# Abstract commutator theory in concrete classes 

## David Stanovský

Charles University, Prague, Czech Republic

Summer School on Algebras and Ordered Sets, September 2023

Part I:<br>Solvability and nilpotence:<br>the beginnings and motivation

## Part II:

# Abelianness and Centrality: examples and module representation 

Part III:
The commutator in specific varieties

## Abelian algebras

Recall:
abelian $=$ " module-like" ( $\neq$ commutative, associative $)$
$\ldots$ abelian groups $=$ the only groups that can be considered as modules

## Abelian algebras

Recall:
abelian $=$ " module-like" ( $\neq$ commutative, associative $)$
$\ldots$ abelian groups $=$ the only groups that can be considered as modules

An algebra $A$ is abelian if $\left[1_{A}, 1_{A}\right]=0_{A}$. That is, for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in $A$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

[J.D.H. Smith 1970s]

## Abelian algebras: examples

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in A

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ Modules are abelian.
Proof: $t\left(x, y_{1}, \ldots, y_{n}\right)=r x+\sum r_{i} y_{i}$, cancel $r a$, add $r b$.
Subreducts of modules are also abelian.

## Abelian algebras: examples

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in A

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ Modules are abelian.
Proof: $t\left(x, y_{1}, \ldots, y_{n}\right)=r x+\sum r_{i} y_{i}$, cancel $r a$, add $r b$.
Subreducts of modules are also abelian.
$\rightsquigarrow$ Unary algebras are abelian.
Proof: Terms depend on at most one variable.

## Abelian algebras: identities

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in $A$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ An abelian semigroup is commutative.
Proof: $t(x, y, z)=y \times z, \quad a 11=11 a \Rightarrow a b 1=1 b a$
(but commutative semigroups need not be abelian)

## Abelian algebras: identities

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in $A$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ An abelian semigroup is commutative.
Proof: $t(x, y, z)=y \times z, \quad a 11=11 a \Rightarrow a b 1=1 b a$
(but commutative semigroups need not be abelian)
$\rightsquigarrow$ An abelian monoid is cancellative.
Proof: $t(x, y)=x y, \quad a b=a c \Rightarrow 1 b=1 c$
(and commutative cancellative monoids are abelian)

## Abelian algebras: identities

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in $A$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ An abelian semigroup is commutative.
Proof: $t(x, y, z)=y x z, \quad a 11=11 a \Rightarrow a b 1=1 b a$
(but commutative semigroups need not be abelian)
$\rightsquigarrow$ An abelian monoid is cancellative.
Proof: $t(x, y)=x y, \quad a b=a c \Rightarrow 1 b=1 c$
(and commutative cancellative monoids are abelian)
$\rightsquigarrow$ An abelian binary algebra with 1 is associative.
Proof: $t(x, y, z, w)=(x y)(z w)$,
$(1 b)(c 1)=(11)(b c) \Rightarrow(a b)(c 1)=(a 1)(b c)$

## Abelian algebras: no lattices

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in $A$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ An abelian idempotent self-distributive algebra (e.g. quandle) is medial.
Proof: $t(x, y, u, v)=(x y)(u v)$,
$(b b)(c d)=(b c)(b d) \Rightarrow(a b)(c d)=(a c)(a d)$
(a quandle is abelian iff it is medial and $\operatorname{Dis}(Q)$ acts semiregularly [JPSZ 2018] )

## Abelian algebras: no lattices

$A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a, b, \bar{u}, \bar{v}$ in $A$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

$\rightsquigarrow$ An abelian idempotent self-distributive algebra (e.g. quandle) is medial.
Proof: $t(x, y, u, v)=(x y)(u v)$,
$(b b)(c d)=(b c)(b d) \Rightarrow(a b)(c d)=(a c)(a d)$
(a quandle is abelian iff it is medial and Dis $(Q)$ acts semiregularly [JPSZ 2018] )
$\rightsquigarrow$ An abelian algebra with a semilattice reduct is trivial.
Proof: $t(x, y)=x \wedge y, \quad(a \wedge b) \wedge a=(a \wedge b) \wedge b \Rightarrow a \wedge a=a \wedge b$, hence $a \leq b$ for all $a, b$

## Abelian algebras vs. modules

## Theorem (Gumm-Smith 1970s)

An algebra with a Mal'tsev polynomial is abelian if and only if it is polynomially equivalent to a module.
(examples: groups, quasigroups; non-examples: quandles, monoids)

- [Herrmann 1979] ditto under congruence modularity (hard!)
- [Kearnes-Szendrei 1998] even weaker assumptions
- [tame congruence theory / Barto-Kozik-S 2015] finite and Taylor
- fails for infinite Taylor: $\left(\mathbb{Q}, \frac{x+y}{2}\right)$.


