More on tense operators

Michal Botur ² Jan Paseka² Richard Smolka²

¹Department Of Algebra and Geometry, Faculty Of Science Palacky University in Olomouc e-mail:michal.botur@upol.cz

²Department of Mathematics and Statistics, Faculty of Science Masaryk University, Brno, Czech Republic e-mail: paseka@math.muni.cz

Summer School on General Algebra and Ordered Sets 2023

Stará Lesná, Vysoké Tatry, Slovakia September 2 – September 8, 2023

More on tense operators

Jan Paseka

Masaryk University

Functorial constructions

Adjoint situations

Acknowledgements

Jan Paseka acknowledges the support of the bilateral project "The many facets of orthomodularity" of the Austrian Science Fund (FWF) (project No. I 4579-N) and the Czech Science Foundation (GAČR) (project No. 20-09869L).

Der Wissenschaftsfonds.

Outline

- 2 Algebraic and categorical preliminaries
- ③ Functorial constructions
- Adjoint situations

Motivation

• Several years ago we studied tense operators on sup-lattices.

- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V:
 - unital V-modules,
 - unital V-F-sup-semilattices,
 - V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V- \mathbb{S} , the category of F-sup-semilattices by unital V-F-sup-semilattices (the category of them denoted as $V - F - \mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V - \mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V:
 - unital V-modules,
 - unital V-F-sup-semilattices,
 - V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V- \mathbb{S} , the category of F-sup-semilattices by unital V-F-sup-semilattices (the category of them denoted as $V - F - \mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V - \mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V:
 - unital V-modules,
 - unital V-F-sup-semilattices,
 - 3 V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V-S , the category of F-sup-semilattices by unital V-F-sup-semilattices (the category of them denoted as $V - F - \mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V - \mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V:
 - unital V-modules,
 - anital V-F-sup-semilattices,
 - V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V- \mathbb{S} , the category of F-sup-semilattices by unital V-F-sup-semilattices (the category of them denoted as $V - F - \mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V - \mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V:
 - unital V-modules,
 - unital V-F-sup-semilattices,
 - V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V- \mathbb{S} , the category of F-sup-semilattices by unital V-F-sup-semilattices (the category of them denoted as $V - F - \mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V - \mathbb{J}$).

Motivation

- Several years ago we studied tense operators on sup-lattices.
- One of our goals of our research was to generalize the concept and take other ordered structures to obtain analogical results.
- We have decided to work with the following three categories parametrized by a unital commutative quantale V:
 - unital V-modules,
 - unital V-F-sup-semilattices,
 - V-frames.

More exactly, we have replaced the notions of sup-semilattices by unital V-modules (the category of them denoted as V-S , the category of F-sup-semilattices by unital V-F-sup-semilattices (the category of them denoted as $V - F - \mathbb{S}_{\leq}$) and the category of frames by V-frames (the category of them denoted as $V - \mathbb{J}$).

Quantales

Definition 1

A *quantale* is a pair $V = (V, \otimes)$, where V is a \bigvee -semilattice and \otimes is a binary operation on V satisfying:

(V1) $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ for all $a, b, c \in V$ (associativity). (V2) $a \otimes (\bigvee S) = \bigvee_{s \in S} (a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.

(V3) $(\bigvee S) \otimes a = \bigvee_{s \in S} (s \otimes a)$ for every $S \subseteq V$ and every $a \in V$.

Quantales

Definition 1

A *quantale* is a pair $V = (V, \otimes)$, where V is a \bigvee -semilattice and \otimes is a binary operation on V satisfying:

 $(V1) \quad a \otimes (b \otimes c) = (a \otimes b) \otimes c \text{ for all } a, b, c \in V \text{ (associativity)}.$

(V2) $a \otimes (\bigvee S) = \bigvee_{s \in S} (a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.

(V3) $(\bigvee S) \otimes a = \bigvee_{s \in S} (s \otimes a)$ for every $S \subseteq V$ and every $a \in V$.

