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Introduction Preliminaries Functorial constructions Adjoint situations

Quantales and related structures

Motivation

Several years ago we studied tense operators on sup-lattices.

One of our goals of our research was to generalize the concept
and take other ordered structures to obtain analogical results.
We have decided to work with the following three categories
parametrized by a unital commutative quantale V :
1 unital V -modules,
2 unital V -F -sup-semilattices,
3 V -frames.

More exactly, we have replaced the notions of sup-semilattices by
unital V -modules (the category of them denoted as V -S , the
category of F -sup-semilatitices by unital V -F -sup-semilattices (the
category of them denoted as V − F−S≤) and the category of
frames by V -frames (the category of them denoted as V − J).
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Quantales and related structures

Quantales

Definition 1

A quantale is a pair V = (V ,⊗), where V is a
∨
-semilattice and ⊗

is a binary operation on V satisfying:

(V1) a⊗(b⊗c) = (a⊗b)⊗c for all a, b, c ∈ V (associativity).

(V2) a ⊗ (
∨
S) =

∨
s∈S(a ⊗ s) for every S ⊆ V and every

a ∈ V .

(V3) (
∨
S) ⊗ a =

∨
s∈S(s ⊗ a) for every S ⊆ V and every

a ∈ V .

A quantale V = (V ,⊗) is called unital if there exists an element e ∈
V such that for every a ∈ V the equalities a⊗ e = a and e ⊗ a = a
hold. V = (V ,⊗) is called commutative if ⊗ is commutative.
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Quantales and related structures

V-modules

Definition 2

Given a unital quantale V , a unital left V-module is a pair (A, ∗)
such that A is a

∨
-semilattice and ∗ : V × A −→ A is a map

satisfying:

(M1) v ∗ (
∨

S) =
∨

s∈S(v ∗ s) for every S ⊆ A and every
v ∈ V .

(M2) (
∨

T ) ∗ a =
∨

t∈t(t ∗ a) for every T ⊆ V and every
a ∈ A.

(M3) u ∗ (v ∗ a) = (u ⊗ v) ∗ a for every u, v ∈ v and every
a ∈ A.

(M4) e ∗a = a for every a ∈ A, where e is a unit of a quantale
V .
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Quantales and related structures

V-modules

Definition 2

Given two left V-modules (A, ∗), (B, ∗), a map f : A −→ B is
called a left-V module homomorphism provided that it preserves all
joins and f (v ∗ a) = v ∗ f (a) for every a ∈ A and every v ∈ V .

Whenever we mention a quantale or a V -module, we would mean
by that a unital commutative quantale and a unital V -module,
respectively.

Definition 3

Given a quantale V a V-relation r from set X to set Y is a map
r : X × Y −→ V .

More on tense operators Jan Paseka Masaryk University 7/37



Introduction Preliminaries Functorial constructions Adjoint situations

Quantales and related structures

V-modules

Definition 2

Given two left V-modules (A, ∗), (B, ∗), a map f : A −→ B is
called a left-V module homomorphism provided that it preserves all
joins and f (v ∗ a) = v ∗ f (a) for every a ∈ A and every v ∈ V .

Whenever we mention a quantale or a V -module, we would mean
by that a unital commutative quantale and a unital V -module,
respectively.

Definition 3

Given a quantale V a V-relation r from set X to set Y is a map
r : X × Y −→ V .

More on tense operators Jan Paseka Masaryk University 7/37



Introduction Preliminaries Functorial constructions Adjoint situations

Quantales and related structures

V -frames

Definition 4

Given a unital quantale V a V-frame over a set T is a pair (T , r)
where r is a map r : T × T −→ V .

Note that the definition of V -frame is a generalization of the
standard notion of a time frame.

Definition 5

Given a quantale V and two V-frames T and S , a map f :
T −→ S is called a V-frame homomorphism if it satisfyies r(i , j) ≤
s((f (i), f (j))) for every i , j ∈ T .

