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Part I:
Solvability and nilpotence: the beginnings and motivation

Part II:
Abelianness and Centrality: examples and module representation

Part III:
The commutator in specific

varieties
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The commutator

Centralizing relation for congruences α, β, δ of an algebra A:

C (α, β; δ) iff

for every term t(x1, . . . , xm, y1, . . . , yn) and every a
α≡ b, ui

β
≡ vi

t(a, ū)
δ≡ t(a, v̄) ⇒ t(b, ū)

δ≡ t(b, v̄)

The commutator [α, β] is the smallest δ such that C (α, β; δ).

A congruence α of A is called

abelian if C (α, α; 0A), i.e., if [α, α] = 0A.

central if C (α, 1A; 0A), i.e., if [α, 1A] = 0A.

An algebra A is called solvable, resp. nilpotent, if there are congruences αi

such that
0A = α0 ≤ α1 ≤ ... ≤ αk = 1A

and αi+1/αi is an abelian, resp. central congruence of A/αi , for all i .
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QUANDLES
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Quandles
A binary algebra (Q, ∗, \) is called a quandle if

(I) x ∗ x = x

(II) for all x , y there is a unique u such that x ∗ u = y

(III) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

Motivation: knot theory
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Quandles

A binary algebra (Q, ∗, \) is called a quandle if

(I) x ∗ x = x

(II) for all x , y there is a unique u such that x ∗ u = y

(III) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

Examples:

group conjugation: (G , ∗), x ∗ y = xyx−1

affine forms over abelian groups: (G , ∗), x ∗ y = (1− f )(x) + f (y)

...

latin quandles = (left) self-distributive quasigroups [since 1923!]
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Quandles and associated groups

A binary algebra (Q, ∗, \) is called a quandle if

x ∗ x = x

all left translations Lx(y) = x ∗ y are automorphisms.

Left multiplication group, displacement group:

LMlt(Q) = 〈Lx : x ∈ Q〉 ≤ Aut(Q)

Dis(Q) = 〈LxL−1
y : x , y ∈ Q〉 ≤ LMlt(Q)

Q is connected if LMlt(Q) acts transitively.
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Commutator theory for quandles
[Bonatto, S. 2021]

Let N(Q) = {N ≤ Dis(Q) : N is normal in LMlt(Q)}

There is a Galois correspondence

Con(Q)←→ N(Q)

α→ Disα = 〈LxL−1
y : x α y〉

αN = {(x , y) : LxL
−1
y ∈ N} ← N

Proposition

TFAE for congruences α, β of a quandle Q:

1 α centralizes β over 0Q , i.e., C (α, β; 0Q)

2 [Disα,Disβ] = 1 and Disβ acts α-semiregularly on Q

α-semiregularly means g(a) = a ⇒ g(b) = b for every b
α≡ a
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Abelian, nilpotent, and solvable quandles

[Jedlička, Pilitowska, S, Zamojska-Dzienio, 2018] [Bonatto, S, 2021]

quandle Dis(Q)

affine ⇔ abelian, semiregular, ”balanced”
⇓ ⇓

abelian ⇔ abelian, semiregular
⇓ ⇓

nilpotent ⇔ nilpotent
⇓ ⇓

solvable ⇔ solvable

Moreover, for finite connected faithful quandles:
nilpotent ⇒ direct product of connected quandles of prime power size.
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Application: enumeration of quandles
Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

Theorem: [Sherman Stein, 1957]

There are no latin quandles of order ≡ 2 (mod 4).

Proof:
1) Assume it is simple. Then
solvable ⇒ abelian ⇒ affine ⇒ order pk ⇒ contradiction [Joyce, 1982]

2) Take the smallest counterexample, take a non-trivial congruence, either
the factor or a block are smaller of this order.

More complicated results: [Bianco, Bonatto, around 2020]

Classification of latin quandles of order pq, connected quandles of order
p3, ...
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Application: coloring knots by latin quandles

Theorem: [Alexander Stein, 2001]

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Corollary: Finite latin quandles are solvable.

Corollary: Knots with trivial Alexander polynomial are not colorable by any
finite latin quandle.

Proof idea:
(1) Bae’s theorem: a knot admits a non-trivial coloring by an affine
quandle if and only if its Alexander polynomial is non-trivial.
(2) Lemma: If c is a non-trivial coloring of K by a quandle Q, and
Q = 〈Im(c)〉, then K is colorable by every simple factor of Q.
 If Q is finite latin, it is solvable, hence all simple factors are affine, and
the two facts contradict.
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LOOPS
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Loops
= “non-associative groups”

= (Q, ·, /, \, 1) such that 1 is a unit, /, \ are division operations wrt ·

Translations:
Lx(y) = x · y , Rx(y) = y · x

Multiplication group:

Mlt(Q) = 〈Lx ,Rx : x ∈ Q〉 ≤ SQ

Inner mapping group:

Inn(Q) = (Mlt(Q))1 = 〈Lx ,y ,Rx ,y ,Tx : x , y ∈ Q〉 ≤ Mlt(Q)

where

Lx ,y (z) = (xy)\x(yz), Rx ,y (z) = (zy)x/(yx), Tx(z) = x\zx
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“Naive” commutator theory

[Albert, Bruck, 1940s]

Easy fact: congruences correspond to normal subloops, i.e., subloops
invariant with respect to action of Inn(Q).

