S-preclones and the Galois connection ${ }^{S} \mathrm{Pol}-{ }^{S}$ Inv

Peter Jipsen
Erkko Lehtonen
Reinhard Pöschel
Chapman University, Orange, CA (USA)
Khalifa University, Abu Dhabi (United Arab Emirates)
Technische Universität Dresden (Germany)

Summer School
General Algebra and Ordered Sets Stará Lesná, September 2-8, 2023

Outline

S-preclones

S-relational clones

The Galois connection ${ }^{S} \mathrm{Pol}-{ }^{S} \operatorname{Inv}$

The lattice ${ }^{S} \mathcal{L}_{A}$ of S-preclones

Outline

S-preclones

S-relational clones

The Galois connection ${ }^{S}$ Pol - ${ }^{S}$ Inv

The lattice ${ }^{S} \mathcal{L}_{A}$ of S-preclones

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set). Questions: how to characterize such "po-clones"?

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Analogies to many-sorted algebras (results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Analogies to many-sorted algebras (results of E. Lehtonen/ R. Pöschel/ T. Waldhauser), Let P be a property for unary functions $g \in A^{A}$. "motivating example": $P=+$: order-preserving $P=-$: order-reversing

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Analogies to many-sorted algebras
(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),
Let P be a property for unary functions $g \in A^{A}$.
"motivating example": $P=+$: order-preserving

$$
P=-: \text { order-reversing }
$$

An n-ary operation $f\left(x_{1}, \ldots, x_{n}\right)$ has property P in an argument, say x_{1},

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Analogies to many-sorted algebras (results of E. Lehtonen/ R. Pöschel/ T. Waldhauser), Let P be a property for unary functions $g \in A^{A}$. "motivating example": $P=+$: order-preserving $P=-$: order-reversing
An n-ary operation $f\left(x_{1}, \ldots, x_{n}\right)$ has property P in an argument, say x_{1}, $: \Longleftrightarrow$ each translation $x_{1} \mapsto f\left(x_{1}, c_{2}, \ldots, c_{n}\right)$ has this property P (for all constants $c_{2}, \ldots, c_{n} \in A$).

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Analogies to many-sorted algebras (results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),
Let P be a property for unary functions $g \in A^{A}$. "motivating example": $P=+$: order-preserving

$$
P=-: \text { order-reversing }
$$

An n-ary operation $f\left(x_{1}, \ldots, x_{n}\right)$ has property P in an argument, say x_{1}, $: \Longleftrightarrow$ each translation $x_{1} \mapsto f\left(x_{1}, c_{2}, \ldots, c_{n}\right)$ has this property P (for all constants $c_{2}, \ldots, c_{n} \in A$).
How to handle composition? order-reversing composed with order-reversing is order-preserving!

Motivating example

some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are order-preserving or order-reversing (for some given order on the base set).
Questions: how to characterize such "po-clones"?
R.P.: characterization via invariant relations?

Analogies to many-sorted algebras (results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),
Let P be a property for unary functions $g \in A^{A}$. "motivating example": $P=+$: order-preserving

$$
P=-: \text { order-reversing }
$$

An n-ary operation $f\left(x_{1}, \ldots, x_{n}\right)$ has property P in an argument, say x_{1}, $: \Longleftrightarrow$ each translation $x_{1} \mapsto f\left(x_{1}, c_{2}, \ldots, c_{n}\right)$ has this property P (for all constants $c_{2}, \ldots, c_{n} \in A$).

How to handle composition? order-reversing composed with order-reversing is order-preserving! Formalization: Collect the properties in a monoid $S=(\{+,-\}, \cdot)$, here a group	$\frac{+1}{+}+\mid-1$	
-1	$-1+$	
-1		

S-operations

S finite monoid with unit element e. n-ary S-operation: operation f together with its signum

S-operations

S finite monoid with unit element e.
n-ary S-operation: operation f together with its signum

$$
f: A^{n} \rightarrow A \text { with } \operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}
$$

${ }^{s} \mathrm{Op}(A):=$ all finitary S-operations

S-operations

S finite monoid with unit element e.
n-ary S-operation: operation f together with its signum

$$
f: A^{n} \rightarrow A \text { with } \operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}
$$

i.e., the i-th argument of f gets a label (signum) $s_{i} \in S$ $(i=1, \ldots, n)$.
${ }^{S} \mathrm{Op}(A):=$ all finitary S-operations

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\operatorname{id}_{A}\right):=(e)$,
(2) permutation of arguments

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\operatorname{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\operatorname{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$,

