More on tense operators

Michal Botur ${ }^{2}$ Jan Paseka ${ }^{2}$ Richard Smolka ${ }^{2}$
${ }^{1}$ Department Of Algebra and Geometry, Faculty Of Science Palacky University in Olomouc e-mail:michal.botur@upol.cz
${ }^{2}$ Department of Mathematics and Statistics, Faculty of Science Masaryk University, Brno, Czech Republic e-mail: paseka@math.muni.cz

Summer School on General Algebra and Ordered Sets 2023

Stará Lesná, Vysoké Tatry, Slovakia
September 2 - September 8, 2023

Acknowledgements

Jan Paseka acknowledges the support of the bilateral project "The many facets of orthomodularity" of the Austrian Science Fund (FWF) (project No. I 4579-N) and the Czech Science Foundation (GAČR) (project No. 20-09869L).

FШF

Der Wissenschaftsfonds.

GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY

Outline

(1) Introduction
(2) Algebraic and categorical preliminaries
(3) Functorial constructions

4 Adjoint situations

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results. - We have decided to work with the following three categories parametrized by a unital commutative quantale V :

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V - \mathbb{S}, the category of F-sup-semilatitices by unital V - F-sup-semilattices (the category of them denoted as $V-F-\mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V-\mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
parametrized by a unital commutative quantale V

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V - \mathbb{S}, the category of F-sup-semilatitices by unital V - F-sup-semilattices (the category of them denoted as $V-F-\mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V-\mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V :
(1) unital V-modules,
(2) unital V - F-sup-semilattices,
(3) V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V - \mathbb{S}, the category of F-sup-semilatitices by unital V - F-sup-semilattices (the category of them denoted as $V-F-\mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V-\mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V :
(1) unital V-modules,
(2) unital V-F-sup-semilattices,
(3) V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V - \mathbb{S}, the category of F-sup-semilatitices by unital V - F-sup-semilattices (the category of them denoted as $V-F-\mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V-\mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V :
(1) unital V-modules,
(2) unital V - F-sup-semilattices,

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V - \mathbb{S}, the category of F-sup-semilatitices by unital V - F-sup-semilattices (the category of them denoted as $V-F-\mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V-\mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V :
(1) unital V-modules,
(2) unital V - F-sup-semilattices,
(3) V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V - \mathbb{S}, the category of F-sup-semilatitices by unital V - F-sup-semilattices (the category of them denoted as $V-F-\mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V-\mathbb{J}$).

Quantales

Definition 1

A quantale is a pair $V=(V, \otimes)$, where V is a V-semilattice and \otimes is a binary operation on V satisfying:

A quantale $V=(V, \otimes)$ is called unital if there exists an element $e \in$ V such that for every $a \in V$ the equalities $a \otimes e=a$ and $e \otimes a=a$ hold. $V=(V, \otimes)$ is called commutative if \otimes is commutative.

Quantales

Definition 1

A quantale is a pair $V=(V, \otimes)$, where V is a V-semilattice and \otimes is a binary operation on V satisfying:
(V1) $\quad a \otimes(b \otimes c)=(a \otimes b) \otimes c$ for all $a, b, c \in V$ (associativity). $(V 2) a \otimes(V S)=V_{s \in S}(a \otimes s)$ for every $S \subseteq V$ and every $a \in V$. $(V 3)(\backslash S) \otimes a=V_{s \in S}(S \otimes a)$ for every $S \subseteq V$ and every

A quantale $V=(V, \otimes)$ is called unital if there exists an element $e \in$ V such that for every $a \in V$ the equalities $a \otimes e=a$ and $e \otimes a=a$ hold. $V=(V, \otimes)$ is called commutative if \otimes is commutative.

Quantales

Definition 1

A quantale is a pair $V=(V, \otimes)$, where V is a V-semilattice and \otimes is a binary operation on V satisfying:
(V1) $\quad a \otimes(b \otimes c)=(a \otimes b) \otimes c$ for all $a, b, c \in V$ (associativity).
$(\mathrm{V} 2) \quad a \otimes(\bigvee S)=\bigvee_{s \in S}(a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.
$(\mathrm{V} 3) \quad(\mathrm{V}) \otimes a=V_{s \in S}(s \otimes a)$ for every $S \subseteq V$ and every
A quantale $V=(V, \otimes)$ is called unital if there exists an element $e \in$ V such that for every $a \in V$ the equalities $a \otimes e=a$ and $e \otimes a=a$ hold. $V=(V, \otimes)$ is called commutative if \otimes is commutative.

