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Introduction

During the last decade, in a series of papers we have been
characterizing classes of groups by their weak congruence lattices.
These lattices are extensions of the subgroup lattices, so that
normal subgroups on all subgroups are represented by the
corresponding congruences.
And not only these. In the weak congruence lattice of a group,
also quotient subgroups are represented by their weak congruence
lattices.
Hence all concrete objects and structural properties related to
subgroups and their series, normal and quotient subgroups, can be
identified and investigated in the mentioned weak congruence
lattices.
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Lattices of weak congruences

A weak congruence of a group G is a symmetric and transitive
subuniverse of G 2.
Thus, the collection Wcon(G ) of all weak congruences on G is a
set union of all congruences on all subgroups of G .

Under the set inclusion, Wcon(G ) is an algebraic lattice in which
the diagonal ∆ is a codistributive element.

The lattice Wcon(G ) contains, up to an isomorphism, also the
subgroup lattice as the principal ideal generated by the diagonal ∆
of G .
Congruence lattices of all subgroups are interval sublattices of
Wcon(G ).

B. Šešelja Classes of groups in lattice framework



Lattices of weak congruences

A weak congruence of a group G is a symmetric and transitive
subuniverse of G 2.

Thus, the collection Wcon(G ) of all weak congruences on G is a
set union of all congruences on all subgroups of G .

Under the set inclusion, Wcon(G ) is an algebraic lattice in which
the diagonal ∆ is a codistributive element.

The lattice Wcon(G ) contains, up to an isomorphism, also the
subgroup lattice as the principal ideal generated by the diagonal ∆
of G .
Congruence lattices of all subgroups are interval sublattices of
Wcon(G ).
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B. Šešelja Classes of groups in lattice framework



Lattices of weak congruences

A weak congruence of a group G is a symmetric and transitive
subuniverse of G 2.
Thus, the collection Wcon(G ) of all weak congruences on G is a
set union of all congruences on all subgroups of G .

Under the set inclusion, Wcon(G ) is an algebraic lattice in which
the diagonal ∆ is a codistributive element.

The lattice Wcon(G ) contains, up to an isomorphism, also the
subgroup lattice as the principal ideal generated by the diagonal ∆
of G .
Congruence lattices of all subgroups are interval sublattices of
Wcon(G ).
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Lattices with normal elements

Ore (1935, 1942), Birkhoff (1940), Grätzer (1959, 1978), Grätzer
and Schmidt (1961), Hashimoto and Kinugawa (1963), Reilley
(1984)...
An element a of a lattice L is - codistributive if for all x , y ∈ L,
a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y).
We also use distributive, modular, cancellable and neutral element
(see the mentioned references).
An element a ∈ L is a codistributive element if and only if the
mapping ma : L −→↓a defined by ma(x) = a ∧ x is an
endomorphism on L.
We denote by ϕa the kernel of ma.
Ta ⊆ L is the set of top elements of ϕa-classes (in an algebraic
lattice, the top elements of ϕa-classes exist):
Ta = {x | x ∈ L, x =

∨
[x ]ϕa}.

Ta is a lattice under the order from L, it is closed under meets in
L, but not necessarily under joins.
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B. Šešelja Classes of groups in lattice framework



Lattices with normal elements
Ore (1935, 1942), Birkhoff (1940), Grätzer (1959, 1978), Grätzer
and Schmidt (1961), Hashimoto and Kinugawa (1963), Reilley
(1984)...
An element a of a lattice L is - codistributive if for all x , y ∈ L,
a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y).
We also use distributive, modular, cancellable and neutral element
(see the mentioned references).
An element a ∈ L is a codistributive element if and only if the
mapping ma : L −→↓a defined by ma(x) = a ∧ x is an
endomorphism on L.

We denote by ϕa the kernel of ma.
Ta ⊆ L is the set of top elements of ϕa-classes (in an algebraic
lattice, the top elements of ϕa-classes exist):
Ta = {x | x ∈ L, x =

∨
[x ]ϕa}.

