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Abelian algebras

Recall:
abelian = "module-like”  (# commutative, associative)

. abelian groups = the only groups that can be considered as modules
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Abelian algebras

Recall:
abelian = "module-like”  (# commutative, associative)

. abelian groups = the only groups that can be considered as modules

An algebra Ais abelian if [14,14] = 04. That is,

for every term t(x,y1,...,yn) and every a, b, 7,V in A
t(a,u) = t(a,v) = t(b,u)=t(b,V)

[J.D.H. Smith 1970s]
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Abelian algebras: examples

A is abelian if for every term t(x,y1,...,yn) and every a, b, 4, v in A

t(a,0) = t(a,v) = t(b,u)=t(b,V)

~~ Modules are abelian.

Proof: t(x,y1,...,¥n) = rx+>_ riyi, cancel ra, add rb.

Subreducts of modules are also abelian.
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Abelian algebras: examples

A is abelian if for every term t(x,y1,...,yn) and every a, b, 4, v in A

t(a,0) = t(a,v) = t(b,a)=t(b,7)

~+ Modules are abelian.
Proof: t(x,y1,...,¥n) = rx+>_ riyi, cancel ra, add rb.

Subreducts of modules are also abelian.

~ Unary algebras are abelian.

Proof: Terms depend on at most one variable.
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Abelian algebras: identities
A'is abelian if for every term t(x, y1,...,yn) and every a, b, G, v in A

t(a, o) = t(a,v) = t(b,u)=t(b, V)

~> An abelian semigroup is commutative.
Proof: t(x,y,z) = yxz, all=11la = abl =1ba

(but commutative semigroups need not be abelian)
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Abelian algebras: identities
A'is abelian if for every term t(x, y1,...,yn) and every a, b, G, v in A

t(a, o) = t(a,v) = t(b,u)=t(b, V)

~> An abelian semigroup is commutative.
Proof: t(x,y,z) = yxz, all=11la = abl =1ba

(but commutative semigroups need not be abelian)

~~ An abelian monoid is cancellative.
Proof: t(x,y) =xy, ab=ac = lb=1c

(and commutative cancellative monoids are abelian)
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Abelian algebras: identities
A'is abelian if for every term t(x, y1,...,yn) and every a, b, G, v in A

t(a, o) = t(a,v) = t(b,u)=t(b, V)

~> An abelian semigroup is commutative.
Proof: t(x,y,z) = yxz, all=1la = abl = 1ba

(but commutative semigroups need not be abelian)

~~ An abelian monoid is cancellative.
Proof: t(x,y) =xy, ab=ac = lb=1c

(and commutative cancellative monoids are abelian)

~> An abelian binary algebra with 1 is associative.

Proof: t(x,y,z,w) = (xy)(zw),
(1b)(cl) = (11)(bc) = (ab)(cl) = (al)(bc)
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Abelian algebras: no lattices

A'is abelian if for every term t(x, y1,...,yn) and every a, b, G, v in A
t(a,u) = t(a,v) = t(b,u)=t(b,V)
~» An abelian idempotent self-distributive algebra (e.g. quandle) is medial.

Proof: t(x,y,u,v) = (xy)(uv),
(bb)(cd) = (bc)(bd) = (ab)(cd) = (ac)(ad)

(a quandle is abelian iff it is medial and Dis(Q) acts semiregularly [JPSZ 2018] )
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Abelian algebras: no lattices

A'is abelian if for every term t(x, y1,...,yn) and every a, b, G, v in A

t(a,u) = t(a,v) = t(b,u)=t(b,V)

~» An abelian idempotent self-distributive algebra (e.g. quandle) is medial.

Proof: t(x,y,u,v) = (xy)(uv),
(bb)(cd) = (bc)(bd) = (ab)(cd) = (ac)(ad)

(a quandle is abelian iff it is medial and Dis(Q) acts semiregularly [JPSZ 2018] )
~> An abelian algebra with a semilattice reduct is trivial.

Proof: t(x,y) =xAy, (aAb)ANa=(aAb)Ab = aNa=aAb,
hence a < b for all a,b
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Abelian algebras vs. modules

Theorem (Gumm-Smith 1970s)

An algebra with a Mal’tsev polynomial is abelian if and only if it is
polynomially equivalent to a module.

(examples: groups, quasigroups; non-examples: quandles, monoids)
@ [Herrmann 1979] ditto under congruence modularity (hard!)
@ [Kearnes-Szendrei 1998] even weaker assumptions

@ [tame congruence theory / Barto-Kozik-S 2015] finite and Taylor
. .o s . x+y
e fails for infinite Taylor: (Q, =5%).
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Abelian algebras vs. modules
Theorem (Gumm-Smith 1970s)

An algebra with a Mal’tsev polynomial is abelian if and only if it is
polynomially equivalent to a module.

(examples: groups, quasigroups; non-examples: quandles, monoids)
@ [Herrmann 1979] ditto under congruence modularity (hard!)
@ [Kearnes-Szendrei 1998] even weaker assumptions
@ [tame congruence theory / Barto-Kozik-S 2015] finite and Taylor
. .o s . x4y
e fails for infinite Taylor: (Q, =5%).

Theorem (Kearnes-Szendrei 1998)

An algebra with a Taylor term is abelian if and only if it is
polynomial subreduct of a module.