Quantales

Definition 1

A quantale is a pair $V=(V, \otimes)$, where V is a \bigvee-semilattice and \otimes is a binary operation on V satisfying:
(V1) $\quad a \otimes(b \otimes c)=(a \otimes b) \otimes c$ for all $a, b, c \in V$ (associativity).
$(\mathrm{V} 2) \quad a \otimes(\bigvee S)=\bigvee_{s \in S}(a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.
$(\mathrm{V} 3) \quad(\mathrm{V}) \otimes a=\bigvee_{s \in S}(s \otimes a)$ for every $S \subseteq V$ and every $a \in V$.

A quantale $V=(V, \otimes)$ is called unital if there exists an element $e \in$ V such that for every $a \in V$ the equalities $a \otimes e=a$ and $e \otimes a=a$ hold. $V=(V, \otimes)$ is called commutative if \otimes is commutative.

Quantales

Definition 1

A quantale is a pair $V=(V, \otimes)$, where V is a \bigvee-semilattice and \otimes is a binary operation on V satisfying:
(V1) $\quad a \otimes(b \otimes c)=(a \otimes b) \otimes c$ for all $a, b, c \in V$ (associativity).
$(\mathrm{V} 2) \quad a \otimes(\bigvee S)=\bigvee_{s \in S}(a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.
$(\mathrm{V} 3) \quad(\mathrm{V}) \otimes a=\bigvee_{s \in S}(s \otimes a)$ for every $S \subseteq V$ and every $a \in V$.

A quantale $V=(V, \otimes)$ is called unital if there exists an element $e \in$ V such that for every $a \in V$ the equalities $a \otimes e=a$ and $e \otimes a=a$ hold. $V=(V, \otimes)$ is called commutative if \otimes is commutative.

Quantales

Definition 1

A quantale is a pair $V=(V, \otimes)$, where V is a V-semilattice and \otimes is a binary operation on V satisfying:
(V1) $\quad a \otimes(b \otimes c)=(a \otimes b) \otimes c$ for all $a, b, c \in V$ (associativity).
$(\mathrm{V} 2) \quad a \otimes(\bigvee S)=\bigvee_{s \in S}(a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.
$(\mathrm{V} 3) \quad(\mathrm{V}) \otimes a=\bigvee_{s \in S}(s \otimes a)$ for every $S \subseteq V$ and every $a \in V$.

A quantale $V=(V, \otimes)$ is called unital if there exists an element $e \in$ V such that for every $a \in V$ the equalities $a \otimes e=a$ and $e \otimes a=a$ hold. $V=(V, \otimes)$ is called commutative if \otimes is commutative.

V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair $(A, *)$ such that A is a \bigvee-semilattice and $*: V \times A \longrightarrow A$ is a map satisfying:

Quantales and related structures

V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair $(A, *)$ such that A is a \bigvee-semilattice and $*: V \times A \longrightarrow A$ is a map satisfying:

Quantales and related structures

V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair $(A, *)$ such that A is a \bigvee-semilattice and $*: V \times A \longrightarrow A$ is a map satisfying:
(M1) $\quad v *(\bigvee S)=\bigvee_{s \in S}(v * s)$ for every $S \subseteq A$ and every $v \in V$.
(M2) $(\bigvee T) * a=\bigvee_{t \in t}(t * a)$ for every $T \subseteq V$ and every $a \in A$.
(M3) $u *(v * a)=(u \otimes v) * a$ for every $u, v \in v$ and every
$a \in A$
(M4) $\quad e * a=$ a for every $a \in A$, where e is a unit of a quantale

V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair $(A, *)$ such that A is a V-semilattice and $*: V \times A \longrightarrow A$ is a map satisfying:
(M1) $v *(\bigvee S)=\bigvee_{s \in S}(v * s)$ for every $S \subseteq A$ and every $v \in V$.
(M2) $(\bigvee T) * a=\bigvee_{t \in t}(t * a)$ for every $T \subseteq V$ and every $a \in A$.
(M3) $u *(v * a)=(u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$.
(M4) $e * a=$ a for every $a \in A$, where e is a unit of a quantale

V-modules

Definition 2

Given a unital quantale V, a unital left V-module is a pair $(A, *)$ such that A is a \bigvee-semilattice and $*: V \times A \longrightarrow A$ is a map satisfying:
$(\mathrm{M} 1) \quad v *(\bigvee S)=\bigvee_{s \in S}(v * s)$ for every $S \subseteq A$ and every $v \in V$.
(M2) $(\bigvee T) * a=\bigvee_{t \in t}(t * a)$ for every $T \subseteq V$ and every $a \in A$.
(M3) $u *(v * a)=(u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$.
(M4) $e * a=a$ for every $a \in A$, where e is a unit of a quantale V.

