Abstract commutator theory in concrete classes

David Stanovský

Charles University, Prague, Czech Republic

Summer School on Algebras and Ordered Sets, September 2023

Part I:

Solvability and nilpotence: the beginnings and motivation

Part II:

Abelianness and Centrality: examples and module representation

Part III: The commutator in specific varieties

The commutator

Centralizing relation for congruences α, β, δ of an algebra A :
$C(\alpha, \beta ; \delta)$ iff
for every term $t\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, u_{i} \stackrel{\beta}{\equiv} v_{i}$

$$
t(a, \bar{u}) \xlongequal{\equiv} t(a, \bar{v}) \Rightarrow t(b, \bar{u}) \xlongequal{\equiv} t(b, \bar{v})
$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta ; \delta)$.

The commutator

Centralizing relation for congruences α, β, δ of an algebra A :
$C(\alpha, \beta ; \delta)$ iff
for every term $t\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, u_{i} \stackrel{\beta}{\equiv} v_{i}$

$$
t(a, \bar{u}) \xlongequal{\equiv} t(a, \bar{v}) \Rightarrow t(b, \bar{u}) \xlongequal{\equiv} t(b, \bar{v})
$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta ; \delta)$.
A congruence α of A is called

- abelian if $C\left(\alpha, \alpha ; 0_{A}\right)$, i.e., if $[\alpha, \alpha]=0_{A}$.
- central if $C\left(\alpha, 1_{A} ; 0_{A}\right)$, i.e., if $\left[\alpha, 1_{A}\right]=0_{A}$.

An algebra A is called solvable, resp. nilpotent, if there are congruences α_{i} such that

$$
0_{A}=\alpha_{0} \leq \alpha_{1} \leq \ldots \leq \alpha_{k}=1_{A}
$$

and $\alpha_{i+1} / \alpha_{i}$ is an abelian, resp. central congruence of A / α_{i}, for all i.

QUANDLES

Quandles

A binary algebra $(Q, *, \backslash)$ is called a quandle if
(I) $x * x=x$
(II) for all x, y there is a unique u such that $x * u=y$
(III) $x *(y * z)=(x * y) *(x * z)$

Motivation: knot theory

Quandles

A binary algebra $(Q, *, \backslash)$ is called a quandle if
(I) $x * x=x$
(II) for all x, y there is a unique u such that $x * u=y$
(III) $x *(y * z)=(x * y) *(x * z)$

Examples:

- group conjugation: $(G, *), x * y=x y x^{-1}$
- affine forms over abelian groups: $(G, *), x * y=(1-f)(x)+f(y)$
- latin quandles $=($ left $)$ self-distributive quasigroups [since 1923!]

Quandles and associated groups

A binary algebra $(Q, *, \backslash)$ is called a quandle if

- $x * x=x$
- all left translations $L_{x}(y)=x * y$ are automorphisms.

Left multiplication group, displacement group:

$$
\begin{aligned}
& \operatorname{LMlt}(Q)=\left\langle L_{x}: x \in Q\right\rangle \leq \operatorname{Aut}(Q) \\
& \operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1}: x, y \in Q\right\rangle \leq \operatorname{LMlt}(Q)
\end{aligned}
$$

Q is connected if $\operatorname{LMlt}(Q)$ acts transitively.

Commutator theory for quandles

[Bonatto, S. 2021]
Let $N(Q)=\{N \leq \operatorname{Dis}(Q): N$ is normal in $\operatorname{LMlt}(Q)\}$
There is a Galois correspondence

$$
\begin{aligned}
\operatorname{Con}(Q) & \longleftrightarrow N(Q) \\
\alpha & \rightarrow \operatorname{Dis}_{\alpha}=\left\langle L_{x} L_{y}^{-1}: x \alpha y\right\rangle \\
\alpha_{N}=\left\{(x, y): L_{x} L_{y}^{-1} \in N\right\} & \leftarrow N
\end{aligned}
$$

Commutator theory for quandles

[Bonatto, S. 2021]
Let $N(Q)=\{N \leq \operatorname{Dis}(Q): N$ is normal in $\operatorname{LMlt}(Q)\}$
There is a Galois correspondence

$$
\begin{aligned}
\operatorname{Con}(Q) & \longleftrightarrow N(Q) \\
\alpha & \longrightarrow \operatorname{Dis}_{\alpha}=\left\langle L_{x} L_{y}^{-1}: x \alpha y\right\rangle \\
\alpha_{N}=\left\{(x, y): L_{x} L_{y}^{-1} \in N\right\} & \leftarrow N
\end{aligned}
$$