More on tense operators Jan Paseka Masaryk University 8/37
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Quantales and related structures

V -F -semilattices

Definition 6

Given a unital quantale V , a V -F -semilattice is a pair (G ,F ) where
G is a unital V -module and F is a join preserving map F : G −→ G
satisfying v ∗ (F (a)) = F (v ∗ a).

Definition 7

Given a unital quantale V and two unital V -F -semilattices (G1,F )
and V -H-semilattice (G2,H) (where G1 and G2 are unital V -
modules, a module homomorphism f : G1 −→ G2 is called a ho-
momorphism between (G1,F ) and (G2,H) if it satisfies H(f (a)) ≤
f (F (a)) for any a ∈ G1.

More on tense operators Jan Paseka Masaryk University 9/37



Introduction Preliminaries Functorial constructions Adjoint situations

Quantales and related structures

V -F -semilattices

Definition 6

Given a unital quantale V , a V -F -semilattice is a pair (G ,F ) where
G is a unital V -module and F is a join preserving map F : G −→ G
satisfying v ∗ (F (a)) = F (v ∗ a).

Definition 7

Given a unital quantale V and two unital V -F -semilattices (G1,F )
and V -H-semilattice (G2,H) (where G1 and G2 are unital V -
modules, a module homomorphism f : G1 −→ G2 is called a ho-
momorphism between (G1,F ) and (G2,H) if it satisfies H(f (a)) ≤
f (F (a)) for any a ∈ G1.

More on tense operators Jan Paseka Masaryk University 9/37



Introduction Preliminaries Functorial constructions Adjoint situations

Tense product

Tense product

Definition 8

Let (A, ∗) be a unital V -module and J = (T , r) be a V -frame. Let
us define a unital V -F -sup-semilattice AJ as (AT ,F J) where

(F J(x))(i) =
∨

{r(i , k) ∗ x(k) | k ∈ T}

The operation on the V -module AT , denoted as ∗T is defined
for any pair (v , x) as v ∗x(t) for every t from the from the V -frame.

Similarly, the join is defined component-wise.

The construction above is mentioned as a definition, but it
contains a theorem within. One can show that (AT ,F J) is indeed
a V -F -sup-semilattice.
Note that the definition above is a generalization of our previous
definition using different categories:
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Tense product

Tense product in 2-valued setting

Definition 9

Let L = (L,
∨
) be a sup-semilattice and J = (T ,S) a frame. Let us

define an V -F -sup-semilattice LJ as LJ = (LT ,F J), where

(F J(x))(i) =
∨

{x(k) | (i , k) ∈ S}

for all x ∈ LT . F J will be called an operator on LT constructed by
means of the frame J.

This follows from the fact that a V -frame is just a standard frame
if V is a trivial, two element quantale (maps from T × T to {0, 1}
are just standard relations on T and r is a ’belonging to the
relation function, whether it maps a pair to zero or one’).

More on tense operators Jan Paseka Masaryk University 11/37
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Tense product

Functor theorems in enriched posets

Theorem 10

Let A1 and A2 be V -modules, let f : A1 −→ A2 be a homomor-
phism, and let J = (T , r) be a V -frame. Then there exists a homo-
morphism f J : AJ1 −→ AJ2 in the category of unital V -F -semilattices
such that, for every x ∈ AT

1 and every i ∈ T , it holds

(f J(x))(i) = f (x(i)).

Moreover (−)J is a functor from V -S to to V − F−S≤.

More on tense operators Jan Paseka Masaryk University 12/37
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Tense product

Functor theorems in enriched posets

Theorem 11

Let J1 and J2 be V -frames, let t : J1 −→ J2 be a homomorphism
of V -frames, and let A be a unital V -module. Then there exists a
lax morphism At : AJ2 −→ AJ1 of unital V -F -sup-semilattices such
that, for every x ∈ AT2 and every i ∈ T1, it holds

(At(x))(i) = x(t(i)).

Moreover, A− is a contravariant functor from V − J to V − F−S≤.