V-modules

Definition 2

Given two left V-modules $(A, *),(B, *)$, a map $f: A \longrightarrow B$ is called a left- V module homomorphism provided that it preserves all joins and $f(v * a)=v * f(a)$ for every $a \in A$ and every $v \in V$.

Whenever we mention a quantale or a V-module, we would mean by that a unital commutative quantale and a unital V-module, respectively.

V-modules

Definition 2

Given two left V-modules $(A, *),(B, *)$, a map $f: A \longrightarrow B$ is called a left- V module homomorphism provided that it preserves all joins and $f(v * a)=v * f(a)$ for every $a \in A$ and every $v \in V$.

Whenever we mention a quantale or a V-module, we would mean by that a unital commutative quantale and a unital V-module, respectively.

Definition 3

Given a quantale V a V-relation r from set X to set Y is a map $r: X \times Y \longrightarrow V$.

V-frames

Definition 4

Given a unital quantale V a V-frame over a set T is a pair (T, r) where r is a map $r: T \times T \longrightarrow V$.

Note that the definition of V-frame is a generalization of the standard notion of a time frame.

V-frames

Definition 4

Given a unital quantale V a V-frame over a set T is a pair (T, r) where r is a map $r: T \times T \longrightarrow V$.

Note that the definition of V-frame is a generalization of the standard notion of a time frame.

Definition 5

Given a quantale V and two V-frames T and S, a map f : $T \longrightarrow S$ is called a V-frame homomorphism if it satisfyies $r(i, j) \leq$ $s((f(i), f(j)))$ for every $i, j \in T$.

V-F-semilattices

Definition 6

Given a unital quantale V, a V-F-semilattice is a pair (G, F) where G is a unital V-module and F is a join preserving map $F: G \longrightarrow G$ satisfying $v *(F(a))=F(v * a)$.

Definition 7

Given a unital quantale V and two unital V - F-semilattices (G, F) and V-H-semilattice $\left(G_{2}, H\right)$ (where G_{1} and G_{2} are unital V modules, a module homomorphism $f: G_{1} \longrightarrow G_{2}$ is called a homomorphism between $\left(G_{1}, F\right)$ and $\left(G_{2}, H\right)$ if it satisfies $H(f(a))$ $f(F(a))$ for any $a \in G_{1}$

V-F-semilattices

Definition 6

Given a unital quantale V, a V-F-semilattice is a pair (G, F) where G is a unital V-module and F is a join preserving map $F: G \longrightarrow G$ satisfying $v *(F(a))=F(v * a)$.

Definition 7

Given a unital quantale V and two unital V - F-semilattices $\left(G_{1}, F\right)$ and V-H-semilattice $\left(G_{2}, H\right)$ (where G_{1} and G_{2} are unital V modules, a module homomorphism $f: G_{1} \longrightarrow G_{2}$ is called a homomorphism between $\left(G_{1}, F\right)$ and $\left(G_{2}, H\right)$ if it satisfies $H(f(a)) \leq$ $f(F(a))$ for any $a \in G_{1}$.

Tense product

Definition 8

Let $(A, *)$ be a unital V-module and $J=(T, r)$ be a V-frame. Let us define a unital V - F-sup-semilattice A^{J} as $\left(A^{T}, F^{J}\right)$ where

$$
\left(F^{J}(x)\right)(i)=\bigvee\{r(i, k) * x(k) \mid k \in T\}
$$

The operation on the V-module A^{T}, denoted as $*^{T}$ is defined for any pair (v, x) as $v * x(t)$ for every t from the from the V-frame.

Similarly, the join is defined component-wise.
The construction above is mentioned as a definition, but it contains a theorem within. One can show that $\left(A^{T}, F^{J}\right)$ is indeed a V - F-sup-semilattice.
Note that the definition above is a generalization of our previous definition using different categories:

Tense product in 2-valued setting

Definition 9

Let $\mathrm{L}=(L, \bigvee)$ be a sup-semilattice and $\mathrm{J}=(T, S)$ a frame. Let us define an V - F-sup-semilattice L^{J} as $\mathrm{L}^{\mathrm{J}}=\left(\mathrm{L}^{\top}, F^{\mathrm{J}}\right)$, where

$$
\left(F^{J}(x)\right)(i)=\bigvee\{x(k) \mid(i, k) \in S\}
$$

for all $x \in L^{T}$. F^{J} will be called an operator on L^{T} constructed by means of the frame J.

This follows from the fact that a V-frame is just a standard frame if V is a trivial, two element quantale (maps from $T \times T$ to $\{0,1\}$ are just standard relations on T and r is a 'belonging to the relation function, whether it maps a pair to zero or one').