Quantales

Definition 1

A *quantale* is a pair $V = (V, \otimes)$, where V is a \bigvee -semilattice and \otimes is a binary operation on V satisfying:

 $\begin{array}{ll} (V1) & a \otimes (b \otimes c) = (a \otimes b) \otimes c \text{ for all } a, b, c \in V \text{ (associativity).} \\ (V2) & a \otimes (\bigvee S) = \bigvee_{s \in S} (a \otimes s) \text{ for every } S \subseteq V \text{ and every } \\ a \in V. \end{array}$

(V3) $(\bigvee S) \otimes a = \bigvee_{s \in S} (s \otimes a)$ for every $S \subseteq V$ and every $a \in V$.

Quantales

Definition 1

A *quantale* is a pair $V = (V, \otimes)$, where V is a \bigvee -semilattice and \otimes is a binary operation on V satisfying:

(V1)
$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$
 for all $a, b, c \in V$ (associativity).
(V2) $a \otimes (\bigvee S) = \bigvee_{s \in S} (a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.

(V3)
$$(\bigvee S) \otimes a = \bigvee_{s \in S} (s \otimes a)$$
 for every $S \subseteq V$ and every $a \in V$.

Quantales

Definition 1

A *quantale* is a pair $V = (V, \otimes)$, where V is a \bigvee -semilattice and \otimes is a binary operation on V satisfying:

(V1)
$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$
 for all $a, b, c \in V$ (associativity).
(V2) $a \otimes (\bigvee S) = \bigvee_{s \in S} (a \otimes s)$ for every $S \subseteq V$ and every $a \in V$.

(V3)
$$(\bigvee S) \otimes a = \bigvee_{s \in S} (s \otimes a)$$
 for every $S \subseteq V$ and every $a \in V$.

Quantales

Definition 1

A *quantale* is a pair $V = (V, \otimes)$, where V is a \bigvee -semilattice and \otimes is a binary operation on V satisfying:

(V1)
$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$
 for all $a, b, c \in V$ (associativity).
(V2) $a \otimes (\bigvee S) = \bigvee_{s \in S} (a \otimes s)$ for every $S \subseteq V$ and every $a \in V$

(V3)
$$(\bigvee S) \otimes a = \bigvee_{s \in S} (s \otimes a)$$
 for every $S \subseteq V$ and every $a \in V$.

V-modules

Definition 2

Given a unital quantale V, a unital *left V-module* is a pair (A, *) such that A is a \bigvee -semilattice and $* : V \times A \longrightarrow A$ is a map satisfying:

(M1) $v * (\bigvee S) = \bigvee_{s \in S} (v * s)$ for every $S \subseteq A$ and every $v \in V$. (M2) $(\bigvee T) * a = \bigvee_{t \in t} (t * a)$ for every $T \subseteq V$ and every $a \in A$. (M3) $u * (v * a) = (u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$. (M4) e * a = a for every $a \in A$, where e is a unit of a quantale V.

V-modules

Definition 2

Given a unital quantale V, a unital *left V-module* is a pair (A, *) such that A is a \bigvee -semilattice and $* : V \times A \longrightarrow A$ is a map satisfying:

(M1) $v * (\bigvee S) = \bigvee_{s \in S} (v * s)$ for every $S \subseteq A$ and every $v \in V$. (M2) $(\bigvee T) * a = \bigvee_{t \in t} (t * a)$ for every $T \subseteq V$ and every $a \in A$. (M3) $u * (v * a) = (u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$. (M4) e * a = a for every $a \in A$, where e is a unit of a quantale V.

V-modules

Definition 2

Given a unital quantale V, a unital *left V-module* is a pair (A, *) such that A is a \bigvee -semilattice and $* : V \times A \longrightarrow A$ is a map satisfying:

(M1)
$$v * (\bigvee S) = \bigvee_{s \in S} (v * s)$$
 for every $S \subseteq A$ and every $v \in V$.
(M2) $(\bigvee T) * a = \bigvee_{t \in t} (t * a)$ for every $T \subseteq V$ and every $a \in A$.
(M3) $u * (v * a) = (u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$.
(M4) $e * a = a$ for every $a \in A$, where e is a unit of a quantale V .