Ta is a lattice under the order from L, it is closed under meets in
L, but not necessarily under joins.
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If L is algebraic, we say that a codistributive element a ∈ L is a full
codistributive element of L (we call it also main) if

(a) Ta is closed under joins and
(b) for all b, c ∈ ↓a, b < c and for every z ∈ [b, b ∨ c], there are
ci ∈ [b, b ∨ c], i ∈ I , such that z =

∨
ci , and [b, ci ] ∼= [ci , ci ] under

x 7→ x ∨ ci .
If a is a full codistributive element in L, then for x ∈ L, we denote
by xa the element from ↓a given by:

xa :=
∨

(y ∈ ↓a | y 6 x).

Let n, b ∈ ↓a, n 6 b. We say that n is normal in ↓b, we denote it
by nJ b, if n = xa, for some x ∈ [b, b]. Equivalently,
nJ b if and only if [n, n ∨ b] ∩ Ta = {n}.
By nJ b we denote that n is normal in ↓b; the sign is filled in, in
order to indicate the difference with the normality among groups.
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B. Šešelja Classes of groups in lattice framework



From now on, we call a lattice L a lattice with normal elements
determined by a if it is an algebraic lattice fulfilling particular
lattice conditions (axioms) and in which a is the main
codistributive element.

b b bb
b

Figure 1
@@ ��

Q

b
�� @@

We say that L an A-lattice if it is a modular lattice with normal
elements determined by a in which ↓a does not have an
interval-sublattice which is isomorphic with the lattice Q in Fig. 1;
Q represents the subgroup lattice of the quaternion group, which is
uniquely determined by its subgroup lattice.
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Theorem

The lattice Wcon(G ) of a group G is a lattice with normal
elements determined by ∆. If H,K are subgroups of G , then
H CK if and only if ∆H J∆K in the lattice Wcon(G ).

Corollary

If H is a subgroup of a group G , then H CG , if and only if the
principal filter ↑(H2) in Wcon(G ) is a lattice with normal elements
determined by H2 ∨∆, as the weak congruence lattice of G/H.
Analogously, for subgroups H,K of G , H CK if and only if the
interval [H2,K 2] in Wcon(G ) is a lattice with normal elements
determined with H2 ∨∆K , as the weak congruence lattice of K/H.
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Lattice characterizations

A group G is:
– a Dedekind group if and only if the lattice Wcon(G ) is modular;
– Abelian if and only if Wcon(G ) is an A-lattice;
– solvable if and only if Wcon(G ) has a subnormal series of
intervals consisting of A-lattices;
– supersolvable if and only if Wcon(G ) has a normal series of
intervals consisting of three-element chains or Z -lattices;
– finite nilpotent if and only if Wcon(G ) is finite and lower
semimodular;
– cyclic if if and only if Wcon(G ) is a distributive lattice fulfilling
the ACC;
...
...
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Nilpotent groups

The center of a group G , denoted by Z (G ), is the set of elements
that commute with every element of G .
A subgroup H of a group G is said to be central if it is contained
in (is a subgroup of) the center Z (G ).
A central series of a group G is a finite sequence

{e} = H0 6 H1 6 . . . ,6 Hn = G

of normal subgroups of G , such that all factors are central, i.e., for
every i ,

Hi+1/Hi 6 Z (G/Hi ).

A group G is nilpotent if it has a central series. The smallest k so
that G has a central series of length k is the nilpotency class of
G , which is said to be nilpotent of class k .
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Theorem

A group G is nilpotent if and only if the lattice Wcon(G ) has a
finite series of intervals

[{e}2,H2
1 ], [H2

1 ,H
2
2 ], . . . , [H2

i ,H
2
i+1], . . . , [H2

k ,G
2],

so that for every i ∈ {0, 1, . . . , k} the following holds:

(a) ∆Hi
J∆;

(b) in the sublattice [H2
i ,G

2] as a lattice with normal elements
with the designated element H2

i ∨∆, for every

δ ∈ C([H2
i ,H

2
i ∨∆]), the interval [H2

i ,H
2
i ∨∆Hi+1

∨ δ] is an
A-lattice with the designated element H2

i ∨∆Hi+1
∨ δ.
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A subgroup system C (called also ordered subgroup system) of
subgroups of a group G is the collection of subgroups of G
satisfying the following conditions:

(1) C contains the unit subgroup {e} and the group G itself; and
(2) C is totally ordered by inclusion, i.e., for any H and K from C
either H 6 K or K 6 H.
A subgroup system C is complete if it is closed with respect to
union and intersection.
Members of the subgroup systems are called terms.
If C is a subgroup system in G and H,K ∈ C, then terms H and K
form a jump in C if H < K and there is no term M ∈ C such that
H < M < K ; In this case we say that H < K is a jump in C.
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If C is a system of subgroups of a group G and H ∈ C, then

Hu :=
⋂
{K | K ∈ C,H < K}; Hb :=

∨
{K | K ∈ C,K < H}.