Functor theorems in enriched posets

Theorem 10

Let A_{1} and A_{2} be V-modules, let $f: \mathrm{A}_{1} \longrightarrow \mathrm{~A}_{2}$ be a homomorphism, and let $\mathrm{J}=(T, r)$ be a V-frame. Then there exists a homomorphism $f^{J}: \mathrm{A}_{1}^{J} \longrightarrow \mathrm{~A}_{2}^{\mathrm{J}}$ in the category of unital V - F-semilattices such that, for every $x \in A_{1}^{T}$ and every $i \in T$, it holds

$$
\left(f^{J}(x)\right)(i)=f(x(i))
$$

Moreover $(-)^{J}$ is a functor from $V-\mathbb{S}$ to to $V-F-\mathbb{S}_{\leq}$.

Functor theorems in enriched posets

Theorem 11

Let J_{1} and J_{2} be V-frames, let $t: \mathrm{J}_{1} \longrightarrow \mathrm{~J}_{2}$ be a homomorphism of V-frames, and let A be a unital V-module. Then there exists a lax morphism $A^{t}: A^{J_{2}} \longrightarrow A^{\mathrm{J}_{1}}$ of unital V-F-sup-semilattices such that, for every $x \in A^{T_{2}}$ and every $i \in T_{1}$, it holds

$$
\left(\mathrm{A}^{t}(x)\right)(i)=x(t(i)) .
$$

Moreover, A^{-}is a contravariant functor from $V-\mathbb{J}$ to $V-F-\mathbb{S}_{\leq}$.

Functor theorems in enriched posets

Theorem 11

Let J_{1} and J_{2} be V-frames, let $t: \mathrm{J}_{1} \longrightarrow \mathrm{~J}_{2}$ be a homomorphism of V-frames, and let A be a unital V-module. Then there exists a lax morphism $A^{t}: A^{\mathrm{J}_{2}} \longrightarrow A^{\mathrm{J}_{1}}$ of unital $V-F$-sup-semilattices such that, for every $x \in A^{T_{2}}$ and every $i \in T_{1}$, it holds

$$
\left(\mathrm{A}^{t}(x)\right)(i)=x(t(i))
$$

Moreover, A^{-}is a contravariant functor from $V-\mathbb{J}$ to $V-F-\mathbb{S}_{\leq}$.

Definition 12

Let V be a unital quantale, A be a V-module and $\mathrm{J}=(T, r)$ a V-frame. Then, for arbitrary $x \in A$ and $i \in T$, we define $x_{i r}(j)=$ $r(i, j) * x$ and $x_{i=}$ by $x_{i=}(j)= \begin{cases}x & \text { if } i=j ; \\ 0 & \text { otherwise. }\end{cases}$

Functor theorems in enriched posets

Definition 13

Let V be a quantale, $\mathrm{H}=(\mathrm{A}, F)$ an V - F-sup-semilattice, and $\mathrm{J}=$ (T, r) a V-frame. We put

$$
[\mathrm{J}, \mathrm{H}]=\left\{\left(x_{i r} \vee F(x)_{i=}, F(x)_{i=}\right) \mid x \in A, i \in T\right\} .
$$

We then define a V-module $\mathrm{J} \otimes \mathrm{H}$ as follows:

$$
\mathrm{A}_{j[\mathrm{~J}, \mathrm{H}]}^{T},
$$

where $j[\mathrm{~J}, \mathrm{H}]$ is a surjective homomorphism of V-modules such that $j[J, \mathrm{H}]\left(x_{i r} \vee F(x)_{i=}\right)=j[\mathrm{~J}, \mathrm{H}]\left(F(x)_{i=}\right)$ for all $x \in A, i \in T$.

Tense product

Functor theorems in enriched posets

Definition 14

Let $\mathrm{J}_{1}=\left(T_{1}, r\right)$ and $\mathrm{J}_{2}=\left(T_{2}, s\right)$ be V-frames, $f: T_{1} \longrightarrow T_{2}$ a V-frame homomorphism, and $(\mathrm{A}, *)$ a V-module.
We define a forward operator $f \rightarrow: A^{T_{1}} \longrightarrow A^{T_{2}}$ evaluated on $k \in T_{2}$ for any $x \in A^{T_{1}}$ as follows:

$$
\left(f^{\rightarrow}(x)\right)(k)=\bigvee\{x(i) \mid f(i)=k\}
$$

where $k \in T_{2}$.