V-modules

Definition 2

Given a unital quantale V, a unital *left V-module* is a pair (A, *) such that A is a \bigvee -semilattice and $* : V \times A \longrightarrow A$ is a map satisfying:

(M1)
$$v * (\bigvee S) = \bigvee_{s \in S} (v * s)$$
 for every $S \subseteq A$ and every $v \in V$.
(M2) $(\bigvee T) * a = \bigvee_{t \in t} (t * a)$ for every $T \subseteq V$ and every $a \in A$.
(M3) $u * (v * a) = (u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$.
(M4) $e * a = a$ for every $a \in A$, where e is a unit of a quantale

V-modules

Definition 2

Given a unital quantale V, a unital *left V-module* is a pair (A, *) such that A is a \bigvee -semilattice and $* : V \times A \longrightarrow A$ is a map satisfying:

(M1)
$$v * (\bigvee S) = \bigvee_{s \in S} (v * s)$$
 for every $S \subseteq A$ and every $v \in V$.
(M2) $(\bigvee T) * a = \bigvee_{t \in t} (t * a)$ for every $T \subseteq V$ and every $a \in A$.
(M3) $u * (v * a) = (u \otimes v) * a$ for every $u, v \in v$ and every $a \in A$.
(M4) $e * a = a$ for every $a \in A$, where e is a unit of a quantale V .

Functorial constructions

Quantales and related structures

V-modules

Definition 2

Given two left V-modules (A, *), (B, *), a map $f : A \longrightarrow B$ is called a *left-V module homomorphism* provided that it preserves all joins and f(v * a) = v * f(a) for every $a \in A$ and every $v \in V$.

Whenever we mention a quantale or a V-module, we would mean by that a unital commutative quantale and a unital V-module, respectively.

Definition 3

Given a quantale V a V-relation r from set X to set Y is a map $r: X \times Y \longrightarrow V$.

Functorial constructions

Quantales and related structures

V-modules

Definition 2

Given two left V-modules (A, *), (B, *), a map $f : A \longrightarrow B$ is called a *left-V module homomorphism* provided that it preserves all joins and f(v * a) = v * f(a) for every $a \in A$ and every $v \in V$.

Whenever we mention a quantale or a V-module, we would mean by that a unital commutative quantale and a unital V-module, respectively.

Definition 3

Given a quantale V a V-relation r from set X to set Y is a map $r: X \times Y \longrightarrow V$.

Definition 4

Given a unital quantale V a V-frame over a set T is a pair (T, r) where r is a map $r : T \times T \longrightarrow V$.

Note that the definition of V-frame is a generalization of the standard notion of a time frame.

Definition 5

Given a quantale V and two V-frames T and S, a map $f : T \longrightarrow S$ is called a V-frame homomorphism if it satisfyies $r(i,j) \le s((f(i), f(j)))$ for every $i, j \in T$.

Jan Paseka

Definition 4

Given a unital quantale V a V-frame over a set T is a pair (T, r) where r is a map $r : T \times T \longrightarrow V$.

Note that the definition of V-frame is a generalization of the standard notion of a time frame.

Definition 5

Given a quantale V and two V-frames T and S, a map $f : T \longrightarrow S$ is called a V-frame homomorphism if it satisfyies $r(i,j) \le s((f(i), f(j)))$ for every $i, j \in T$.

V-F-semilattices

Definition 6

Given a unital quantale V, a V-F-semilattice is a pair (G, F) where G is a unital V-module and F is a join preserving map $F : G \longrightarrow G$ satisfying v * (F(a)) = F(v * a).

Definition 7

Given a unital quantale V and two unital V-F-semilattices (G_1, F) and V-H-semilattice (G_2, H) (where G_1 and G_2 are unital Vmodules, a module homomorphism $f : G_1 \longrightarrow G_2$ is called a homomorphism between (G_1, F) and (G_2, H) if it satisfies $H(f(a)) \le f(F(a))$ for any $a \in G_1$.