## Abelian algebras vs. modules

## Theorem (Gumm-Smith 1970s)

An algebra with a Mal'tsev polynomial is abelian if and only if it is polynomially equivalent to a module.
(examples: groups, quasigroups; non-examples: quandles, monoids)

- [Herrmann 1979] ditto under congruence modularity (hard!)
- [Kearnes-Szendrei 1998] even weaker assumptions
- [tame congruence theory / Barto-Kozik-S 2015] finite and Taylor
- fails for infinite Taylor: $\left(\mathbb{Q}, \frac{x+y}{2}\right)$.


## Theorem (Kearnes-Szendrei 1998)

An algebra with a Taylor term is abelian if and only if it is polynomial subreduct of a module.

- also true for finite simple [TCT], idempotent simple [Kearnes 1994], ...
- also true for monoids, quandles [JPSZ 2018]
- fails in general [McKenzie, Quackenbush 1980s], examples rare


## Abelian congruences

A congruence $\alpha$ of $A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u} \stackrel{\alpha}{\equiv} \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

Fact: A group congruence $\alpha$ is abelian iff $[1]_{\alpha}$ is an abelian group Proof:
$(\Rightarrow) t(x, y, z)=y \times z$, for all $a, b \stackrel{\alpha}{\equiv} 1$ get $a 11=11 a \Rightarrow a b 1=1 b a$.
$(\Leftarrow)$ not so obvious

## Abelian congruences

A congruence $\alpha$ of $A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u} \stackrel{\alpha}{\equiv} \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

Fact: A group congruence $\alpha$ is abelian iff $[1]_{\alpha}$ is an abelian group Proof:
$(\Rightarrow) t(x, y, z)=y \times z$, for all $a, b \stackrel{\alpha}{=} 1$ get $a 11=11 a \Rightarrow a b 1=1 b a$.
$(\Leftarrow)$ not so obvious

Fact: For loops, it fails. Ex.: a loop of order 8, a Moufang loop of order 16

## Theorem (S-Vojtěchovský 2014)

A normal subloop $N$ is abelian iff $\left.\varphi\right|_{N} \in \operatorname{Aut}(N)$ for every $\varphi \in \operatorname{Inn}(Q)$, and $\forall a, b \in N, x, u, v \in Q$ s.t. $u / v \in N$

$$
[a, b]=[a, b, x]=[a, x, b]=[x, a, b]=1, \quad[a, x, u]=[a, x, v]
$$

## Central congruences

A congruence $\alpha$ of $A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u} \stackrel{\alpha}{\equiv} \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

A congruence $\alpha$ of $A$ is central if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u}, \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

The center of $A$, denoted $\zeta_{A}$, is the largest central congruence.

## Central congruences

A congruence $\alpha$ of $A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u} \stackrel{\alpha}{\equiv} \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

A congruence $\alpha$ of $A$ is central if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u}, \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

The center of $A$, denoted $\zeta_{A}$, is the largest central congruence.
Fact: In groups, loops, the center is the classical center.
Fact: In monoids, $[1]_{\zeta M}=\{a: a x=x a,[a x=a y \rightarrow x=y]$ forall $x, y \in M\}$.

## Central congruences

A congruence $\alpha$ of $A$ is abelian if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u} \stackrel{\alpha}{\equiv} \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

A congruence $\alpha$ of $A$ is central if for every term $t\left(x, y_{1}, \ldots, y_{n}\right)$ and every $a \stackrel{\alpha}{\equiv} b, \bar{u}, \bar{v}$

$$
t(a, \bar{u})=t(a, \bar{v}) \Rightarrow t(b, \bar{u})=t(b, \bar{v})
$$

The center of $A$, denoted $\zeta_{A}$, is the largest central congruence.
Fact: In groups, loops, the center is the classical center.
Fact: In monoids, $[1]_{\zeta M}=\{a: a x=x a,[a x=a y \rightarrow x=y]$ forall $x, y \in M\}$.
In general, it seems rather difficult to describe the center!
For example, in quandles [Bonatto-S 2019]

$$
\zeta_{Q}=\left\{(a, b): \operatorname{Dis}(Q)_{a}=\operatorname{Dis}(Q)_{b} \text { and } L_{a} L_{b}^{-1} \in Z(\operatorname{Dis}(Q))\right\}
$$