Functor theorems in enriched posets

Theorem 15

Let $f: J_{1} \longrightarrow J_{2}$ be a homomorphism of V-frames $\mathrm{J}_{1}=\left(T_{1}, r_{1}\right)$ and $\mathrm{J}_{2}=\left(T_{2}, r_{2}\right)$, and $\mathrm{H}=(\mathrm{A}, F)$ an V - F-sup-semilattice. Then there exists a unique morphism $f \otimes \mathrm{H}: \mathrm{J}_{1} \otimes \mathrm{H} \rightarrow \mathrm{J}_{2} \otimes \mathrm{H}$ of V -modules such that the following diagram commutes:

Moreover, $(-) \otimes \mathrm{H}$ is a functor from $V-\mathbb{J}$ to $V-\mathbb{S}$.

Functor theorems in enriched posets

Theorem 16

Let $\mathrm{H}_{1}=\left(\mathrm{G}_{1}, F_{1}\right), \mathrm{H}_{2}=\left(\mathrm{G}_{2}, F_{2}\right)$ be V-F-sup-semilattices, $f: \mathrm{H}_{1} \rightarrow$ H_{2} a lax morphism of V-F-sup-semi-lattices and $\mathrm{J}=(T, r)$ a V frame. Then there is a unique morphism $\mathrm{J} \otimes f: \mathrm{J} \otimes \mathrm{H}_{1} \rightarrow \mathrm{~J} \otimes \mathrm{H}_{2}$ of V-modules such that the following diagram commutes:

Moreover, $\mathrm{J} \otimes(-)$ is a functor from the category of $V-F-\mathbb{S}_{\leq}$to $V-\mathbb{S}$.

Functor theorems in enriched posets

Definition 17

Let V be unital quantale and $(A, *)$ a V-module. Let us define $a \rightarrow b \in V$ as follows:

$$
a \rightarrow b=\bigvee\{v \in V ; v * a \leq b\}
$$

Let H be a V - F-sup-semilattice and let A be a V-module.
Let us define a V-frame $J[H, A]$ as a pair $\left(T_{[H, A]}, r_{[H, A]}\right)$, where $T_{[H, A]}$ are V -module morphisms from H to A and $r_{[H, A]}$ is defined as $r_{[H, A]}(\alpha, \beta)=\bigwedge_{x \in H} \beta(x) \rightarrow \alpha(F(x))$.

Functor theorems in enriched posets

Theorem 18

Let $\mathrm{A}_{1}, \mathrm{~A}_{2}$ be V-modules, $\mathrm{H}=(\mathrm{G}, F)$ a V - F-sup-semilattice, and let $f: \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}$ be a morphism of V -modules. Then there exists a homomorphism $\mathrm{J}[\mathrm{H}, f]: \mathrm{J}\left[\mathrm{H}, \mathrm{A}_{1}\right] \rightarrow \mathrm{J}\left[\mathrm{H}, \mathrm{A}_{2}\right]$ of V-frames such that

$$
(J[H, f](\alpha))(x)=f(\alpha(x))
$$

for all $\alpha \in T_{\left[H, \mathrm{~L}_{1}\right]}$ and all $x \in G$.
Moreover, $\mathrm{J}[\mathrm{H},(-)]$ is a functor from V-S to $V-\mathbb{J}$.

Functor theorems in enriched posets

Theorem 19

Let $\mathrm{H}_{1}=\left(\mathrm{G}_{1}, F_{1}\right), \mathrm{H}_{2}=\left(\mathrm{G}_{2}, F_{2}\right)$ be V - F-sup-semilattices, A a V frame and $f: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ a lax morphism of $V-F$-sup-semilattices.
Then there exists a homomorphism $\mathrm{J}[f, \mathrm{~A}]: \mathrm{J}\left[\mathrm{H}_{2}, \mathrm{~A}\right] \rightarrow \mathrm{J}\left[\mathrm{H}_{1}, \mathrm{~A}\right]$ of V-frames such that

$$
(\mathrm{J}[f, \mathrm{~A}](\alpha))(x)=\alpha(f(x))=(\alpha \circ f)(x)
$$

for all $\left.\alpha \in T_{\left[H_{2}, \mathrm{~A}\right.}\right]$ and all $x \in G_{1}$.
Moreover, $\mathrm{J}[(-), A]$ is a contravariant functor from $V-F-\mathbb{S}_{\leq s}$ to the V - \mathbb{J}.