V-F-semilattices

Definition 6

Given a unital quantale V, a V-F-semilattice is a pair (G, F) where G is a unital V-module and F is a join preserving map $F : G \longrightarrow G$ satisfying v * (F(a)) = F(v * a).

Definition 7

Given a unital quantale V and two unital V-F-semilattices (G_1, F) and V-H-semilattice (G_2, H) (where G_1 and G_2 are unital Vmodules, a module homomorphism $f : G_1 \longrightarrow G_2$ is called a homomorphism between (G_1, F) and (G_2, H) if it satisfies $H(f(a)) \leq$ f(F(a)) for any $a \in G_1$. Tense product

Tense product

Definition 8

Let (A, *) be a unital V-module and J = (T, r) be a V-frame. Let us define a unital V-F-sup-semilattice A^J as (A^T, F^J) where

$$(F^{J}(x))(i) = \bigvee \{r(i,k) * x(k) \mid k \in T\}$$

The operation on the V-module A^T , denoted as $*^T$ is defined for any pair (v, x) as v * x(t) for every t from the from the V-frame.

Similarly, the join is defined component-wise.

The construction above is mentioned as a definition, but it contains a theorem within. One can show that (A^T, F^J) is indeed a V-F-sup-semilattice.

Note that the definition above is a generalization of our previous definition using different categories:

Functorial constructions

Adjoint situations

Tense product

Tense product in 2-valued setting

Definition 9

Let $L = (L, \bigvee)$ be a sup-semilattice and J = (T, S) a frame. Let us define an V-F-sup-semilattice L^J as $L^J = (L^T, F^J)$, where

$$(F^{\mathsf{J}}(x))(i) = \bigvee \{x(k) \mid (i,k) \in S\}$$

for all $x \in L^T$. F^J will be called an operator on L^T constructed by means of the frame J.

This follows from the fact that a V-frame is just a standard frame if V is a trivial, two element quantale (maps from $T \times T$ to $\{0, 1\}$ are just standard relations on T and r is a 'belonging to the relation function, whether it maps a pair to zero or one').

More on tense operators

Jan Paseka

Masaryk University

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 10

Let A_1 and A_2 be V-modules, let $f: A_1 \longrightarrow A_2$ be a homomorphism, and let J = (T, r) be a V-frame. Then there exists a homomorphism $f^J: A_1^J \longrightarrow A_2^J$ in the category of unital V-F-semilattices such that, for every $x \in A_1^T$ and every $i \in T$, it holds

$$(f^{\mathsf{J}}(x))(i) = f(x(i)).$$

Moreover $(-)^J$ is a functor from V-S to to $V - F - S_{\leq}$.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 11

Let J_1 and J_2 be V-frames, let $t: J_1 \longrightarrow J_2$ be a homomorphism of V-frames, and let A be a unital V-module. Then there exists a lax morphism $A^t: A^{J_2} \longrightarrow A^{J_1}$ of unital V-F-sup-semilattices such that, for every $x \in A^{T_2}$ and every $i \in T_1$, it holds

$$(\mathsf{A}^t(x))(i) = x(t(i)).$$

Moreover, A^- is a contravariant functor from $V - \mathbb{J}$ to $V - F - \mathbb{S}_{\leq}$.

Definition 12

Let V be a unital quantale, A be a V-module and J = (T, r) a V-frame. Then, for arbitrary $x \in A$ and $i \in T$, we define $x_{ir}(j) = r(i,j) * x$ and $x_{i=}$ by $x_{i=}(j) = \begin{cases} x & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 11

Let J_1 and J_2 be V-frames, let $t: J_1 \longrightarrow J_2$ be a homomorphism of V-frames, and let A be a unital V-module. Then there exists a lax morphism $A^t: A^{J_2} \longrightarrow A^{J_1}$ of unital V-F-sup-semilattices such that, for every $x \in A^{T_2}$ and every $i \in T_1$, it holds

$$(\mathsf{A}^t(x))(i) = x(t(i)).$$

Moreover, A^- is a contravariant functor from $V - \mathbb{J}$ to $V - F - \mathbb{S}_{\leq}$.

