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Introduction
[ ]

Quantales and related structures

Motivation

@ Several years ago we studied tense operators on sup-lattices.

More exactly, we have replaced the notions of sup-semilattices by
unital V-modules (the category of them denoted as V-S , the
category of F-sup-semilatitices by unital V-F-sup-semilattices (the
category of them denoted as V — F—S<) and the category of
frames by V-frames (the category of them denoted as V — J).



Introduction
[ ]

Quantales and related structures

Motivation

@ Several years ago we studied tense operators on sup-lattices.

@ One of our goals of our research was to generalize the concept
and take other ordered structures to obtain analogical results.

More exactly, we have replaced the notions of sup-semilattices by
unital V-modules (the category of them denoted as V-S , the
category of F-sup-semilatitices by unital V-F-sup-semilattices (the
category of them denoted as V — F—S<) and the category of
frames by V-frames (the category of them denoted as V — J).



Introduction
[ ]

Quantales and related structures

Motivation

@ Several years ago we studied tense operators on sup-lattices.

@ One of our goals of our research was to generalize the concept
and take other ordered structures to obtain analogical results.

@ We have decided to work with the following three categories
parametrized by a unital commutative quantale V:

More exactly, we have replaced the notions of sup-semilattices by
unital V-modules (the category of them denoted as V-S , the
category of F-sup-semilatitices by unital V-F-sup-semilattices (the
category of them denoted as V — F—S<) and the category of
frames by V-frames (the category of them denoted as V — J).



Introduction
[ ]

Quantales and related structures

Motivation

@ Several years ago we studied tense operators on sup-lattices.

@ One of our goals of our research was to generalize the concept
and take other ordered structures to obtain analogical results.
@ We have decided to work with the following three categories
parametrized by a unital commutative quantale V:
@ unital V-modules,

More exactly, we have replaced the notions of sup-semilattices by
unital V-modules (the category of them denoted as V-S , the
category of F-sup-semilatitices by unital V-F-sup-semilattices (the
category of them denoted as V — F—S<) and the category of
frames by V-frames (the category of them denoted as V — J).



Introduction
[ ]

Quantales and related structures

Motivation

@ Several years ago we studied tense operators on sup-lattices.

@ One of our goals of our research was to generalize the concept
and take other ordered structures to obtain analogical results.

@ We have decided to work with the following three categories
parametrized by a unital commutative quantale V:

@ unital V-modules,
@ unital V-F-sup-semilattices,

More exactly, we have replaced the notions of sup-semilattices by
unital V-modules (the category of them denoted as V-S , the
category of F-sup-semilatitices by unital V-F-sup-semilattices (the
category of them denoted as V — F—S<) and the category of
frames by V-frames (the category of them denoted as V — J).



Introduction
[ ]

Quantales and related structures

Motivation

@ Several years ago we studied tense operators on sup-lattices.

@ One of our goals of our research was to generalize the concept
and take other ordered structures to obtain analogical results.
@ We have decided to work with the following three categories
parametrized by a unital commutative quantale V:
@ unital V-modules,
@ unital V-F-sup-semilattices,
© V-frames.
More exactly, we have replaced the notions of sup-semilattices by
unital V-modules (the category of them denoted as V-S , the
category of F-sup-semilatitices by unital V-F-sup-semilattices (the
category of them denoted as V — F—S<) and the category of
frames by V-frames (the category of them denoted as V — J).



Preliminaries
@0000

Quantales and related structures

Quantales

A quantaleis a pair V = (V,®), where V is a \/-semilattice and ®
is a binary operation on V satisfying:




Preliminaries
@0000

Quantales and related structures

Quantales

A quantaleis a pair V = (V,®), where V is a \/-semilattice and ®
is a binary operation on V satisfying:

(V1) a®(b®c) = (a®b)®c forall a, b, c € V (associativity).




Preliminaries
@0000

Quantales and related structures

Quantales

A quantaleis a pair V = (V,®), where V is a \/-semilattice and ®
is a binary operation on V satisfying:
(V1) a®(b®c) = (a®b)®c forall a, b, c € V (associativity).
(V2) a®(VS) = Vies(a® s) for every S C V and every
acV.