Proposition

TFAE for congruences α, β of a quandle Q :
(1) α centralizes β over 0_{Q}, i.e., $C\left(\alpha, \beta ; 0_{Q}\right)$
(2) $\left[\operatorname{Dis}_{\alpha}, \operatorname{Dis}_{\beta}\right]=1$ and $\operatorname{Dis}_{\beta}$ acts α-semiregularly on Q
α-semiregularly means $g(a)=a \Rightarrow g(b)=b$ for every $b \stackrel{\alpha}{=} a$

Abelian, nilpotent, and solvable quandles

[Jedlička, Pilitowska, S, Zamojska-Dzienio, 2018] [Bonatto, S, 2021]

quandle		Dis(Q)
affine		abelian, semiregular, "balanced"
\Downarrow		\Downarrow
abelian	\Leftrightarrow	abelian, semiregular
\Downarrow		\Downarrow
nilpotent	\Leftrightarrow	nilpotent
\Downarrow		\Downarrow
solvable	\Leftrightarrow	solvable

Moreover, for finite connected faithful quandles: nilpotent \Rightarrow direct product of connected quandles of prime power size.

Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]
If Q is a finite latin quandle, then $\operatorname{LMlt}(Q)$ is solvable.
Corollary: Finite latin quandles are solvable.

Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]
If Q is a finite latin quandle, then $\operatorname{LMlt}(Q)$ is solvable.
Corollary: Finite latin quandles are solvable.

Theorem: [Sherman Stein, 1957]
There are no latin quandles of order $\equiv 2(\bmod 4)$.
Proof:

1) Assume it is simple. Then solvable \Rightarrow abelian \Rightarrow affine \Rightarrow order $p^{k} \Rightarrow$ contradiction [Joyce, 1982]
2) Take the smallest counterexample, take a non-trivial congruence, either the factor or a block are smaller of this order.

Application: enumeration of quandles

Theorem: [Alexander Stein, 2001]
If Q is a finite latin quandle, then $\operatorname{LMlt}(Q)$ is solvable.
Corollary: Finite latin quandles are solvable.

Theorem: [Sherman Stein, 1957]
There are no latin quandles of order $\equiv 2(\bmod 4)$.
Proof:

1) Assume it is simple. Then solvable \Rightarrow abelian \Rightarrow affine \Rightarrow order $p^{k} \Rightarrow$ contradiction [Joyce, 1982]
2) Take the smallest counterexample, take a non-trivial congruence, either the factor or a block are smaller of this order.

More complicated results: [Bianco, Bonatto, around 2020]
Classification of latin quandles of order $p q$, connected quandles of order p^{3}, \ldots

Application: coloring knots by latin quandles

Theorem: [Alexander Stein, 2001]
If Q is a finite latin quandle, then $\operatorname{LMlt}(Q)$ is solvable.
Corollary: Finite latin quandles are solvable.

Corollary: Knots with trivial Alexander polynomial are not colorable by any finite latin quandle.
Proof idea:
(1) Bae's theorem: a knot admits a non-trivial coloring by an affine quandle if and only if its Alexander polynomial is non-trivial.
(2) Lemma: If c is a non-trivial coloring of K by a quandle Q, and $Q=\langle\operatorname{Im}(c)\rangle$, then K is colorable by every simple factor of Q.
\rightsquigarrow If Q is finite latin, it is solvable, hence all simple factors are affine, and the two facts contradict.

LOOPS

Loops

$=$ "non-associative groups"
$=(Q, \cdot, /, \backslash, 1)$ such that 1 is a unit, $/, \backslash$ are division operations wrt.
Translations:

$$
L_{x}(y)=x \cdot y, \quad R_{x}(y)=y \cdot x
$$

Multiplication group:

$$
\operatorname{Mlt}(Q)=\left\langle L_{x}, R_{x}: x \in Q\right\rangle \leq S_{Q}
$$

Inner mapping group:

$$
\operatorname{Inn}(Q)=(\operatorname{Mlt}(Q))_{1}=\left\langle L_{x, y}, R_{x, y}, T_{x}: x, y \in Q\right\rangle \leq \operatorname{Mlt}(Q)
$$

where

$$
L_{x, y}(z)=(x y) \backslash x(y z), \quad R_{x, y}(z)=(z y) x /(y x), \quad T_{x}(z)=x \backslash z x
$$

"Naive" commutator theory

[Albert, Bruck, 1940s]

Easy fact: congruences correspond to normal subloops, i.e., subloops invariant with respect to action of $\operatorname{Inn}(Q)$.