In a complete subgroup system C both Hu and Hb are in C for
every H in C .
If H < Hu, then (H,Hu) is a jump and similarly, if Hb < H, then
(Hb,H) is a jump.
A complete subgroup system C of subgroups of a group G is called
a subnormal system for G , if H is normal in Hu for all H ∈ C,
H 6= G (or if Hb is normal in H for all H ∈ C, H 6= {e}).
Subnormal terms are terms Hα and Hα+1, such that Hα is normal
in Hα+1.
A subnormal system C is well-ordered ascending if Hu 6= H for
all H ∈ C, H 6= G ; C is said to be well-ordered descending if
Hb 6= H for all H 6= {e}, or H < Hu for all H ∈ C, H 6= G (and
Hb < H for all H 6= {e}).

B. Šešelja Classes of groups in lattice framework



If C is a system of subgroups of a group G and H ∈ C, then

Hu :=
⋂
{K | K ∈ C,H < K}; Hb :=

∨
{K | K ∈ C,K < H}.

In a complete subgroup system C both Hu and Hb are in C for
every H in C .

If H < Hu, then (H,Hu) is a jump and similarly, if Hb < H, then
(Hb,H) is a jump.
A complete subgroup system C of subgroups of a group G is called
a subnormal system for G , if H is normal in Hu for all H ∈ C,
H 6= G (or if Hb is normal in H for all H ∈ C, H 6= {e}).
Subnormal terms are terms Hα and Hα+1, such that Hα is normal
in Hα+1.
A subnormal system C is well-ordered ascending if Hu 6= H for
all H ∈ C, H 6= G ; C is said to be well-ordered descending if
Hb 6= H for all H 6= {e}, or H < Hu for all H ∈ C, H 6= G (and
Hb < H for all H 6= {e}).
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A subnormal system is normal if every term in the system is
normal in the whole group G .

If one subnormal system is contained in another, then the latter is
a refinement of the former.
A subnormal system C without proper refinements is a
composition system. Analogously, a normal system without
proper refinements is a principal system.

Every subnormal system can be refined to a composition system;
every normal system can be refined to a principal system.
A subnormal subgroup system C of a group G is a composition
system if and only if all factors of C are absolutely simple groups.

A normal system C is central if its factors are all central; i.e.,
Hu/H ≤ Z (G/H), for H 6= G (or H/Hb ≤ Z (G/Hb), for
H 6= {e}).
A subnormal system C is solvable if its factors are abelian groups.
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Kurosh-Cernikov classes of groups

SN-groups; each of them containing a solvable subnormal
subgroup system;
SN∗-groups; they have a well-ordered ascending solvable
subnormal subgroup system;
SN-groups; every composition subgroup system in such a group is
solvable;
SI -groups, they have a solvable normal subgroup system;
SI ∗- groups; in each group of the class there exist a well-ordered
ascending solvable normal subgroup system; these groups are also
known as hyperabelian.
SI -groups; any principal subgroup system in a group of this class is
solvable;
Z -groups; groups having a central subgroup system;
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ZA-groups; groups with a well-ordered ascending central subgroup
system;
ZD-groups; groups with a well-ordered descending central
subgroup system;
Z -groups: each principal subgroup system of a group in this class
is central;
Ñ-groups; through any subgroup of a group in this class there
passes a subnormal subgroup system;
N-groups; through any subgroup of a group in this class there
passes a well-ordered ascending subnormal subgroup system.