Definition 12

Let V be a unital quantale, A be a V -module and J = (T , r) a
V -frame. Then, for arbitrary x ∈ A and i ∈ T , we define xir (j) =

r(i , j) ∗ x and xi= by xi=(j) =
{

x if i = j ;
0 otherwise.

More on tense operators Jan Paseka Masaryk University 13/37
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Tense product

Functor theorems in enriched posets

Definition 13

Let V be a quantale, H = (A,F ) an V -F -sup-semilattice, and J =
(T , r) a V -frame. We put

[J,H] = {(xir ∨ F (x)i=,F (x)i=) | x ∈ A, i ∈ T}.

We then define a V -module J⊗ H as follows:

ATj[J,H],

where j [J,H] is a surjective homomorphism of V -modules such that
j [J,H](xir ∨ F (x)i=) = j [J,H](F (x)i=) for all x ∈ A, i ∈ T .

More on tense operators Jan Paseka Masaryk University 14/37
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Tense product

Functor theorems in enriched posets

Definition 14

Let J1 = (T1, r) and J2 = (T2, s) be V -frames, f : T1 −→ T2 a
V -frame homomorphism, and (A, ∗) a V -module.
We define a forward operator f → : AT1 −→ AT2 evaluated on k ∈ T2
for any x ∈ AT1 as follows:

(f →(x))(k) =
∨

{x(i) | f (i) = k}

where k ∈ T2.

More on tense operators Jan Paseka Masaryk University 15/37
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Tense product

Functor theorems in enriched posets

Theorem 15

Let f : J1 −→ J2 be a homomorphism of V -frames J1 = (T1, r1) and
J2 = (T2, r2), and H = (A,F ) an V -F -sup-semilattice. Then there
exists a unique morphism f ⊗ H : J1 ⊗ H → J2 ⊗ H of V -modules
such that the following diagram commutes:

AT1

AT2 J2 ⊗ H

J1 ⊗ H
n(j [J1,H])

n(j [J2,H])

f → f ⊗ H

Moreover, (−)⊗ H is a functor from V -J to V -S.
More on tense operators Jan Paseka Masaryk University 16/37
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Tense product

Functor theorems in enriched posets

Theorem 16

Let H1 = (G1,F1),H2 = (G2,F2) be V -F -sup-semilattices, f : H1 →
H2 a lax morphism of V -F -sup-semi-lattices and J = (T , r) a V -
frame. Then there is a unique morphism J ⊗ f : J ⊗ H1 → J ⊗ H2
of V -modules such that the following diagram commutes:

GT1

GT2 J⊗ H2

J⊗ H1
n(j [J,H1])

n(j [J,H2])

f J J⊗ f

Moreover, J⊗ (−) is a functor from the category of V − F−S≤ to
V -S.
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Tense product

Functor theorems in enriched posets

Definition 17

Let V be unital quantale and (A, ∗) a V -module. Let us define
a → b ∈ V as follows:

a → b =
∨

{v ∈ V ; v ∗ a ≤ b}

Let H be a V -F -sup-semilattice and let A be a V -module.
Let us define a V -frame J[H,A] as a pair (T[H,A], r[H,A]), where
T[H,A] are V -module morphisms from H to A and r[H,A] is defined
as r[H,A](α, β) =

∧
x∈H β(x) → α(F (x)).
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Tense product

Functor theorems in enriched posets

Theorem 18

Let A1,A2 be V -modules, H = (G,F ) a V -F -sup-semilattice, and
let f : A1 → A2 be a morphism of V -modules. Then there exists a
homomorphism J[H, f ] : J[H,A1] → J[H,A2] of V -frames such that

(J[H, f ](α))(x) = f (α(x))

for all α ∈ T[H,L1] and all x ∈ G .

Moreover, J[H, (−)] is a functor from V -S to V -J.
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Tense product

Functor theorems in enriched posets

Theorem 19

Let H1 = (G1,F1),H2 = (G2,F2) be V -F -sup-semilattices, A a V -
frame and f : H1 → H2 a lax morphism of V -F -sup-semilattices.
Then there exists a homomorphism J[f ,A] : J[H2,A] → J[H1,A] of
V -frames such that

(J[f ,A](α))(x) = α(f (x)) = (α ◦ f )(x)

for all α ∈ T[H2,A] and all x ∈ G1.