Definition 12

Let V be a unital quantale, A be a V-module and J = (T, r) a V-frame. Then, for arbitrary $x \in A$ and $i \in T$, we define $x_{ir}(j) = r(i,j) * x$ and $x_{i=}$ by $x_{i=}(j) = \begin{cases} x & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Definition 13

Let V be a quantale, H = (A, F) an V-F-sup-semilattice, and J = (T, r) a V-frame. We put

$$[\mathsf{J},\mathsf{H}] = \{(x_{ir} \lor F(x)_{i=}, F(x)_{i=}) \mid x \in A, i \in T\}.$$

We then define a V-module $J \otimes H$ as follows:

$$\mathsf{A}_{j[\mathsf{J},\mathsf{H}]}^{\mathcal{T}},$$

where j[J, H] is a surjective homomorphism of V-modules such that $j[J, H](x_{ir} \vee F(x)_{i=}) = j[J, H](F(x)_{i=})$ for all $x \in A, i \in T$.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Definition 14

Let $J_1 = (T_1, r)$ and $J_2 = (T_2, s)$ be V-frames, $f : T_1 \longrightarrow T_2$ a V-frame homomorphism, and (A, *) a V-module. We define a forward operator $f^{\rightarrow} : A^{T_1} \longrightarrow A^{T_2}$ evaluated on $k \in T_2$ for any $x \in A^{T_1}$ as follows:

$$(f^{\rightarrow}(x))(k) = \bigvee \{x(i) \mid f(i) = k\}$$

where $k \in T_2$.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 15

Let $f : J_1 \longrightarrow J_2$ be a homomorphism of V-frames $J_1 = (T_1, r_1)$ and $J_2 = (T_2, r_2)$, and H = (A, F) an V-F-sup-semilattice. Then there exists a unique morphism $f \otimes H : J_1 \otimes H \rightarrow J_2 \otimes H$ of V-modules such that the following diagram commutes:

$$\begin{array}{c|c} \mathsf{A}^{\mathcal{T}_1} & \longrightarrow & \mathsf{J}_1 \otimes \mathsf{H} \\ & & \mathsf{n}(j[\mathsf{J}_1,\mathsf{H}]) \\ f^{\to} & & f \otimes \mathsf{H} \\ & & \\ & & \mathsf{n}(j[\mathsf{J}_2,\mathsf{H}]) \\ \mathsf{A}^{\mathcal{T}_2} & \longrightarrow & \mathsf{J}_2 \otimes \mathsf{H} \end{array}$$

Moreover, $(-) \otimes H$ is a functor from V-J to V-S.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 16

Let $H_1 = (G_1, F_1), H_2 = (G_2, F_2)$ be V-F-sup-semilattices, $f : H_1 \rightarrow H_2$ a lax morphism of V-F-sup-semi-lattices and J = (T, r) a V-frame. Then there is a unique morphism $J \otimes f : J \otimes H_1 \rightarrow J \otimes H_2$ of V-modules such that the following diagram commutes:

Moreover, $J \otimes (-)$ is a functor from the category of $V - F - \mathbb{S}_{\leq}$ to $V - \mathbb{S}_{\sim}$.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Definition 17

Let V be unital quantale and (A, *) a V-module. Let us define $a \rightarrow b \in V$ as follows:

$$a \rightarrow b = \bigvee \{ v \in V; v * a \leq b \}$$

Let H be a V-F-sup-semilattice and let A be a V-module. Let us define a V-frame J[H, A] as a pair $(T_{[H,A]}, r_{[H,A]})$, where $T_{[H,A]}$ are V-module morphisms from H to A and $r_{[H,A]}$ is defined as $r_{[H,A]}(\alpha, \beta) = \bigwedge_{x \in H} \beta(x) \rightarrow \alpha(F(x))$.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 18

Let A_1, A_2 be V-modules, H = (G, F) a V-F-sup-semilattice, and let $f : A_1 \rightarrow A_2$ be a morphism of V-modules. Then there exists a homomorphism $J[H, f] : J[H, A_1] \rightarrow J[H, A_2]$ of V-frames such that

 $(\mathsf{J}[\mathsf{H},f](\alpha))(x)=f(\alpha(x))$

for all $\alpha \in T_{[H,L_1]}$ and all $x \in G$.