In the finite case, the conditions given for classes SN, SN∗, SI ,
SI ∗, SI and SN are equivalent to solvability, and the conditions for
the remaining classes of groups, that are, Z , ZA, ZD, Z , Ñ and N,
to nilpotency.
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Kurosh-Cernikov classes of groups; characterizations

Theorem

A group G is an SN-group if and only if in the lattice Wcon(G )
there is a chain Cw as a complete sublattice of ↓∆, such that the
following hold:
(i) {(e, e)},∆ ∈ Cw ;
(ii) for every ∆H ∈ Cw such that ∆H < ∆Hu , the interval
[H2, (Hu)2] is an A-lattice determined by H2 ∨∆Hu .
G is an SN∗-group if and only if in the lattice Wcon(G ) there is a
chain Cw satisfying the conditions above with an additional
condition, ∆H < ∆Hu , for every ∆H ∈ Cw such that ∆H < ∆.
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Theorem

A group G is an SN-group if and only if in Wcon(G ), for each
maximal subnormal chain Cw in ↓∆ and for every jump
∆H < (∆H)∗ in Cw , the interval [H2, (Hu)2] is an A-sublattice in
Wcon(G ) determined by H2 ∨∆Hu .
In other words, every maximal subnormal chain Cw in ↓∆ generates
in Wcon(G ) a chain of intervals [H2, (Hu)2] which are A-lattices
determined by H2 ∨∆Hu , where ∆H < (∆H)∗ are jumps in Cw .

Theorem

A group G is an SI -group if and only if in Wcon(G ) there is a
normal chain Cw ⊆ ↓∆, such that for every jump ∆H < (∆H)∗ in
Cw , the interval [H2, (Hu)2] is an A-lattice determined by
H2 ∨∆Hu .
G is an SI ∗-group if and only if in Wcon(G ) there is a normal
chain Cw ⊆ ↓∆ satisfying the condition above and also an
additional condition, ∆H < ∆Hu for every ∆H ∈ Cw , ∆H 6= ∆.
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Theorem

A group G is an SI -group if and only if in Wcon(G ) the following
holds: for every maximal normal chain Cw in ↓∆, if ∆H ∈ Cw and
∆H < ∆Hu , then [H2, (Hu)2] is an A-lattice determined by
H2 ∨∆Hu .

Theorem

A group G is a Z -group if and only if in Wcon(G ) there exits a
normal chain Cw in ↓∆ such that for every ∆H ∈ Cw and for every
δ ∈ C([H2,H2 ∨∆]), the interval [H2,H2 ∨∆Hu ∨ δ] is an
A-lattice determined by H2 ∨∆Hu ∨ δ.
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Theorem

A group G is a ZA-group if and only if in Wcon(G ) there exists a
normal chain Cw in ↓∆ such that for every ∆H ∈ Cw , ∆H 6= ∆, the
following holds:
(i) ∆H < ∆Hu ;
(ii) for every δ ∈ C([H2,H2 ∨∆]), the interval [H2,H2 ∨∆Hu ∨ δ]
is an A-lattice determined by H2 ∨∆Hu ∨ δ.

Theorem

A group G is a ZD-group if and only if in Wcon(G ) there exists a
normal chain Cw in ↓∆ such that for every ∆H ∈ Cw ,
∆H 6= {(e, e)}, the following holds:
(i) ∆Hb < ∆H ;
(ii) for every δ ∈ C([(Hb)2, (Hb)2 ∨∆]), the interval

[(Hb)2, (Hb)2 ∨∆H ∨ δ] is an A-lattice determined by
(Hb)2 ∨∆H ∨ δ.
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Theorem

A group G is a Z -group if and only if in the lattice Wcon(G ) the
following holds: for every maximal normal chain Cw in ↓∆, for
every ∆H ∈ Cw such that ∆H 6= ∆, and for every
δ ∈ C([H2,H2 ∨∆]), the interval [H2,H2 ∨∆Hu ∨ δ] is an
A-lattice determined by H2 ∨∆Hu ∨ δ.