Example

$Q=\{0, a, b, c, 1\}$ is a quantale (see Eklund Nr. 5.2.13)

$*$	0	a	b	c	1						
0	0	0	0	0	0		\bigvee	0	a	b	c
	0	0	a	b	c	1					
a	0	0	a	a	a		a	a	a	1	1
b	0	a	b	c	1		b	b	1	b	1
c	1										
c	0	a	1	1	1		c	c	1	1	c
1											
1	0	a	1	1	1		1	1	1	1	1

\wedge	0	a	b	c	1
0	0	0	0	0	0
a	0	a	0	0	a
b	0	0	b	0	b
c	0	0	0	c	c
1	0	a	b	c	1

Example

$V=\{0, b, 1\}$ is a subquantale of the quantale Q.

$*$	0	b	1					
0	0	0	0					
b	0	b	1					
1	0	1	1	\quad	\bigvee	0	b	1
:---	:---	:---	:---					
0	0	b	1					
b	b	b	1					
1	1	1	1	\quad	\wedge	0	b	1
:---	:---	:---	:---	:---				
0	0	0	0					
b	0	b	b					
1	0	b	1					

Tense product

Example

Put $G=(\{0, a, b, c, 1\}, \bigvee)$. Then G is a
V -module.

$*$	0	a	b	c	1
0	0	0	0	0	0
b	0	a	b	c	1
1	0	a	1	1	1

\bigvee	0	a	b	c	1
0	0	a	b	c	1
a	a	a	1	1	1
b	b	1	b	1	1
c	c	1	1	c	1
1	1	1	1	1	1

\wedge	0	a	b	c	1
0	0	0	0	0	0
a	0	a	0	0	a
b	0	0	b	0	b
c	0	0	0	c	c
1	0	a	b	c	1

Tense product

Example

We now put $F(x)=a * x$ for all $x \in G$. Then F preserves arbitrary joins and
$F(u * x)=a *(u * x)=(a * u) * x=(u * a) * x=u *(a * x)=u * F(x)$ for all $u \in\{0, b, c\}$ and $x \in G$.
Let $\mathrm{L}=(\{0,1\}, \bigvee\}$ be a V-module where $0<1$.

Let us define a frame $J[H, L]=$| | f_{1} | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | | $(\mathbb{S}(\mathrm{G}, \mathrm{L}), r)$ where r is the map from Definition 17.

Clearly, $\mathbb{S}(\mathrm{G}, \mathrm{L})$ potentially has 8 elements, which we will denote f_{i}, where $i \in\{1,2,3,4,5,6,7,8\}$ and their description is given by the following table:

	0	a	b	c	1
f_{1}	0	0	0	0	0
f_{2}	0	0	0	1	1
f_{3}	0	0	1	0	1
f_{4}	0	1	0	0	1
f_{5}	0	1	1	0	1
f_{6}	0	1	0	1	1
f_{7}	0	0	1	1	1
f_{8}	0	1	1	1	1

Tense product

Example

Since every of these potential morphism also have to satisfy $f(v * y)=v * f(y)$ for every $v \in V$ and every $y \in G$ we can show f_{1}, f_{7} and f_{8} are the only morphisms that actually satisfy this property. For any other f_{i} there is an element $y \in\{a, b, c\}$ such that $f_{i}(y)=0$. But then $f_{i}(1 * y)=1$. Yet $f_{i}(y)=0$, and we obtain $1 * f_{i}(y)=0$. So we get a contradiction.

By one of the previous theorems, there exists a lax morphism $\mu_{\mathrm{H}}: \mathrm{H} \longrightarrow \mathrm{L}^{\mathrm{J}[\mathrm{H}, \mathrm{L}]}$ of V - F-sup-semilattices defined for arbitrary $x \in G$ and $f_{i} \in \mathbb{S}(\mathrm{G}, \mathrm{L})$ by

$$
\left(\mu_{\mathrm{H}}(x)\right)\left(f_{i}\right)=f_{i}(x)
$$

Example

Let us now describe the map r. For all $i \in\{1,7,8\}$ it holds that:

$$
r\left(f_{i}, f_{1}\right)=\bigwedge_{x \in G} f_{1}(x) \rightarrow f_{i}(F(x))=1
$$

since $f_{1}(x)=0$ and therefore it holds for all $x \in G$. Let $i \in\{1,7,8\}$ and $j \in\{7,8\}$ it holds that:

$$
r\left(f_{i}, f_{j}\right)=\bigwedge_{x \in G} f_{j}(x) \rightarrow f_{i}(F(x))=0
$$

since $f_{8}(x)=1$ for all x other than 0 and $f_{7}=1$ for all x other than 0 or a. The map r is given by the following table:

r	f_{1}	f_{7}	f_{8}
f_{1}	1	0	0
f_{7}	1	0	0
f_{8}	1	0	0

By the previous, there exists a lax morphism $\mu_{\mathrm{H}}: \mathrm{H} \longrightarrow \mathrm{L}^{\mathrm{J}}[\mathrm{H}, \mathrm{L}]$ of V - F-sup-semilattices defined for arbitrary $x \in G$ and $f_{i} \in \mathbb{S}(\mathrm{G}, \mathrm{L})$ by