Moreover, J[H, (-)] is a functor from V-S to V-J.

Functorial constructions

Adjoint situations

Tense product

Functor theorems in enriched posets

Theorem 19

Let $H_1 = (G_1, F_1), H_2 = (G_2, F_2)$ be V-F-sup-semilattices, A a Vframe and $f : H_1 \rightarrow H_2$ a lax morphism of V-F-sup-semilattices. Then there exists a homomorphism $J[f, A] : J[H_2, A] \rightarrow J[H_1, A]$ of V-frames such that

$$(\mathsf{J}[f,\mathsf{A}](\alpha))(x) = \alpha(f(x)) = (\alpha \circ f)(x)$$

for all $\alpha \in T_{[H_2,A]}$ and all $x \in G_1$.

Moreover, J[(-), A] is a contravariant functor from $V - F - \mathbb{S}_{\leq s}$ to the V- \mathbb{J} .

Functorial constructions

Adjoint situations

Tense product

Example

Q =	$\mathcal{Q}=\{0, \textit{a}, \textit{b}, \textit{c}, 1\}$ is a quantale (see Eklund Nr. 5.2.13)																	
*	0	а	b	с	1		V	0	а	b	с	1	\wedge	0	а	b	с	1
0	0	0	0	0	0	-	0	0	а	b	С	1	0	0	0	0	0	0
а	0	0	а	а	а		а	а	а	1	1	1	а	0	а	0	0	а
Ь	0	а	b	С	1		b	b	1	b	1	1	b	0	0	b	0	b
с	0	а	1	1	1		с	с	1	1	с	1	с	0	0	0	с	с
1	0	а	1	1	1		1	1	1	1	1	1	1	0	а	b	с	1

Introd	uction

Functorial constructions

Adjoint situations

Tense product

Example

V	$\mathcal{V}=\{0,b,1\}$ is a subquantale of the quantale $Q.$												
	*	0	b	1		V	0	b	1	\wedge	0	b	1
	0	0	0	0		0	0	b	1	 0	0	0	0
	b	0	b	1		Ь	b	b	1	b	0	b	b
	1	0	1	1		1	1	1	1	1	0	b	1

Functorial constructions

Adjoint situations

Tense product

Example

Put $G = (\{0, a, b, c, 1\}, \bigvee)$. Then G is a V-module.

						V	0	а	Ь	С	1	\wedge	0	а	b	с	1
*	0	а	b	С	1	0	0	а	b	С	1	0	0	0	0	0	0
0	0	0	0	0	0	а	а	а	1	1	1	а	0	а	0	0	а
b	0	а	b	С	1	b	b	1	b	1	1	b	0	0	b	0	b
1	0	а	1	1	1	С	с	1	1	С	1	С	0	0	0	С	С
						1	1	1	1	1	1	1	0	а	b	с	1

Introduction O	Preliminaries	Functorial constructions	Adjoint situations
Tense product			

We now put F(x) = a * x for all $x \in G$. Then F preserves arbitrary joins and F(u*x) = a*(u*x) = (a*u)*x = (u*a)*x = u*(a*x) = u*F(x)for all $u \in \{0, b, c\}$ and $x \in G$. Let $L = (\{0, 1\}, V\}$ be a V-module where 0 < 1.

Let us define a frame J[H, L] = (S(G, L), r) where r is the map from Definition 17.