Preliminaries
@0000

Quantales and related structures

Quantales

A quantaleis a pair V = (V,®), where V is a \/-semilattice and ®
is a binary operation on V satisfying:
(V1) a®(b®c) = (a®b)®c forall a, b, c € V (associativity).
(V2) a®(VS) = Vies(a® s) for every S C V and every
acV.
(V3) (VS)®a= V,s(s®a) for every S C V and every
acV.




Preliminaries
@0000

Quantales and related structures

Quantales

A quantaleis a pair V = (V,®), where V is a \/-semilattice and ®
is a binary operation on V satisfying:
(V1) a®(b®c) = (a®b)®c forall a, b, c € V (associativity).
(V2) a®(VS) = Vies(a® s) for every S C V and every
acV.
(V3) (VS)®a= V,s(s®a) for every S C V and every
acV.




Preliminaries
@0000
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Quantales

Definition 1

A quantaleis a pair V = (V,®), where V is a \/-semilattice and ®
is a binary operation on V satisfying:
(V1) a®(b®c) = (a®b)®c forall a, b, c € V (associativity).
(V2) a®(VS) = Vies(a® s) for every S C V and every
acV.
(V3) (VS)®a= V,s(s®a) for every S C V and every
acV.
A quantale V = (V,®) is called unital if there exists an element e €

V such that for every a € V the equalities a® e = aand e® a = a
hold. V = (V,®) is called commutative if ® is commutative.

v
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Quantales and related structures

V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair (A, %)
such that A is a \/-semilattice and * : V x A — A is a map
satisfying:
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V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair (A, %)
such that A is a \/-semilattice and * : V x A — A is a map
satisfying:
(M1) v (VS) = Vss(v*s) for every S C A and every
vev.
(M2) (VT)xa = V,(t*a)forevery T C V and every
acA
(M3) wux(v*a)=(u®v)x*aforevery u,v € v and every
acA

(M4) exa = aforevery a € A, where e is a unit of a quantale
V.

V.
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Quantales and related structures

V-modules

Definition 2

Given two left V-modules (A,*), (B,*), a map f : A — B is
called a left-V module homomorphism provided that it preserves all
joins and f(v*xa) = v« f(a) for every a € A and every v € V.

Whenever we mention a quantale or a V-module, we would mean
by that a unital commutative quantale and a unital V-module,
respectively.
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Definition 3

Given a quantale V a V-relation r from set X to set Y is a map
r:XxyY—V.
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Quantales and related structures

V-frames

Definition 4

Given a unital quantale V' a V-frame over a set T is a pair (T,r)
whererisamapr: T x T — V.

Note that the definition of V-frame is a generalization of the
standard notion of a time frame.
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Quantales and related structures

V-frames

Definition 4

Given a unital quantale V' a V-frame over a set T is a pair (T,r)
whererisamapr: T x T — V.

Note that the definition of V-frame is a generalization of the
standard notion of a time frame.

Definition 5

Given a quantale V and two V-frames T and S, a map f :
T — S is called a V-frame homomorphism if it satisfyies r(i,j) <

s((F(i),f(j))) for every i,j € T.
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Quantales and related structures

V-F-semilattices

Definition 6

Given a unital quantale V/, a \V/-F-semilattice is a pair (G, F) where
G is a unital V-module and F is a join preserving map F : G — G
satisfying v * (F(a)) = F(v * a).
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Quantales and related structures

V-F-semilattices

Definition 6

Given a unital quantale V/, a \V/-F-semilattice is a pair (G, F) where
G is a unital V-module and F is a join preserving map F : G — G
satisfying v * (F(a)) = F(v * a).

Definition 7

Given a unital quantale V' and two unital V-F-semilattices (G, F)
and V-H-semilattice (G, H) (where Gi and G, are unital V-
modules, a module homomorphism f : Gi — Gy is called a ho-
momorphism between (Gy, F) and (Gp, H) if it satisfies H(f(a)) <
f(F(a)) for any a € Gj.
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Tense product

Tense product

Let (A, x) be a unital V-module and J = (T,r) be a V-frame. Let
us define a unital V-F-sup-semilattice A’ as (AT, F/) where

= \/{r(i, k)« x(k) | k € T}

The operation on the V-module AT, denoted as ' is defined
for any pair (v, x) as v«x(t) for every t from the from the V-frame.

Similarly, the join is defined component-wise.

The construction above is mentioned as a definition, but it
contains a theorem within. One can show that (AT, F/) is indeed
a V-F-sup-semilattice.