## Inverse semigroups

$\ldots\left(S, \cdot,{ }^{\prime}\right)$ where $(S, \cdot)$ is a semigroup and $a a^{\prime} a=a, a^{\prime} a a^{\prime}=a^{\prime} \forall a$
... partial bijections on a set $X$ form an inverse semigroup
... (Cayley-like repre.) every inverse semigroup embeds into a semigroup of partial bijections [Wagner, Preston 1950s]

## Inverse semigroups

$\ldots\left(S, \cdot,^{\prime}\right)$ where $(S, \cdot)$ is a semigroup and $a a^{\prime} a=a, a^{\prime} a a^{\prime}=a^{\prime} \forall a$
... partial bijections on a set $X$ form an inverse semigroup
... (Cayley-like repre.) every inverse semigroup embeds into a semigroup of partial bijections [Wagner, Preston 1950s]

What is the center of inverse semigroup?
Indeed, $\{a: a x=x a$ for all $x\}$ is a wrong guess. (It is not even a normal subsemigroup.)

## Center of a group / loop, revisited

Groups:

$$
\begin{aligned}
Z(G) & =\{a: a x=x a \forall x\} \\
& =\left\{a: \phi_{x}(a)=a \forall x\right\} \\
& =\operatorname{Ker}(\Phi)
\end{aligned}
$$

$$
\begin{aligned}
\Phi: G & \rightarrow \operatorname{Aut}(G) \\
x & \mapsto\left[\phi_{x}: y \mapsto x^{-1} y x\right]
\end{aligned}
$$

Loops:

$$
\begin{aligned}
Z(Q) & =\{a: a x=x a, a(x y)=(a x) y, \ldots \forall x, y\} \\
& =\{a: \phi(a)=a \forall \phi \in \operatorname{Inn}(Q)\}
\end{aligned}
$$

... what is more important, commutativity OR conjugacy/inner mappings ?

## Center of an inverse semigroup

[Kinyon-S.]

$$
\begin{aligned}
\zeta S & =\mathcal{H} \cap\{(a, b): a x b=b x a \forall x\} \\
& =\operatorname{Ker}(\Phi) \\
& =\operatorname{Ker}(\Psi) \\
Z(S) & =\left\{a: a x a^{\prime} a=a a^{\prime} x a \forall x\right\} \\
\Phi: S & \rightarrow \operatorname{PAut}(S) \\
x & \mapsto\left[\phi_{a}: a^{\prime} S a \rightarrow a S a^{\prime}, y \mapsto x y x^{\prime}\right]
\end{aligned}
$$

$\Psi: S \rightarrow \operatorname{Trans}(S)$

$$
x \mapsto\left[\psi_{a}: S \rightarrow S a, y \mapsto x y x^{\prime}\right]
$$

## Center of an inverse semigroup

[Kinyon-S.]

$$
\begin{aligned}
\zeta S & =\mathcal{H} \cap\{(a, b): a x b=b x a \forall x\} \\
& =\operatorname{Ker}(\Phi) \\
& =\operatorname{Ker}(\Psi) \\
Z(S) & =\left\{a: a x a^{\prime} a=a a^{\prime} x a \forall x\right\} \\
\Phi: S & \rightarrow \operatorname{PAut}(S) \\
x & \mapsto\left[\phi_{a}: a^{\prime} S a \rightarrow a S a^{\prime}, y \mapsto x y x^{\prime}\right]
\end{aligned}
$$

$$
\Psi: S \rightarrow \operatorname{Trans}(S)
$$

$$
x \mapsto\left[\psi_{a}: S \rightarrow S a, y \mapsto x y x^{\prime}\right]
$$

Sad corollary: Solvable/nilpotent inverse semigroups are groups.

## Part I:

Solvability and nilpotence: the beginnings and motivation

## Part II:

Abelianness and Centrality: examples and module representation

# Part III: The commutator in specific varieties 