@ also true for finite simple [TCT], idempotent simple [Kearnes 1994], ...
@ also true for monoids, quandles [JPSZ 2018

o fails in general [McKenzie, Quackenbush 1980s], examples rare
7/13



Abelian congruences

A congruence « of A is abelian if for every term t(x, y1,...,yn) and every
« o
a=b uo=v

t(a,0) = t(a,v) = t(b,a)=t(b, V)

Fact: A group congruence « is abelian iff [1], is an abelian group
Proof:

(=) t(x,y,z) = yxz, for all a,b = 1 get all = 11a = abl = 1ba.
(«<=) not so obvious
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Abelian congruences
A congruence « of A is abelian if for every term t(x, y1,...,yn) and every
as=bh o=V

t(a,0) = t(a,v) = t(b,a)=t(b, V)

Fact: A group congruence « is abelian iff [1], is an abelian group

Proof:
(=) t(x,y,z) = yxz, for all a,b = 1 get all = 11a = abl = 1ba.

(«<=) not so obvious

Fact: For loops, it fails. Ex.: a loop of order 8, a Moufang loop of order 16

Theorem (S-Vojté&chovsky 2014)

A normal subloop N is abelian iff |y € Aut(N) for every ¢ € Inn(Q), and
VabeN, x,uveQst u/veN

[a, b] = [a, b, x] = [a,x,b] = [x,a,b] =1, [a,x,u]=a,x,v]
" DavidStanovsky  Commutator theory 8/13




Central congruences

A congruence « of A is abelian if for every term t(x, y1,

.., ¥Yn) and every
o _ o _
a=b u=v

t(a, o) = t(a,v) = t(b, )= t(b, V)

A congruence « of A is central if for every term t(x, y1, .

.., Yn) and every
& - -
a=b, u,v

t(a, o) = t(a,v) = t(b,u)=t(b, V)

The center of A, denoted (a4, is the largest central congruence.
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Central congruences

A congruence « of A is abelian if for every term t(x, y1,...,yn) and every
a=b i=v
t(a,0) = t(a,v) = t(b,a)=t(b, V)

A congruence « of A is central if for every term t(x, y1,...,¥n) and every
a= b, i, v
t(a, o) = t(a,v) = t(b,u)=t(b, V)

The center of A, denoted (a4, is the largest central congruence.

Fact: In groups, loops, the center is the classical center.

Fact: In monoids, [1]cm = {a: ax = xa, [ax = ay— x=y]forallx,yc M}.
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Central congruences

A congruence « of A is abelian if for every term t(x, y1,...,yn) and every
a=b i=v
t(a,0) = t(a,v) = t(b,a)=t(b, V)

A congruence « of A is central if for every term t(x, y1,...,¥n) and every
aZb i,v
t(a, o) = t(a,v) = t(b,a)=t(b, V)

The center of A, denoted (a4, is the largest central congruence.
Fact: In groups, loops, the center is the classical center.
Fact: In monoids, [1]cm = {a: ax = xa, [ax = ay— x=y]forallx,yc M}.

In general, it seems rather difficult to describe the center!
For example, in quandles [Bonatto-S 2019]

(o = {(a, b) : Dis(Q), = Dis(Q)p and L,L,* € Z(Dis(Q))}
U S [ e e v— 9/13



Inverse semigroups

. (S,-)) where (S,-) is a semigroup and aa’a = a, a'aa’ = 4’ Va
... partial bijections on a set X form an inverse semigroup

... (Cayley-like repre.) every inverse semigroup embeds into a semigroup of
partial bijections [Wagner, Preston 1950s]

~ DavidStanovsky | Commutator theory 10/13



Inverse semigroups

. (S,-)) where (S,-) is a semigroup and aa’a = a, a'aa’ = 4’ Va
... partial bijections on a set X form an inverse semigroup

... (Cayley-like repre.) every inverse semigroup embeds into a semigroup of
partial bijections [Wagner, Preston 1950s]

What is the center of inverse semigroup?

Indeed, {a: ax = xa for all x} is a wrong guess. (It is not even a normal subsemigroup.)
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Center of a group / loop, revisited

Groups:
Z(G) ={a: ax = xa Vx}
={a: ¢x(a) = a Vx}
= Ker(®)
®:G — Aut(G)
X = [dx 1y > x Lyx]
Loops:

Z(Q) ={a:ax =xa,a(xy) = (ax)y, ... Vx,y}
={a:¢(a) =aVeo € Inn(Q)}

.. what is more important, commutativity OR conjugacy/inner mappings ?
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Center of an inverse semigroup
[Kinyon-S.]
(s =HN{(a,b): axb = bxa Vx}
= Ker(®)
= Ker(V)

Z(S) ={a: axd'a = aa'xa Vx}

¢ : S — PAut(S)
x5 [¢a:dSa— aSa |y — xyx']

V: S — Trans(S)
x5 [ty S — Sa,y = xyx']
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Center of an inverse semigroup
[Kinyon-S.]
(s =HN{(a,b): axb = bxa Vx}
= Ker(®)
= Ker(V)

Z(S) ={a: axd'a = aa'xa Vx}

®: S — PAut(S)
x5 [¢a:dSa— aSa |y — xyx']

V: S — Trans(S)
x5 [ty S — Sa,y = xyx']

Sad corollary: Solvable/nilpotent inverse semigroups are groups.
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