$$
\left(\mu_{\mathrm{H}}(x)\right)\left(f_{i}\right)=f_{i}(x)
$$

Let us now compute μ_{H} on elements of G. It holds that:

$$
\left(\mu_{\mathrm{H}}(x)\right)\left(f_{1}\right)=f_{1}(x)=0
$$

for all $x \in G$,
and
$\left(\mu_{\mathrm{H}}(x)\right)\left(f_{8}\right)=f_{8}(x)=0$ if $x=0$ and $\left(\mu_{\mathrm{H}}(x)\right)\left(f_{8}\right)=f_{8}(x)=1$ otherwise.
and
$\left(\mu_{\mathrm{H}}(x)\right)\left(f_{7}\right)=f_{7}(x)=0$ if $x=0, a$ and $\left(\mu_{\mathrm{H}}(x)\right)\left(f_{7}\right)=f_{7}(x)=1$ otherwise.

$*$	f_{1}	f_{7}	f_{8}
$\mu_{\mathrm{H}}(0)$	0	0	0
$\mu_{\mathrm{H}}(a)$	0	0	1
$\mu_{\mathrm{H}}(b)$	0	1	1
$\mu_{\mathrm{H}}(c)$	0	1	1
$\mu_{\mathrm{H}}(1)$	0	1	1

We see that the morphism is not injective and so it is not an embedding.

First adjoint situation

Let $\mathrm{J}=(T, r)$ be a V-frame. Then:
(a) For an arbitrary V - F-sup-semilattice $\mathrm{H}=(\mathrm{G}, F)$ there exists a lax morphism $\eta_{\mathrm{H}}: \mathrm{H} \rightarrow(\mathrm{J} \otimes \mathrm{H})^{J}$ of V - F-sup-semilattices defined in such a way that

$$
\left(\eta_{\mathrm{H}}(x)\right)(i)=\mathrm{n}(j[\mathrm{~J}, \mathrm{H}])\left(x_{i=}\right) .
$$

Moreover, $\eta=\left(\eta_{\mathrm{H}}: \mathrm{H} \rightarrow(\mathrm{J} \otimes \mathrm{H})^{\mathrm{J}}\right)_{\mathrm{H} \in \mathrm{V}-F-\mathbb{S}_{\leq}}$ is a natural transformation.

First adjoint situation

(a) For an arbitrary V-module L there exists a unique morphism $\varepsilon_{\mathrm{L}}: \mathrm{J} \otimes \mathrm{L}^{\mathrm{J}} \rightarrow \mathrm{L}$ of V-modules such that the following diagram commutes:

$$
\mathrm{n}\left(j\left[\mathrm{~J}, \mathrm{~L}^{\mathrm{J}}\right]\right)
$$

where $e_{\mathrm{L}}:\left(\mathrm{L}^{T}\right)^{T} \rightarrow \mathrm{~L}$ is defined by $e_{\mathrm{L}}(\bar{x})=\bigvee_{i \in T}(\bar{x}(i))(i)$ for any $\bar{x} \in\left(L^{T}\right)^{T}$.

First adjoint situation

Moreover, $\varepsilon=\left(\varepsilon_{\mathrm{L}}: \mathrm{J} \otimes \mathrm{L}^{\mathrm{J}} \rightarrow \mathrm{L}\right)_{\mathrm{L} \in \mathbb{S}}$ is a natural transformation.
(3) There exists an adjoint situation $(\eta, \varepsilon):(\mathrm{J} \otimes-) \dashv\left(-^{J}\right): \mathbb{S} \rightarrow$ the category of $V-F$-sup-semilattices.

Second adjoint situation

Let $\mathrm{H}=(\mathrm{G}, F)$ be an V - F-sup-semilattice. Then:
(a) For an arbitrary V-frame $\mathrm{J}=(T, r)$, there exists a unique homomorphism of V-frames
$\varphi_{\mathrm{J}}: \mathrm{J} \rightarrow \mathrm{J}[\mathrm{H}, \mathrm{J} \otimes \mathrm{H}]$ defined for arbitrary $x \in G$ and $i \in T$ in such a way that

$$
\left(\varphi_{\mathrm{J}}(i)\right)(x)=\mathrm{n}(j[\mathrm{~J}, \mathrm{H}])\left(x_{i=}\right) .
$$

Moreover, $\varphi=\left(\varphi_{\mathrm{J}}: \mathrm{J} \rightarrow \mathrm{J}[\mathrm{H}, \mathrm{J} \otimes \mathrm{H}]\right)_{\mathrm{J} \in \mathbb{V}-J}$ is a natural transformation.