The center:
Z (Q) = Fix(Inn(Q)) =

= {a : ax = xa, a(xy) = (ax)y , x(ay) = (xa)y , x(ya) = (xy)a for all x , y}.

A loop Q is called (classically) solvable, resp. nilpotent, if there are normal
subloops Ni such that

1 = N0 ≤ N1 ≤ ... ≤ Nk = Q

and Ni+1/Ni is an abelian group, resp. contained in the center Z (Q/Ni ),
for all i .
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“The” commutator theory
[S, Vojtěchovský, 2014] [Barnes, 2023]

Main theorem:

[A,B] = Ng(Iu1,u2(a)\Iv1,v2(a) : I ∈ {L,R,T}, ui\vi ∈ B, a ∈ A).

Consequently,

[N,Q] = 1 iff N ≤ Z (Q),

[N,N] = 1 iff Iu1,u2 |N = Iv1,v2 |N for every I ∈ {L,R,T}, ui\vi ∈ B.

[N,N] = 1 iff ϕ|N ∈ Aut(N) for every ϕ ∈ Inn(Q) and certain
commutators/associators vanish.

Hence, comparing to the “naive” definitions,

centrality and nilpotence agree,

abelianness and solvability disagree.

[Drápal 2023] solvability agrees in Moufang loops
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Nilpotent loops

|Q| = pk ⇒ Q is nilpotent

true for groups [quite easy]

true for Moufang loops [quite difficult, Glaubermann, Wright 1968]

false in general: loops of order p are abelian groups or counterexamples

Q finite nilpotent ⇒ Q '
∏

Qp where Qp are nilp. loops of order pk

true for groups [not difficult]

true for Moufang loops [quite difficult, Glaubermann, Wright 1968]

false in general: a loop of order 6 is nilpotent, directly indecomposable

⇒ supernilpotence ???
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Higher commutator, supernilpotence

Cn(α1, ..., αn−1;β; γ) iff for every term t and every āi
αi≡ b̄i , ū

β
≡ v̄

t(x̄1, ..., x̄n, ū)
δ≡ t(x̄1, ..., x̄n, v̄) ∀(x̄1, ..., x̄n) ∈ {ā1, b̄1} × ...× {ān, b̄n}

6= {(b̄1, ..., b̄n)}
⇓

t(b̄1, ..., b̄n, ū)
δ≡ t(b̄1, ..., b̄n, v̄).

The n-ary commutator [α1, ..., αn] is the smallest δ such that
Cn(α1, . . . , αn−1;αn; δ).

Fact: [α1, ..., αn] ≥ [α1, [α2, [..., [αn−1, αn]]]] (in Mal’tsev varieties)

An algebra is k-supernilpotent if [1A, ..., 1A] = 0A.
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Supernilpotence – a better “definition”

Theorem: [Aichinger, Mudrinski, 2010]

In Mal’tsev varieties,

1 an algebra is k-supernilpotent if and only if all absorbing polynomials
of arity > k are constant.

2 a finite algebra is k-supernilpotent if and only if A '
∏

Ap where Ap

is a nilpotent algebra of order power of p

A polynomial is absorbing if p(a1, ..., an) = 1 whenever at least one ai = 1.

Examples: [x , y ], [x , y , z ], Lx ,y (z)/z , ..., [xy , u]/([x , u][y , u]), ...
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Supernilpotent groups

Theorem: [Aichinger, Ecker, 2006; S, Vojtěchovský 2023]

A group is k-supernilpotent iff k-nilpotent.

In general, not at all.

1 k-supernilpotence ⇒ k-nilpotence

2 nilpotence 6⇒ supernilpotence

3 the degree of supernilpotence can be >> degree of nilpotence
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Big picture
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Equational basis for 1,2-supernilpotence

Let Jx , yK and Jx , y , zK be any terms such that, in all loops,

Jx , yK = 1 ⇔ xy = yx

Jx , y , zK = 1 ⇔ x(yz) = (xy)z

Example: the standard commutator and associator

Jx , yK = (yx)\(xy), Jx , y , zK = x(yz)\(xy)z

Easy facts:

1-supernilpotence: Jx , yK = Jx , y , zK = 1 (abelian groups)

2-supernilpotence: Jx , Jy , zKK = Jx , y , zK = 1 (2-nilpotent groups)

A group is k-nilpotent if and only if [x1, [x2, [...., [xk , xk+1]]]] = 1
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Equational basis for 3-supernilpotence
[S, Vojtěchovský, 2023]

TFAE for a loop Q:

Q is 3-supernilpotent
Q satisfies the following identities for all J., .K, J., ., .K
Q satisfies the following identities for the standard J., .K, J., ., .K

1 = Jx , Jy , u, vKK (1)

1 = Jx , y , Ju, v ,wKK = Jx , Ju, v ,wK, yK = JJu, v ,wK, x , yK (2)

1 = Jx , y , Ju, vKK = Jx , Ju, vK, yK = JJu, vK, x , yK (3)

1 = Jx , Jy , Ju, vKKK = Jx , JJu, vK, yKK (4)

1 = JJy , Ju, vKK, xK = JJJu, vK, yK, xK (5)

1 = JJx , yK, Ju, vKK (6)

Jxy , u, vK = Jx , u, vK Jy , u, vK (7)

Ju, xy , vK = Ju, x , vK Ju, y , vK (8)

Ju, v , xyK = Ju, v , xK Ju, v , yK (9)
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