Clearly, S(G, L) potentially has 8 elements, which we will denote f_i , where $i \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ and their description is given by the following table:

	0	а	b	С	1
f_1	0	0	0	0	0
f_2	0	0	0	1	1
f ₃	0	0	1	0	1
f ₄	0	1	0	0	1
f_5	0	1	1	0	1
f_6	0	1	0	1	1
f7	0	0	1	1	1
f ₈	0	1	1	1	1

Example

Since every of these potential morphism also have to satisfy f(v * y) = v * f(y) for every $v \in V$ and every $y \in G$ we can show f_1 , f_7 and f_8 are the only morphisms that actually satisfy this property. For any other f_i there is an element $y \in \{a, b, c\}$ such that $f_i(y) = 0$. But then $f_i(1 * y) = 1$. Yet $f_i(y) = 0$, and we obtain $1 * f_i(y) = 0$. So we get a contradiction.

By one of the previous theorems, there exists a lax morphism $\mu_{H} \colon H \longrightarrow L^{J[H,L]}$ of *V*-*F*-sup-semilattices defined for arbitrary $x \in G$ and $f_{i} \in S(G,L)$ by

$$(\mu_{\mathsf{H}}(x))(f_i)=f_i(x).$$

Introduction O	Preliminaries 00000	Functorial constructions	Adjoint situations
Tense product			
Example			

Let us now describe the map r. For all $i \in \{1, 7, 8\}$ it holds that:

$$r(f_i, f_1) = \bigwedge_{x \in G} f_1(x) \to f_i(F(x)) = 1$$

since $f_1(x) = 0$ and therefore it holds for all $x \in G$. Let $i \in \{1, 7, 8\}$ and $j \in \{7, 8\}$ it holds that:

$$r(f_i, f_j) = \bigwedge_{x \in G} f_j(x) \to f_i(F(x)) = 0$$

since $f_8(x) = 1$ for all x other than 0 and $f_7 = 1$ for all x other than 0 or a. The map r is given by the following table:

r	f_1	f7	f ₈
f_1	1	0	0
f ₇	1	0	0
<i>f</i> ₈	1	0	0

Jan Paseka

Masaryk University

By the previous, there exists a lax morphism $\mu_H \colon H \longrightarrow L^{J[H,L]}$ of *V*-*F*-sup-semilattices defined for arbitrary $x \in G$ and $f_i \in S(G, L)$ by

$$(\mu_{\mathsf{H}}(x))(f_i)=f_i(x).$$

Let us now compute μ_H on elements of G. It holds that:

$$(\mu_{\mathsf{H}}(x))(f_1) = f_1(x) = 0$$

for all $x \in G$, and $(\mu_{H}(x))(f_{8}) = f_{8}(x) = 0$ if x = 0 and $(\mu_{H}(x))(f_{8}) = f_{8}(x) = 1$ otherwise. and $(\mu_{H}(x))(f_{7}) = f_{7}(x) = 0$ if x = 0, a and $(\mu_{H}(x))(f_{7}) = f_{7}(x) = 1$ otherwise.

More on tense operators

Tense product

*	f_1	f ₇	f ₈
$\mu_{H}(0)$	0	0	0
$\mu_{H}(a)$	0	0	1
$\mu_{H}(b)$	0	1	1
$\mu_{H}(c)$	0	1	1
$\mu_{H}(1)$	0	1	1

We see that the morphism is not injective and so it is not an embedding.

First adjoint situation

Let J = (T, r) be a V-frame. Then:

• For an arbitrary V-F-sup-semilattice H = (G, F) there exists a lax morphism $\eta_H \colon H \to (J \otimes H)^J$ of V-F-sup-semilattices defined in such a way that

$$(\eta_{\mathsf{H}}(x))(i) = \mathrm{n}(j[\mathsf{J},\mathsf{H}])(x_{i=}).$$

Moreover, $\eta = (\eta_{\mathsf{H}} \colon \mathsf{H} \to (\mathsf{J} \otimes \mathsf{H})^{\mathsf{J}})_{\mathsf{H} \in V - F - \mathbb{S}_{\leq}}$ is a natural transformation.