The center:

$$
\begin{gathered}
Z(Q)=\operatorname{Fix}(\operatorname{Inn}(Q))= \\
=\{a: a x=x a, a(x y)=(a x) y, x(a y)=(x a) y, x(y a)=(x y) a \text { for all } x, y\}
\end{gathered}
$$

A loop Q is called (classically) solvable, resp. nilpotent, if there are normal subloops N_{i} such that

$$
1=N_{0} \leq N_{1} \leq \ldots \leq N_{k}=Q
$$

and N_{i+1} / N_{i} is an abelian group, resp. contained in the center $Z\left(Q / N_{i}\right)$, for all i.

"The" commutator theory

[S, Vojtěchovský, 2014] [Barnes, 2023]
Main theorem:

$$
[A, B]=\operatorname{Ng}\left(I_{u_{1}, u_{2}}(a) \backslash I_{v_{1}, v_{2}}(a): I \in\{L, R, T\}, u_{i} \backslash v_{i} \in B, a \in A\right)
$$

Consequently,

- $[N, Q]=1$ iff $N \leq Z(Q)$,
- $[N, N]=1$ iff $\left.I_{u_{1}, u_{2}}\right|_{N}=\left.I_{v_{1}, v_{2}}\right|_{N}$ for every $I \in\{L, R, T\}, u_{i} \backslash v_{i} \in B$.
- $[N, N]=1$ iff $\left.\varphi\right|_{N} \in \operatorname{Aut}(N)$ for every $\varphi \in \operatorname{Inn}(Q)$ and certain commutators/associators vanish.

Hence, comparing to the "naive" definitions,

- centrality and nilpotence agree,
- abelianness and solvability disagree.
[Drápal 2023] solvability agrees in Moufang loops

Nilpotent loops

- $|Q|=p^{k} \Rightarrow Q$ is nilpotent
- true for groups [quite easy]
- true for Moufang loops [quite difficult, Glaubermann, Wright 1968]
- false in general: loops of order p are abelian groups or counterexamples
- Q finite nilpotent $\Rightarrow Q \simeq \prod Q_{p}$ where Q_{p} are nilp. loops of order p^{k}
- true for groups [not difficult]
- true for Moufang loops [quite difficult, Glaubermann, Wright 1968]
- false in general: a loop of order 6 is nilpotent, directly indecomposable
\Rightarrow supernilpotence ???

Higher commutator, supernilpotence

$C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \beta ; \gamma\right)$ iff for every term t and every $\bar{a}_{i} \xlongequal{\underline{\alpha_{i}}} \bar{b}_{i}, \bar{u} \stackrel{\beta}{\bar{\beta}} \bar{v}$
$t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{u}\right) \xlongequal{\risingdotseq} t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{v}\right) \quad \forall\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in\left\{\bar{a}_{1}, \bar{b}_{1}\right\} \times \ldots \times\left\{\bar{a}_{n}, \bar{b}_{n}\right\}$ $\neq\left\{\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)\right\}$
\Downarrow
$t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{u}\right) \stackrel{\delta}{\equiv} t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{v}\right)$.

The n-ary commutator $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest δ such that $C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \alpha_{n} ; \delta\right)$.
Fact: $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \geq\left[\alpha_{1},\left[\alpha_{2},\left[\ldots,\left[\alpha_{n-1}, \alpha_{n}\right]\right]\right]\right] \quad$ (in Mal'tsev varieties)

Higher commutator, supernilpotence

$C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \beta ; \gamma\right)$ iff for every term t and every $\bar{a}_{i} \stackrel{\alpha_{i}}{\overline{\alpha_{i}}} \bar{b}_{i} \bar{u} \stackrel{\beta}{\bar{\beta}} \bar{v}$
$t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{u}\right) \xlongequal{\risingdotseq} t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{v}\right) \quad \forall\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in\left\{\bar{a}_{1}, \bar{b}_{1}\right\} \times \ldots \times\left\{\bar{a}_{n}, \bar{b}_{n}\right\}$ $\neq\left\{\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)\right\}$
\Downarrow
$t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{u}\right) \stackrel{\delta}{\risingdotseq} t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{v}\right)$.
The n-ary commutator $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest δ such that $C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \alpha_{n} ; \delta\right)$.
Fact: $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \geq\left[\alpha_{1},\left[\alpha_{2},\left[\ldots,\left[\alpha_{n-1}, \alpha_{n}\right]\right]\right]\right] \quad$ (in Mal'tsev varieties)

An algebra is k-supernilpotent if $\left[1_{A}, \ldots, 1_{A}\right]=0_{A}$.