Second adjoint situation

(a) For an arbitrary V-module L there exists a unique morphism $\psi_{\mathrm{L}}: \mathrm{J}[\mathrm{H}, \mathrm{L}] \otimes \mathrm{H} \rightarrow \mathrm{L}$ of V-modules such that the following diagram commutes:

$$
\mathrm{n}(j[\mathrm{~J}[\mathrm{H}, \mathrm{~L}], \mathrm{H}])
$$

where $f_{\mathrm{L}}: \mathrm{G}^{T_{[\mathrm{H}, \mathrm{L}]}} \rightarrow \mathrm{L}$ is defined by $f_{\mathrm{L}}(x)=\bigvee_{\alpha \in \mathrm{J}[\mathrm{H}, \mathrm{L}]} \alpha(x(\alpha))$ for any $x \in G^{T}[\mathrm{H}, \mathrm{L}]$.

Second adjoint situation

Moreover, $\psi=\left(\psi_{\mathrm{L}}: J[\mathrm{H}, \mathrm{L}] \otimes \mathrm{H} \rightarrow \mathrm{L}\right)_{\mathrm{L} \in \mathbb{V}-S}$ is a natural transformation.
(a) There exists an adjoint situation $(\varphi, \psi):(-\otimes \mathrm{H}) \dashv \mathrm{J}[\mathrm{H},-]): \mathbb{V}-S \rightarrow \mathbb{V}-J$.

Third adjoint situation

Let L be a V-module. Then the following holds:
(a) For an arbitrary V-frame $\mathrm{J}=(T, r)$, there exists a unique homomorphism of V-frames $\nu_{\mathrm{J}}: \mathrm{J} \rightarrow \mathrm{J}\left[\mathrm{L}^{\mathrm{J}}, \mathrm{L}\right]$ defined for arbitrary $x \in L^{T}$ and $i \in T$ in such a way that

$$
\left(\nu_{J}(i)\right)(x)=x(i)
$$

Moreover, $\nu=\left(\nu_{J}: \mathrm{J} \rightarrow \mathrm{J}\left[\mathrm{L}^{\mathrm{J}}, \mathrm{L}\right]\right)_{\mathrm{J} \in \mathbb{V}-J}$ is a natural transformation.
For an arbitrary V - F-sup-semilattice $H=(G, F)$ there exists a lax morphism $\mu_{\mathrm{H}}: \mathrm{H} \rightarrow \mathrm{L}^{\mathrm{J}[\mathrm{H}, \mathrm{L}]}$ of V-F-sup-semilattices defined for arbitrary $x \in G$ and $\alpha \in T_{J[H, L]}$

Third adjoint situation

Let L be a V-module. Then the following holds:
(2) For an arbitrary V-frame $\mathrm{J}=(T, r)$, there exists a unique homomorphism of V-frames $\nu_{J}: J \rightarrow J\left[L^{J}, L\right]$ defined for arbitrary $x \in L^{T}$ and $i \in T$ in such a way that

$$
\left(\nu_{J}(i)\right)(x)=x(i)
$$

Moreover, $\nu=\left(\nu_{J}: \mathrm{J} \rightarrow \mathrm{J}\left[\mathrm{L}^{\mathrm{J}}, \mathrm{L}\right]\right)_{\mathrm{J} \in \mathbb{V}-J}$ is a natural transformation.
(1) For an arbitrary V - F-sup-semilattice $\mathrm{H}=(\mathrm{G}, F)$ there exists a lax morphism
$\mu_{\mathrm{H}}: \mathrm{H} \rightarrow \mathrm{L}^{\mathrm{J}[\mathrm{H}, \mathrm{L}]}$ of V - F-sup-semilattices defined for arbitrary $x \in G$ and $\alpha \in T_{J[H, L]}$ by

$$
\left(\mu_{\mathrm{H}}(x)\right)(\alpha)=\alpha(x)
$$

Third adjoint situation

Moreover, $\mu=\left(\mu_{\mathrm{H}}: \mathrm{H} \rightarrow \mathrm{L}^{J[H, L]}\right)_{\mathrm{H} \in V-F-\mathbb{S}_{\leq}}$is a natural transformation.
(c) There exists an adjoint situation

$$
(\nu, \mu): \mathrm{J}[-, \mathrm{L}]) \dashv \mathrm{L}^{-}: \mathbb{V}-J \rightarrow V-F-\mathbb{S}_{\leq}{ }^{o p} .
$$

Thank you for your attention!