Functorial constructions

Adjoint situations

First adjoint situation

Sor an arbitrary V-module L there exists a unique morphism ε_L: J ⊗ L^J → L of V-modules such that the following diagram commutes:

 $\mathrm{n}(j[\mathsf{J},\mathsf{L}^\mathsf{J}])$

Functorial constructions

Adjoint situations

First adjoint situation

Moreover, $\varepsilon = (\varepsilon_L : J \otimes L^J \to L)_{L \in \mathbb{S}}$ is a natural transformation.

On There exists an adjoint situation (η, ε): (J ⊗ −) ⊢ (−^J): S → the category of V-F-sup-semilattices.

Second adjoint situation

Let H = (G, F) be an V-F-sup-semilattice. Then:

For an arbitrary V-frame J = (T, r), there exists a unique homomorphism of V-frames
 φ_J: J → J[H, J ⊗ H] defined for arbitrary x ∈ G and i ∈ T in such a way that

$$(\varphi_{\mathsf{J}}(i))(x) = \mathrm{n}(j[\mathsf{J},\mathsf{H}])(x_{i=}).$$

Moreover, $\varphi = (\varphi_J \colon J \to J[H, J \otimes H])_{J \in \mathbb{V} - J}$ is a natural transformation.

Functorial constructions

Adjoint situations

Second adjoint situation

Sor an arbitrary V-module L there exists a unique morphism ψ_L: J[H, L] ⊗ H → L of V-modules such that the following diagram commutes:

 $\mathrm{n}(j[\mathsf{J}[\mathsf{H},\mathsf{L}],\mathsf{H}])$

Functorial constructions

Adjoint situations

Second adjoint situation

Moreover, $\psi = (\psi_L \colon J[H, L] \otimes H \to L)_{L \in \mathbb{V}-S}$ is a natural transformation.

• There exists an adjoint situation $(\varphi, \psi) : (- \otimes H) \dashv J[H, -]) : \mathbb{V} - S \rightarrow \mathbb{V} - J.$

Functorial constructions

Adjoint situations

Third adjoint situation

Let L be a V-module. Then the following holds:

So For an arbitrary V-frame J = (T, r), there exists a unique homomorphism of V-frames v_J: J → J[L^J, L] defined for arbitrary x ∈ L^T and i ∈ T in such a way that

$$(\nu_{\mathsf{J}}(i))(x) = x(i).$$

Moreover, $\nu = (\nu_J \colon J \to J[L^J, L])_{J \in \mathbb{V} - J}$ is a natural transformation.

For an arbitrary V-F-sup-semilattice H = (G, F) there exists a lax morphism
 µ_H: H → L^{J[H,L]} of V-F-sup-semilattices defined for arbitrary x ∈ G and α ∈ T_{J[H,L]}
 by

$$(\mu_{\mathsf{H}}(x))(\alpha) = \alpha(x).$$

More on tense operators

Jan Paseka

Masaryk University

Functorial constructions

Adjoint situations

Third adjoint situation

Let L be a V-module. Then the following holds:

For an arbitrary V-frame J = (T, r), there exists a unique homomorphism of V-frames v_J: J → J[L^J, L] defined for arbitrary x ∈ L^T and i ∈ T in such a way that

$$(\nu_{\mathsf{J}}(i))(x) = x(i).$$

Moreover, $\nu = (\nu_J : J \rightarrow J[L^J, L])_{J \in \mathbb{V} - J}$ is a natural transformation.

 For an arbitrary V-F-sup-semilattice H = (G, F) there exists a lax morphism
 µ_H: H → L^{J[H,L]} of V-F-sup-semilattices defined for arbitrary
 x ∈ G and α ∈ T_{J[H,L]}
 by

$$(\mu_{\mathsf{H}}(x))(\alpha) = \alpha(x).$$

Jan Paseka

Masaryk University

Functorial constructions

Adjoint situations

Third adjoint situation

Moreover, $\mu = (\mu_H \colon H \to L^{J[H,L]})_{H \in V - F - S_{\leq}}$ is a natural transformation.

(c) There exists an adjoint situation $(\nu, \mu): J[-, L]) \dashv L^-: \mathbb{V} - J \rightarrow V - F - \mathbb{S}_{\leq}^{op}.$

Thank you for your attention!