Note that the definition above is a generalization of our previous
definition using different categories:
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Tense product

Tense product in 2-valued setting

Definition 9

Let L = (L,\/) be a sup-semilattice and J = (T,S) a frame. Let us
define an V-F-sup-semilattice L’ as L’ = (LT, F7), where

(F())() = \/{x(k) | (i, k) € S}

for all x € LT. FJ will be called an operator on LT constructed by
means of the frame J.

This follows from the fact that a V-frame is just a standard frame
if V is a trivial, two element quantale (maps from T x T to {0,1}
are just standard relations on T and r is a 'belonging to the
relation function, whether it maps a pair to zero or one’).
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Tense product

Functor theorems in enriched posets

Theorem 10

Let A1 and Ay be V-modules, let f: Ay — Ay be a homomor-
phism, and let J = (T, r) be a V-frame. Then there exists a homo-
morphism f7 : A{ — Aé in the category of unital V -F-semilattices
such that, for every x € A] and every i € T, it holds

(F())(0) = F(x(7)-

Moreover (—)7 is a functor from V-S to to V — F—S«.
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Tense product

Functor theorems in enriched posets

Let J; and J, be V-frames, let t: J1; — Jo be a homomorphism
of V-frames, and let A be a unital VV-module. Then there exists a
lax morphism At: A2 —s A1 of unital V-F-sup-semilattices such
that, for every x € ATz and every i € Ty, it holds

(ATC))(7) = x(¢(7)).

Moreover, A~ is a contravariant functor from V —J to V — F—S<.
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Functor theorems in enriched posets

Let J; and J, be V-frames, let t: J1; — Jo be a homomorphism
of V-frames, and let A be a unital VV-module. Then there exists a
lax morphism At: A2 —s A1 of unital V-F-sup-semilattices such
that, for every x € ATz and every i € Ty, it holds

(ATC))(7) = x(¢(7)).

Moreover, A~ is a contravariant functor from V —J to V — F—S<.

Definition 12
Let V be a unital quantale, A be a V-module and J = (T,r) a
V-frame. Then, for arbitrary x € A and i € T, we define x;.(j) =

.. : x ifi=j;
r(7,J)  x and xi= by xi=(j) = { 0 othervnj/ise.

.
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Tense product

Functor theorems in enriched posets

Definition 13
Let V be a quantale, H = (A, F) an V-F-sup-semilattice, and J =

(T,r) a V-frame. We put
[J,H] = {(xir V F(x)i=, F(x)i=) | x € Aji € T}.
We then define a V-module J @ H as follows:

-
Ajls s

where j[J, H] is a surjective homomorphism of V/-modules such that

J[3: Hl(xir V F(x)i=) = j[J, H](F(x)i=) for all x € A,i € T.
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Tense product

Functor theorems in enriched posets

Definition 14

Let J; = (T1,r) and Jo = (T2,s) be V-frames, f : T1 — T, a
V-frame homomorphism, and (A, *) a V-module.

We define a forward operator f~ : ATt — A2 evaluatedon k € T»
for any x € ATt as follows:

(F(0)(K) = V{x() | (i) = k}

where k € T».
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Tense product

Functor theorems in enriched posets

Let f: J; — Jo be a homomorphism of V-frames J; = (T1, 1) and
Jo = (T2, ), and H = (A, F) an V-F-sup-semilattice. Then there
exists a unique morphism f @ H: J1 ® H — Jo ® H of V-modules
such that the following diagram commutes:

AT Ji®H
n(j[J1, H])
F~ f®H
n(j[J2, H])
ATz Jo®H

Moreover, (—) @ H is a functor from V-J to V-S.
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Tense product

Functor theorems in enriched posets

Theorem 16

LetHy = (Gy, F1),H2 = (G2, F2) be V-F-sup-semilattices, f: Hy —
Hy a lax morphism of V-F-sup-semi-lattices and J = (T,r) a V-
frame. Then there is a unique morphism J® f: J® Hi — J® Hj
of V-modules such that the following diagram commutes:

GJ J®H;
n(j[J, Hi])
fl Jof
n(j[J, Ha])
GJ J®H>

Moreover, J ® (—) is a functor from the category of V — F—S< to
V-S.
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Tense product

