

@ a finite algebra is k-supernilpotent if and only if A~ [[ A, where A,
is a nilpotent algebra of order power of p

A polynomial is absorbing if p(a1, ..., a,) = 1 whenever at least one a; = 1.
Examples: [x,y], [x,y, 2], Lxy(2)/z, ... [xy,u]/([x, u]ly, d]), ...
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Supernilpotent groups

Theorem: [Aichinger, Ecker, 2006; S, Vojtéchovsky 2023]
A group is k-supernilpotent iff k-nilpotent.

In general, not at all.

@ k-supernilpotence = k-nilpotence
@ nilpotence % supernilpotence

© the degree of supernilpotence can be >> degree of nilpotence
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Big picture

Q Mit(Q) Inn(Q)

abelian

abelian

supernilpotent — @---—--------————-

» nilpotent

centrally nilpotent

congruence solvable : ~
: no_--

classically solvable




Equational basis for 1,2-supernilpotence

Let [x,y] and [x,y, z] be any terms such that, in all loops,

[,y =1 & xy =yx
[x,y.2] =1 & x(yz) = (xy)z

Example: the standard commutator and associator

[x, y] = (pI\(xy), [x,y, 2] = x(y2)\(xy)z
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Equational basis for 1,2-supernilpotence

Let [x,y] and [x,y, z] be any terms such that, in all loops,

[,y =1 & xy =yx
[x,y.2] =1 & x(yz) = (xy)z

Example: the standard commutator and associator

[x, y] = (pI\(xy), [x,y, 2] = x(y2)\(xy)z

Easy facts:

1-supernilpotence: [x,y] = [x,y,z] =1 (abelian groups)
2-supernilpotence: [x, [y, z]] = [x, y,z] = 1 (2-nilpotent groups)
A group is k-nilpotent if and only if [x1, [x2, [...., [Xk, Xk+1]]]] = 1
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Equational basis for 3-supernilpotence
[S, Vojt&chovsky, 2023]
TFAE for a loop Q:
@ Q@ is 3-supernilpotent
o Q satisfies the following identities for all [.,.], [.,-,.]
e Q satisfies the following identities for the standard [.,.], [.,.,.]

1 =[x, [y, u,v]]
L= [xy,[u,v,w]] =[x, [u, v, w],y] = [[u, v, w], x, y]
1 =[xy, [u,v]] =[x, [u, v], y] = [[u, v]. x,¥]
1 =[x, [y, [u, vII] = [x, [[u, v], ¥II
= [y, [u, v], x] = [[[u, v], ¥], x]

1= [[x,y], [u, V]

[xy, u,v] =[x, u,v] [y, u, v]

[u, xy,v] = [u,x,v] [u,y, V]

[u,v,xy] = [u, v,x] [u, v,y]
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