Moreover, J[(−),A] is a contravariant functor from V − F−S≤s to
the V -J.
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Tense product

Example

Q = {0, a, b, c , 1} is a quantale (see Eklund Nr. 5.2.13)

∗ 0 a b c 1
0 0 0 0 0 0
a 0 0 a a a
b 0 a b c 1
c 0 a 1 1 1
1 0 a 1 1 1

∨
0 a b c 1

0 0 a b c 1
a a a 1 1 1
b b 1 b 1 1
c c 1 1 c 1
1 1 1 1 1 1

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1
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Tense product

Example

V = {0, b, 1} is a subquantale of the quantale Q.

∗ 0 b 1
0 0 0 0
b 0 b 1
1 0 1 1

∨
0 b 1

0 0 b 1
b b b 1
1 1 1 1

∧ 0 b 1
0 0 0 0
b 0 b b
1 0 b 1
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Tense product

Example

Put G = ({0, a, b, c, 1},
∨
). Then G is a

V-module.

∗ 0 a b c 1
0 0 0 0 0 0
b 0 a b c 1
1 0 a 1 1 1

∨
0 a b c 1

0 0 a b c 1
a a a 1 1 1
b b 1 b 1 1
c c 1 1 c 1
1 1 1 1 1 1

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1
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Tense product

Example

We now put F (x) = a ∗ x for all x ∈ G . Then F preserves arbitrary
joins and
F (u∗x) = a∗(u∗x) = (a∗u)∗x = (u∗a)∗x = u∗(a∗x) = u∗F (x)
for all u ∈ {0, b, c} and x ∈ G .
Let L = ({0, 1},

∨
} be a V -module where 0 < 1.

Let us define a frame J[H, L] =
(S(G, L), r) where r is the map from Def-
inition 17.
Clearly, S(G, L) potentially has 8 ele-
ments, which we will denote fi , where
i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and their de-
scription is given by the following table:

0 a b c 1

f1 0 0 0 0 0
f2 0 0 0 1 1
f3 0 0 1 0 1
f4 0 1 0 0 1
f5 0 1 1 0 1
f6 0 1 0 1 1
f7 0 0 1 1 1
f8 0 1 1 1 1
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Tense product

Example

Since every of these potential morphism also have to satisfy
f (v ∗ y) = v ∗ f (y) for every v ∈ V and every y ∈ G we can show
f1, f7 and f8 are the only morphisms that actually satisfy this
property. For any other fi there is an element y ∈ {a, b, c} such
that fi (y) = 0. But then fi (1 ∗ y) = 1. Yet fi (y) = 0, and we
obtain 1 ∗ fi (y) = 0. So we get a contradiction.

By one of the previous theorems, there exists a lax morphism
µH : H −→ LJ[H,L] of V -F -sup-semilattices defined for arbitrary
x ∈ G and fi ∈ S(G, L) by

(µH(x))(fi ) = fi (x).
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Tense product

Example

Let us now describe the map r . For all i ∈ {1, 7, 8} it holds that:

r(fi , f1) =
∧
x∈G

f1(x) → fi (F (x)) = 1

since f1(x) = 0 and therefore it holds for all x ∈G.
Let i ∈ {1, 7, 8} and j ∈ {7, 8} it holds that:

r(fi , fj) =
∧
x∈G

fj(x) → fi (F (x)) = 0

since f8(x) = 1 for all x other than 0 and f7 = 1 for all x other
than 0 or a. The map r is given by the following table:

r f1 f7 f8
f1 1 0 0
f7 1 0 0
f8 1 0 0
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Tense product

By the previous, there exists a lax morphism µH : H −→ LJ[H,L] of
V -F -sup-semilattices defined for arbitrary x ∈ G and fi ∈ S(G, L)
by

(µH(x))(fi ) = fi (x).