Functor theorems in enriched posets

Definition 17

Let V be unital quantale and (A,*) a V-module. Let us define
a— b eV as follows:

a—>b:\/{v€V;v*a§b}

Let H be a V-F-sup-semilattice and let A be a V-module.
Let us define a V-frame J[H,A| as a pair (Tiy A, fH,4]), where
TiH,4) are V-module morphisms from H to A and ryy 4 is defined

as nua(a; B) = Aen B(x) = a(F(x)).
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Tense product

Functor theorems in enriched posets

Theorem 18

Let A1, Ay be V-modules, H = (G, F) a V-F-sup-semilattice, and
let f: Ay — Ay be a morphism of V-modules. Then there exists a
homomorphism J[H, f]: J[H, A1] — J[H, Az] of V-frames such that

(J[H, fl(a))(x) = f(a(x))

forall a« € Ty, and all x € G.

Moreover, J[H, (—)] is a functor from V-S to V-].
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Tense product

Functor theorems in enriched posets

Theorem 19

Let Hy = (Gy1, F1),H2 = (Gg, F2) be V-F-sup-semilattices, A a V-
frame and f: Hy — Hy a lax morphism of V-F-sup-semilattices.
Then there exists a homomorphism J[f,A]: J[H2, A] — J[H1,A] of
V -frames such that

(IF; Al(@))(x) = a(f(x)) = (a0 f)(x)

for all a € Ty, Al and all x € G;.

Moreover, J[(—),A] is a contravariant functor from V — F—S<s to
the V-J.

v
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Tense product

Q@ =1{0,a,b,c,1} is a quantale (see Eklund Nr. 5.2.13)

A0 a b ¢ 1

0|0 OO OO
al0 a 0 0 a

a all]1

b0 0 b 0O b

c|0 0 0 ¢ ¢

c 11 c1
1 1111

110 a b ¢ 1

VIO a b c 1l

0 a b c1

0|0 a b c 1

a

bib 1 b 11

c
1

*

0|0 0 0 0O

al0 0 a a a

b|0 a b c 1

cl0 a1 11

110 a 1 11
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Tense product

Example

V = {0, b,1} is a subquantale of the quantale Q.

«[0 b 1 V|0 b1 A0 b1
0[0 0 0 00 b 1 0[o 00
b0 b 1 b|b b1 b|O b b
110 11 1111 1/0 b1
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Tense product

Put G=({0,a,b,c,1},\/). Then Gis a

V-module.

A0 a b c 1

0|0 00O OO
al0 a 0 0 a

a all!1

b0 O b 0 b
c|0 0 0 ¢ ¢

c 11 c1
1 1111

110 a b ¢ 1

VIO a b c1l

0|0 a b c 1

*‘Oabc 1
0|0 0 0O O
b|0 a b c 1

a

bib 1 b 11

c
1

110 a 1 11
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Tense product

Example

We now put F(x) = ax*x for all x € G. Then F preserves arbitrary
joins and

F(uxx) = ax(uxx) = (axu)xx = (u*a)xx = ux(axx) = uxF(x)
for all u € {0,b,c} and x € G.

Let L = ({0,1},\/} be a V-module where 0 < 1.

0 a b c 1

Let us define a frame JH,L] = £/0 0 0 0 0
(S(G,L),r) where risthemapfromDef- £ |0 0 0 1 1
inition 17. /0 0 1 0 1
Clearly, S(G,L) potentially has 8 ele- £ [0 1 0 0 1
ments, which we will denote f;, where £ |0 1 1 0 1
i € {1,2,3,4,5,6,7,8} and their de- £ |0 1 0 1 1
scription is given by the following table: £ |0 0 1 1 1
g0 1 1 1 1
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Tense product

Example

Since every of these potential morphism also have to satisfy
f(vxy)=vxf(y) for every v € V and every y € G we can show
fi, f7 and fg are the only morphisms that actually satisfy this
property. For any other f; there is an element y € {a, b, ¢} such
that fi(y) = 0. But then fi(1xy) =1. Yet fi(y) =0, and we
obtain 1% fi(y) = 0. So we get a contradiction.

By one of the previous theorems, there exists a lax morphism
pr: H — LR of V-F-sup-semilattices defined for arbitrary

x € G and f; € S(G,L) by

(L (x))(fi) = fi(x).