Theorem

A group G is an Ñ-group if and only if in the lattice Wcon(G ) for
every ∆H ∈ ↓∆ there exists a subnormal chain Cw in ↓∆ such that
∆H ∈ Cw .
A group G is an N-group if and only if in the lattice Wcon(G ) for
every ∆H ∈ ↓∆ there exists a subnormal chain Cw in ↓∆ such that
∆H ∈ Cw , and ∆K < ∆K∗ for every ∆K ∈ Cw , ∆K 6= ∆.
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Group theoretical classes

A group theoretical class or briefly class of groups P is a class
in the set-theoretic sense, consisting of groups, with the following
two properties:
(a) If a group G belongs to P and G1

∼= G , then also G1 belongs
to P;
(b) P contains a trivial, one-element group.

If G ∈ P, then G is said to be a P-group.

The group theoretical classes are ordered by inclusion: if P and Q
are classes of groups then P ⊆ Q means that the class P is a
subclass of the class Q.
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Next we recall some basic features related to the algebra of
group theoretical classes.

By J we denote the class of trivial, one-element groups and by D,
the class of all groups.
A group G is an extension of a group A by a group B if A is a
normal subgroup of G and the quotient group G/A is isomorphic
with B.
If P and Q are classes of groups then PQ is an extension class,
defined as follows: a group G belongs to PQ if there is a normal
subgroup N of G such that N ∈ P and G/N ∈ Q. If G ∈ PQ,
then G is said to be an P-by-Q group.
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An operation c on the class of all group theoretical classes assigns
to each class of groups X a class of groups cX so that the
following holds:
1. X 6 cX, in particular cJ = J, and
2. if X 6 Y then cX 6 cY.

If X = cX, then the class X is said to be c-closed.

An operation c is called a closure operation if it is idempotent,
i.e., if
3. c = c2.

Identity closure I, leaves every class of groups unchanged, and
Universal closure U: the set of images consists of a single class D -
the class of all groups.
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Operation S. X = SX means: if G is a group in the class X, then
every subgroup of G is also an X-group.

Operation Sn. X = SnX if every normal subgroup of an X-group is
also an X-group.
Operation H. X = SX if every homomorphic image of an X-group
is an X-group.
Operation P. X = PX means that an extension of an X-group by
an X-group is again an X-group. In terms of product of classes,
this means that X = X2.
Operations D, D0. A class X is D-closed (D0-closed) if the direct
product of any collection (any pair) of X-groups is an X-group.

B. Šešelja Classes of groups in lattice framework



Operation S. X = SX means: if G is a group in the class X, then
every subgroup of G is also an X-group.
Operation Sn. X = SnX if every normal subgroup of an X-group is
also an X-group.

Operation H. X = SX if every homomorphic image of an X-group
is an X-group.
Operation P. X = PX means that an extension of an X-group by
an X-group is again an X-group. In terms of product of classes,
this means that X = X2.
Operations D, D0. A class X is D-closed (D0-closed) if the direct
product of any collection (any pair) of X-groups is an X-group.
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Operations N, N0. A class X is N-closed (N0-closed) if the direct
product of any collection (any pair) of normal X-subgroups of a
group in X is an an X-group X-group.

Operation R. For a class X of groups, X = RX means that X is
closed with respect to forming subcartesian products, i.e.: if
Ni CG and G/Ni ∈ X, i ∈ I , then G/

⋂
i∈I Ni ∈ X. The groups in

the class RX are said to be residually X-groups.
Equivalently, if X is a class of groups, then a group G is said to be
residually X-group if for each g ∈ G , g 6= e, there is a normal
subgroup Ng of G , such that g 6∈ Ng and the quotient group
G/Ng belongs to the class X.
Operation R0. This is the finite residual closure operator and it is
defined so that X = R0X if and only if from G/N1,G/N2 ∈ X, it
follows that G/N1 ∩ G/N2 ∈ X.
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An equational class is the class of all algebraic structures of a given
type satisfying a given set of identities; a variety is a class of
algebras of the same type, closed under forming subalgebras,
homomorphic images and direct products.

Birkhoff’s famous result:

A class of algebras of the same type is an equational class if and
only if it is a variety.

More concretely, for groups we have:

Proposition

Every equational class P of groups is closed with respect to
forming subgroups, homomorphic images and subcartesian
products of groups in P.
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B. Šešelja Classes of groups in lattice framework



L-classes of groups

A class P of groups is an L-class if the lattice Wcon(G ) of every
group G ∈ P satisfies lattice theoretic properties LP.
To investigate L-classes of group we use the following.