Supernilpotence - a better "definition"

Theorem: [Aichinger, Mudrinski, 2010]
In Mal'tsev varieties,
(1) an algebra is k-supernilpotent if and only if all absorbing polynomials of arity $>k$ are constant.
(2) a finite algebra is k-supernilpotent if and only if $A \simeq \prod A_{p}$ where A_{p} is a nilpotent algebra of order power of p

A polynomial is absorbing if $p\left(a_{1}, \ldots, a_{n}\right)=1$ whenever at least one $a_{i}=1$.
Examples: $[x, y],[x, y, z], L_{x, y}(z) / z, \ldots,[x y, u] /([x, u][y, u]), \ldots$

Supernilpotent groups

Theorem: [Aichinger, Ecker, 2006; S, Vojtěchovský 2023]
A group is k-supernilpotent iff k-nilpotent.

In general, not at all.
(1) k-supernilpotence $\Rightarrow k$-nilpotence
(2) nilpotence \nRightarrow supernilpotence
(3) the degree of supernilpotence can be \gg degree of nilpotence

Big picture

Equational basis for 1,2-supernilpotence

Let $\llbracket x, y \rrbracket$ and $\llbracket x, y, z \rrbracket$ be any terms such that, in all loops,

$$
\begin{aligned}
& \llbracket x, y \rrbracket=1 \Leftrightarrow x y=y x \\
& \llbracket x, y, z \rrbracket=1 \Leftrightarrow x(y z)=(x y) z
\end{aligned}
$$

Example: the standard commutator and associator

$$
\llbracket x, y \rrbracket=(y x) \backslash(x y), \llbracket x, y, z \rrbracket=x(y z) \backslash(x y) z
$$

Equational basis for 1,2-supernilpotence

Let $\llbracket x, y \rrbracket$ and $\llbracket x, y, z \rrbracket$ be any terms such that, in all loops,

$$
\begin{aligned}
& \llbracket x, y \rrbracket=1 \Leftrightarrow x y=y x \\
& \llbracket x, y, z \rrbracket=1 \Leftrightarrow x(y z)=(x y) z
\end{aligned}
$$

Example: the standard commutator and associator

$$
\llbracket x, y \rrbracket=(y x) \backslash(x y), \llbracket x, y, z \rrbracket=x(y z) \backslash(x y) z
$$

Easy facts:
1-supernilpotence: $\llbracket x, y \rrbracket=\llbracket x, y, z \rrbracket=1$ (abelian groups)
2-supernilpotence: $\llbracket x, \llbracket y, z \rrbracket \rrbracket=\llbracket x, y, z \rrbracket=1$ (2-nilpotent groups)
A group is k-nilpotent if and only if $\left[x_{1},\left[x_{2},\left[\ldots,\left[x_{k}, x_{k+1}\right]\right]\right]\right]=1$

Equational basis for 3-supernilpotence

[S, Vojtěchovský, 2023]
TFAE for a loop Q :

- Q is 3-supernilpotent
- Q satisfies the following identities for all $\llbracket ., . \rrbracket, \llbracket ., ., . \rrbracket$
- Q satisfies the following identities for the standard $\llbracket ., . \rrbracket, \llbracket ., ., . \rrbracket$

$$
\begin{align*}
1 & =\llbracket x, \llbracket y, u, v \rrbracket \rrbracket \tag{1}\\
1 & =\llbracket x, y, \llbracket u, v, w \rrbracket \rrbracket=\llbracket x, \llbracket u, v, w \rrbracket, y \rrbracket=\llbracket \llbracket u, v, w \rrbracket, x, y \rrbracket \tag{2}\\
1 & =\llbracket x, y, \llbracket u, v \rrbracket \rrbracket=\llbracket x, \llbracket u, v \rrbracket, y \rrbracket=\llbracket \llbracket u, v \rrbracket, x, y \rrbracket \tag{3}\\
1 & =\llbracket x, \llbracket y, \llbracket u, v \rrbracket \rrbracket \rrbracket=\llbracket x, \llbracket \llbracket u, v \rrbracket, y \rrbracket \rrbracket \tag{4}\\
1 & =\llbracket \llbracket y, \llbracket u, v \rrbracket \rrbracket, x \rrbracket=\llbracket \llbracket \llbracket u, v \rrbracket, y \rrbracket, x \rrbracket \tag{5}\\
1 & =\llbracket \llbracket x, y \rrbracket, \llbracket u, v \rrbracket \rrbracket \tag{6}\\
\llbracket x y, u, v \rrbracket & =\llbracket x, u, v \rrbracket \llbracket y, u, v \rrbracket \tag{7}\\
\llbracket u, x y, v \rrbracket & =\llbracket u, x, v \rrbracket \llbracket u, y, v \rrbracket \tag{8}\\
\llbracket u, v, x y \rrbracket & =\llbracket u, v, x \rrbracket \llbracket u, v, y \rrbracket \tag{9}
\end{align*}
$$