Let us now compute µH on elements of G . It holds that:

(µH(x))(f1) = f1(x) = 0

for all x ∈ G ,
and
(µH(x))(f8) = f8(x) = 0 if x = 0 and (µH(x))(f8) = f8(x) = 1
otherwise.
and
(µH(x))(f7) = f7(x) = 0 if x = 0, a and (µH(x))(f7) = f7(x) = 1
otherwise.
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Tense product

∗ f1 f7 f8
µH(0) 0 0 0
µH(a) 0 0 1
µH(b) 0 1 1
µH(c) 0 1 1
µH(1) 0 1 1

We see that the morphism is not injective and so it is not an
embedding.
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First adjoint situation

Let J = (T , r) be a V -frame. Then:
(a) For an arbitrary V -F -sup-semilattice H = (G,F ) there exists
a lax morphism ηH : H → (J ⊗ H)J of V -F -sup-semilattices
defined in such a way that

(ηH(x))(i) = n(j [J,H])(xi=).

Moreover, η = (ηH : H→ (J⊗ H)J)H∈V−F−S≤
is a natural transformation.
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First adjoint situation

(a) For an arbitrary V -module L there exists a unique morphism
εL : J⊗ LJ → L of V -modules such that the following diagram
commutes:

L

(LT )T J⊗ LJ
n(j [J, LJ])

εL
eL

where eL : (LT )T → L is defined by eL(x̄) =
∨

i∈T (x̄(i))(i) for any
x̄ ∈ (LT )T .
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First adjoint situation

Moreover, ε = (εL : J⊗ LJ → L)L∈S is a natural transformation.
(a) There exists an adjoint situation (η, ε) : (J ⊗ −) ⊣ (−J) : S →
the category of V -F -sup-semilattices.
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Second adjoint situation

Let H = (G,F ) be an V -F -sup-semilattice. Then:
(a) For an arbitrary V -frame J = (T , r), there exists a unique
homomorphism of V -frames
φJ : J → J[H, J ⊗ H] defined for arbitrary x ∈ G and i ∈ T in
such a way that

(φJ(i))(x) = n(j [J,H])(xi=).

Moreover, φ = (φJ : J→ J[H, J⊗ H])J∈V−J is a natural trans-
formation.
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Second adjoint situation

(a) For an arbitrary V -module L there exists a unique morphism
ψL : J[H, L] ⊗ H → L of V -modules such that the following
diagram commutes:

L

GT[H,L] J[H, L]⊗ H

n(j [J[H, L],H])

ψL
fL

where fL : GT[H,L] → L is defined by fL(x) =
∨

α∈J[H,L] α(x(α)) for

any x ∈ GT[H,L] .More on tense operators Jan Paseka Masaryk University 33/37
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Second adjoint situation

Moreover, ψ = (ψL : J[H, L]⊗ H→ L)L∈V−S is a natural
transformation.
(a) There exists an adjoint situation

(φ,ψ) : (−⊗ H) ⊣ J[H,−]) : V− S → V− J.
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Third adjoint situation

Let L be a V -module. Then the following holds:
(a) For an arbitrary V -frame J = (T , r), there exists a unique ho-
momorphism of V -frames νJ : J→ J[LJ, L] defined for arbitrary
x ∈ LT and i ∈ T in such a way that

(νJ(i))(x) = x(i).

Moreover, ν = (νJ : J → J[LJ, L])J∈V−J is a natural transfor-
mation.

(b) For an arbitrary V -F -sup-semilattice H = (G,F ) there exists a
lax morphism
µH : H → LJ[H,L] of V -F -sup-semilattices defined for arbitrary
x ∈ G and α ∈ TJ[H,L]
by

(µH(x))(α) = α(x).
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Third adjoint situation

Moreover, µ = (µH : H→ LJ[H,L])H∈V−F−S≤ is a natural
transformation.

(c) There exists an adjoint situation
(ν, µ) : J[−, L]) ⊣ L− : V− J → V − F−S≤op.
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Thank you for your attention!
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