Proposition

A group G is a semidirect product of its subgroups H and K if and
only if the following holds in the lattice Wcon(G ):
∆H J∆ ; ∆H ∨∆K = ∆ and ∆H ∧∆K = {(e, e)}.

Proposition

Let G be a group. If ∆AJ∆ in the lattice Wcon(G ), then G is
the extension of the subgroup A (by the group G/A).
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Proposition

If P and Q are L-classes, then a group G is a P-by-Q group (it
belongs to the class PQ) if and only if in the lattice Wcon(G )
there exists some ∆N J∆ such that sublattices ↓N2 and ↑N2 fulfil
lattice theoretic properties LP and LQ, respectively.

Proposition

Let P be an L-class of groups. A group G is a residually P-group
(it belongs to the class RP) if and only if the lattice Wcon(G )
fulfils:
(∗) For each ∆X ∈ C(↓∆), ∆X 6= {(e, e)}, there is ∆N J∆, such
that ∆N ∧∆X < ∆X and the interval [N2,G 2], as the lattice with
normal elements determined by N2 ∨∆, satisfies the lattice
theoretic properties LP.
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Corollary

If P is an L-class, so is the class of residually P-groups RP.

Proposition

An L-class P of groups is S-closed (Sn-closed) if and only if for
every group G in P, the following holds:
For every ∆A ∈ ↓∆ (∆A ∈ ↓∆ and ∆AJ∆), the ideal ↓A2 as a
lattice with normal elements determined by ∆A, fulfils LP, i.e., the
lattice theoretic properties defining the class P as an L-class.

Proposition

An L-class P of groups is H-closed if and only if for every group G
in P, the following holds:
For every ∆N ∈ ↓∆ such that ∆N J∆, the interval [N2,G 2] as a
lattice with normal elements determined by N2 ∨∆, fulfils LP, i.e.,
the lattice theoretic properties defining the class P as an L-class.

B. Šešelja Classes of groups in lattice framework



Corollary

If P is an L-class, so is the class of residually P-groups RP.

Proposition

An L-class P of groups is S-closed (Sn-closed) if and only if for
every group G in P, the following holds:
For every ∆A ∈ ↓∆ (∆A ∈ ↓∆ and ∆AJ∆), the ideal ↓A2 as a
lattice with normal elements determined by ∆A, fulfils LP, i.e., the
lattice theoretic properties defining the class P as an L-class.

Proposition

An L-class P of groups is H-closed if and only if for every group G
in P, the following holds:
For every ∆N ∈ ↓∆ such that ∆N J∆, the interval [N2,G 2] as a
lattice with normal elements determined by N2 ∨∆, fulfils LP, i.e.,
the lattice theoretic properties defining the class P as an L-class.
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Some known classes of groups that we proved to be L-classes:

Empty class of groups finite groups
Dedekind groups abelian groups
Hamiltonian groups nilpotent groups
solvable groups supersolvable groups
cyclic groups metabelian groups
perfect groups metacyclic groups
T -groups T ∗-groups
hypercyclic groups polycyclic groups
cocyclic groups finite symmetric groups
simple groups semisimple groups
fully simple groups absolutely simple groups
strictly simple groups perfect groups
SN-groups SN∗-groups

SN-groups SI -groups

SI -groups SI ∗- (hyperabelian) groups
Z -groups ZA-groups

ZD-groups Z -groups

Ñ-groups N-groups
torsion-free groups
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Some classes determined by the other way round approach.

We start with a lattice property L which does not already
determine classes in the above list and try to describe a class of
groups whose weak congruence lattices fulfill L.
Some obvious or known examples:
The class of groups whose weak congruence lattices are linearly
ordered (hence the only possibilities are a trivial lattice or a three
element chain) consists of all groups of prime order and a trivial
group. This implies that the class of groups of prime order is an
L-class, too.
The class of groups determined by the property that the diagonal
of each group G in the class is a neutral element in the lattice
Wcon(G ) is the class of Dedekind groups.