Functorial constructions
000000000000 0000e00

Tense product

Example

Let us now describe the map r. For all i € {1,7 8} it holds that:

r(fi i) = )\ Alx) = fi(F(x)) =
xeG
since fi(x) = 0 and therefore it holds for all x €G.
Let i € {1,7,8} and j € {7,8} it holds that:

r(f,f) = N\ f(x) = fi(F(x)) =
x€G
since fg(x) =1 for all x other than 0 and f; = 1 for all x other
than 0 or a. The map r is given by the following table:

rlh f R
i1 0 O
11 0 O
g1 0 O
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Tense product

By the previous, there exists a lax morphism py: H — LIHLT of
V-F-sup-semilattices defined for arbitrary x € G and f; € S(G, L)
by

(L ())(fi) = fi(x)-

Let us now compute py on elements of G. It holds that:

(i (x))(A) = fi(x) =0

forall x € G,

and

(1(x))(f) = fo(x) = 0 if x = 0 and (un(x))(fs) = fo(x) = 1
otherwise.

and

(1)) = fr(x) = 0 if x = 0,2 and (un(x))(f) = fr(x) = 1
otherwise.
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Tense product

* |h &
pu(0) [0 0 0
MH(a) 0 O 1
pH(b) [0 1 1
,uH(C) 0 1 1
pr(l) |01 1

We see that the morphism is not injective and so it is not an
embedding.
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First adjoint situation

Let J=(T,r) be a V-frame. Then:

@ For an arbitrary V-F-sup-semilattice H = (G, F) there exists
a lax morphism ny: H — (J ® H)? of V-F-sup-semilattices
defined in such a way that

(i (x))(1) = nG[, H]) (xi=)-

Moreover, n = (ny: H— (J® H)J)HE\/_,:_SS
is a natural transformation.
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First adjoint situation

@ For an arbitrary V-module L there exists a unique morphism
eL: J® LI — L of V-modules such that the following diagram

commutes:
n(j[J, L'])
JoL!

(Lnr

L
€L

L

where e : (LT)™ — L is defined by e (%) = \/;c7(%(i))(i) for any
xe (LN
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First adjoint situation

Moreover, ¢ = (e.: J® L? — L)Lcs is a natural transformation.

@ There exists an adjoint situation (1,¢): (J® —) 4 (-): S —
the category of V-F-sup-semilattices.
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Second adjoint situation

Let H = (G, F) be an V-F-sup-semilattice. Then:

@ For an arbitrary V-frame J = (T,r), there exists a unique
homomorphism of V-frames
vy: J — J[H,J ® H] defined for arbitrary x € G and i € T in
such a way that

(23(1))(x) = n([J, H)(xi=)-

Moreover, ¢ = (¢;: J — J[H,J ® H])jev_J is a natural trans-
formation.
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Second adjoint situation

@ For an arbitrary V-module L there exists a unique morphism
Pr: JH,L] ® H — L of V-modules such that the following
diagram commutes:

n(j[J[H, L], H])
Gy JH,L]®H

PL
fL

L
where f: GTHU — L is defined by fi (x) = Vaeiny a(x(@)) for

any x € G,
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Second adjoint situation

Moreover, 1 = (¢ : J[H,L] ® H — L)_cv—s is a natural
transformation.

@ There exists an adjoint situation
(p.¥): (- @H) 4JH,-]): V-5 =V —J
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Third adjoint situation

Let L be a V-module. Then the following holds:

@ For an arbitrary V-frame J = (T, r), there exists a unique ho-
momorphism of V-frames v;: J — J[L?, L] defined for arbitrary
x € LT and i € T in such a way that

(ws(1)(x) = x(i).
Moreover, v = (vy: J — J[L?,L])sev_J is a natural transfor-
mation.
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Third adjoint situation

Let L be a V-module. Then the following holds:

@ For an arbitrary V-frame J = (T, r), there exists a unique ho-
momorphism of V-frames v;: J — J[L?, L] defined for arbitrary
x € LT and i € T in such a way that

(ws(1)(x) = x(i).

Moreover, v = (vy: J — J[L?,L])sev_J is a natural transfor-
mation.

@ For an arbitrary V-F-sup-semilattice H = (G, F) there exists a
lax morphism
pp:H — LI of V-F-sup-semilattices defined for arbitrary
x€ Gand a € TJ[H,L]
by

(1n(x))(@) = a(x).
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Third adjoint situation

Moreover, pn = (uy: H — LJ[H’L])HE\/_,:_S< is a natural
transformation.

(c) There exists an adjoint situation
(v, 1) : J[=L]) 4LV — J = V — F-S<.



Thank you for your attention!
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