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Abelian algebras

Recall:

abelian = ”module-like” ( 6= commutative, associative)

... abelian groups = the only groups that can be considered as modules

An algebra A is abelian if [1A, 1A] = 0A. That is,

for every term t(x , y1, . . . , yn) and every a, b, ū, v̄ in A

t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

[J.D.H. Smith 1970s]
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Abelian algebras: examples

A is abelian if for every term t(x , y1, . . . , yn) and every a, b, ū, v̄ in A

t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

 Modules are abelian.

Proof: t(x , y1, . . . , yn) = rx +
∑

riyi , cancel ra, add rb.

Subreducts of modules are also abelian.

 Unary algebras are abelian.

Proof: Terms depend on at most one variable.
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t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

 Modules are abelian.

Proof: t(x , y1, . . . , yn) = rx +
∑

riyi , cancel ra, add rb.

Subreducts of modules are also abelian.

 Unary algebras are abelian.

Proof: Terms depend on at most one variable.
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Abelian algebras: identities
A is abelian if for every term t(x , y1, . . . , yn) and every a, b, ū, v̄ in A

t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

 An abelian semigroup is commutative.

Proof: t(x , y , z) = yxz , a11 = 11a ⇒ ab1 = 1ba

(but commutative semigroups need not be abelian)

 An abelian monoid is cancellative.

Proof: t(x , y) = xy , ab = ac ⇒ 1b = 1c

(and commutative cancellative monoids are abelian)

 An abelian binary algebra with 1 is associative.

Proof: t(x , y , z ,w) = (xy)(zw),
(1b)(c1) = (11)(bc) ⇒ (ab)(c1) = (a1)(bc)
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Abelian algebras: no lattices

A is abelian if for every term t(x , y1, . . . , yn) and every a, b, ū, v̄ in A

t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

 An abelian idempotent self-distributive algebra (e.g. quandle) is medial.

Proof: t(x , y , u, v) = (xy)(uv),
(bb)(cd) = (bc)(bd) ⇒ (ab)(cd) = (ac)(ad)

(a quandle is abelian iff it is medial and Dis(Q) acts semiregularly [JPSZ 2018] )

 An abelian algebra with a semilattice reduct is trivial.

Proof: t(x , y) = x ∧ y , (a ∧ b) ∧ a = (a ∧ b) ∧ b ⇒ a ∧ a = a ∧ b,
hence a ≤ b for all a, b
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Abelian algebras vs. modules

Theorem (Gumm-Smith 1970s)

An algebra with a Mal’tsev polynomial is abelian if and only if it is
polynomially equivalent to a module.

(examples: groups, quasigroups; non-examples: quandles, monoids)

[Herrmann 1979] ditto under congruence modularity (hard!)
[Kearnes-Szendrei 1998] even weaker assumptions
[tame congruence theory / Barto-Kozik-S 2015] finite and Taylor
fails for infinite Taylor: (Q, x+y

2 ).

Theorem (Kearnes-Szendrei 1998)

An algebra with a Taylor term is abelian if and only if it is
polynomial subreduct of a module.

also true for finite simple [TCT], idempotent simple [Kearnes 1994], ...
also true for monoids, quandles [JPSZ 2018]

fails in general [McKenzie, Quackenbush 1980s], examples rare
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Abelian congruences
A congruence α of A is abelian if for every term t(x , y1, . . . , yn) and every

a
α≡ b, ū

α≡ v̄
t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

Fact: A group congruence α is abelian iff [1]α is an abelian group

Proof:
(⇒) t(x , y , z) = yxz , for all a, b

α≡ 1 get a11 = 11a ⇒ ab1 = 1ba.

(⇐) not so obvious

Fact: For loops, it fails. Ex.: a loop of order 8, a Moufang loop of order 16

Theorem (S-Vojtěchovský 2014)

A normal subloop N is abelian iff ϕ|N ∈ Aut(N) for every ϕ ∈ Inn(Q), and
∀ a, b ∈ N, x , u, v ∈ Q s.t. u/v ∈ N

[a, b] = [a, b, x ] = [a, x , b] = [x , a, b] = 1, [a, x , u] = [a, x , v ]
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Central congruences
A congruence α of A is abelian if for every term t(x , y1, . . . , yn) and every

a
α≡ b, ū

α≡ v̄
t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

A congruence α of A is central if for every term t(x , y1, . . . , yn) and every

a
α≡ b, ū, v̄

t(a, ū) = t(a, v̄) ⇒ t(b, ū) = t(b, v̄)

The center of A, denoted ζA, is the largest central congruence.

Fact: In groups, loops, the center is the classical center.

Fact: In monoids, [1]ζM = {a : ax = xa, [ax = ay→ x=y]forallx,y∈ M}.

In general, it seems rather difficult to describe the center!

For example, in quandles [Bonatto-S 2019]

ζQ = {(a, b) : Dis(Q)a = Dis(Q)b and LaL
−1
b ∈ Z (Dis(Q))}
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Inverse semigroups

... (S , ·,′ ) where (S , ·) is a semigroup and aa′a = a, a′aa′ = a′ ∀a

... partial bijections on a set X form an inverse semigroup

... (Cayley-like repre.) every inverse semigroup embeds into a semigroup of
partial bijections [Wagner, Preston 1950s]

What is the center of inverse semigroup?

Indeed, {a : ax = xa for all x} is a wrong guess. (It is not even a normal subsemigroup.)
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Center of a group / loop, revisited

Groups:

Z (G ) = {a : ax = xa ∀x}
= {a : φx(a) = a ∀x}
= Ker(Φ)

Φ :G → Aut(G )

x 7→ [φx : y 7→ x−1yx ]

Loops:

Z (Q) = {a : ax = xa, a(xy) = (ax)y , ... ∀x , y}
= {a : φ(a) = a ∀φ ∈ Inn(Q)}

... what is more important, commutativity OR conjugacy/inner mappings ?
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Center of an inverse semigroup
[Kinyon-S.]

ζS = H ∩ {(a, b) : axb = bxa ∀x}
= Ker(Φ)

= Ker(Ψ)

Z (S) = {a : axa′a = aa′xa ∀x}

Φ : S → PAut(S)

x 7→ [φa : a′Sa→ aSa′, y 7→ xyx ′]

Ψ : S → Trans(S)

x 7→ [ψa : S → Sa, y 7→ xyx ′]

Sad corollary: Solvable/nilpotent inverse semigroups are groups.

David Stanovský Commutator theory 12 / 13



Center of an inverse semigroup
[Kinyon-S.]

ζS = H ∩ {(a, b) : axb = bxa ∀x}
= Ker(Φ)

= Ker(Ψ)

Z (S) = {a : axa′a = aa′xa ∀x}

Φ : S → PAut(S)

x 7→ [φa : a′Sa→ aSa′, y 7→ xyx ′]

Ψ : S → Trans(S)

x 7→ [ψa : S → Sa, y 7→ xyx ′]

Sad corollary: Solvable/nilpotent inverse semigroups are groups.
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