Theorem

The class of finite Dedekind groups is an L-class with respect to
the property that the diagonal of each group G in this class is a
distributive element of the lattice Wcon(G ).
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The class of groups is the CIP-class if the diagonal of every group
in the class is a distributive element in the lattice Wcon(G ).

This
class contains all finite Dedekind groups; but not only these.

Proposition

A torsion-free group G is a non-abelian and has the CIP if and only
if:
(1) G has a unique minimal normal subgroup N; this N is
non-abelian and G/N is a torsion Dedekind group;
(2) 〈x〉 ∩ 〈y〉 6= 1 for every pair of elements of G ;
(3) (H ∩ K )N = HN ∩ KN for all subgroups H,K of G.
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Proposition

If G is a CIP group that is not a Dedekind group then G has a
factor N with the following properties:
1. N is torsion free.
2. If a, b ∈ N \ {1} then 〈a〉 ∩ 〈b〉 6= {1}.
3. N is simple.

It was Obraztsov (J. of Algebra, 1998), who finally proved the
existence of a such a group. This result shows that in the
CIP-class there are also non-Dedekind groups.
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Let K be a class of groups determined by the property that the
diagonal relation of each group G in the class is cancellable in the
lattice Wcon(G ).

Recall that an element a of a lattice L is cancellable if for all
x , y ∈ L,
x ∧ a = y ∧ a and x ∨ a = y ∨ a imply x = y .
Indeed, K is an L-class, too.

Theorem

A group G belongs to the class K defined above if and only if G
satisfies the Congruence Extension Property (the CEP).

We say that the above defined class is the CEP-class.
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Proposition

A class of finite nilpotent groups is determined by the lower
semi-modular weak congruence lattices of its members.

Dealing with the dual case, we define a class of groups to be the
wSM-class (w for weak congruence lattice, SM for semi-modular),
if the weak congruence lattice of each member has a finite length
and is (upper) semi-modular. The class is not empty, e.g., Tarski
monster groups belongs to it; and of course, finite Dedekind
groups, since their weak congruence lattices are modular.

Proposition

The wSM-class of groups is a subclass of the CEP-class.
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As a negative example for lattice properties determining L-classes
of groups, we have that a weak congruence lattice of any group G
could not be complemented.

Indeed, the diagonal ∆ which determines Wcon(G ) as a lattice
with normal elements has no complement ∆

′
:

∆
′

should belong to the class [{(e, e)}]ϕ∆
; however, this is a

one-element class consisting of the bottom {(e, e)} of the lattice.
Consequently, a class could not be determined by the lattice
property of e.g., being boolean.
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Birkhoff’s theorem for L-classes of groups

We use the following condition applied on a group in an L-class P:
(∗) For each ∆X ∈ C(↓∆), ∆X 6= {(e, e)}, there is ∆N J∆, such
that ∆N ∧∆X < ∆X and the interval [N2,G 2], as the lattice with
normal elements determined by N2 ∨∆, satisfies the lattice
theoretic properties LP.

Theorem

An L-class P of groups is a variety if and only if the following hold:
(i) if G is a P-group, then in the lattice Wcon(G ) for every
∆H ∈ ↓∆, such that ∆H J∆, the interval [H2,G 2], which is a
lattice with normal element determined by H2 ∨∆, satisfies LP,
i.e., the lattice properties determining the class P and
(ii) every group G , such that the lattice Wcon(G ) satisfies (∗),
belongs to P.
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that ∆N ∧∆X < ∆X and the interval [N2,G 2], as the lattice with
normal elements determined by N2 ∨∆, satisfies the lattice
theoretic properties LP.

Theorem

An L-class P of groups is a variety if and only if the following hold:
(i) if G is a P-group, then in the lattice Wcon(G ) for every
∆H ∈ ↓∆, such that ∆H J∆, the interval [H2,G 2], which is a
lattice with normal element determined by H2 ∨∆, satisfies LP,
i.e., the lattice properties determining the class P and
(ii) every group G , such that the lattice Wcon(G ) satisfies (∗),
belongs to P.
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Corollary

If a class of groups P is an L-class with respect to a set of lattice
identities LP, then P is a variety of groups if and only if the weak
congruence lattices of its members satisfy the property (∗).
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Thanks for watching!
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