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$, e.g., $\left(\nabla^{s} f\right)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right)$, where $\operatorname{sgn}\left(\nabla^{s} f\right)=\left(s, s_{1}, \ldots, s_{n}\right)$ for $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$,

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$, e.g., $\left(\nabla^{s} f\right)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right)$, where $\operatorname{sgn}\left(\nabla^{s} f\right)=\left(s, s_{1}, \ldots, s_{n}\right)$ for $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$,
(5) "linearized" composition

S-preclones

S-preclone := set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$, e.g., $\left(\nabla^{s} f\right)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right)$, where $\operatorname{sgn}\left(\nabla^{s} f\right)=\left(s, s_{1}, \ldots, s_{n}\right)$ for $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$,
(5) "linearized" composition
$\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$ and $\operatorname{sgn}(g)=\left(s_{1}^{\prime}, \ldots, s_{m}^{\prime}\right)$. Then

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$, e.g., $\left(\nabla^{s} f\right)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right)$, where $\operatorname{sgn}\left(\nabla^{s} f\right)=\left(s, s_{1}, \ldots, s_{n}\right)$ for $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$,
(5) "linearized" composition
$\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$ and $\operatorname{sgn}(g)=\left(s_{1}^{\prime}, \ldots, s_{m}^{\prime}\right)$. Then

$$
\begin{aligned}
& (f \circ g)\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right) \\
& \quad:=f\left(g\left(x_{1}, \ldots, x_{m}\right), x_{m+1}, \ldots, x_{m+n-1}\right)
\end{aligned}
$$

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$, e.g., $\left(\nabla^{s} f\right)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right)$, where $\operatorname{sgn}\left(\nabla^{s} f\right)=\left(s, s_{1}, \ldots, s_{n}\right)$ for $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$,
(5) "linearized" composition
$\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$ and $\operatorname{sgn}(g)=\left(s_{1}^{\prime}, \ldots, s_{m}^{\prime}\right)$. Then

$$
(f \circ g)\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right)
$$

$$
:=f\left(g\left(x_{1}, \ldots, x_{m}\right), x_{m+1}, \ldots, x_{m+n-1}\right)
$$

with $\operatorname{sgn}(f \circ g)=\left(s_{1}^{\prime} s_{1}, \ldots, s_{m}^{\prime} s_{1}, s_{2}, \ldots, s_{n}\right)$.

S-preclones

S-preclone $:=$ set $F \subseteq{ }^{S} \mathrm{Op}(A)$ of S-operations closed under:
(1) $\operatorname{id}_{A} \in F, \operatorname{id}_{A}(x)=x, \operatorname{sgn}\left(\mathrm{id}_{A}\right):=(e)$,
(2) permutation of arguments (operations ζ, τ),
(3) identification of arguments with the same signum $s\left(\Delta^{s}\right)$,
(4) adding fictitious arguments of (arbitrary) signum $s \in S$, e.g., $\left(\nabla^{s} f\right)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right)$, where $\operatorname{sgn}\left(\nabla^{s} f\right)=\left(s, s_{1}, \ldots, s_{n}\right)$ for $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$,
(5) "linearized" composition $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right)$ and $\operatorname{sgn}(g)=\left(s_{1}^{\prime}, \ldots, s_{m}^{\prime}\right)$. Then

$$
\begin{aligned}
& (f \circ g)\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right) \\
& \quad:=f\left(g\left(x_{1}, \ldots, x_{m}\right), x_{m+1}, \ldots, x_{m+n-1}\right)
\end{aligned}
$$

with $\operatorname{sgn}(f \circ g)=\left(s_{1}^{\prime} s_{1}, \ldots, s_{m}^{\prime} s_{1}, s_{2}, \ldots, s_{n}\right)$.
${ }^{S}\langle F\rangle:=S$-preclone generated by $F \subseteq{ }^{S} \mathrm{Op}(A)$.

"motivating" Example

$S=\{+,-\}$ two-element group with unit element + .

"motivating" Example

$S=\{+,-\}$ two-element group with unit element.$+(S \cong\{+1,-1\})$

"motivating" Example

$S=\{+,-\}$ two-element group with unit element $+(S \cong\{+1,-1\})$ \leq order relation on (finite) base set A.

"motivating" Example

$S=\{+,-\}$ two-element group with unit element.$+(S \cong\{+1,-1\})$
\leq order relation on (finite) base set A.
$F \subseteq{ }^{S} \mathrm{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)

"motivating" Example

$S=\{+,-\}$ two-element group with unit element.$+(S \cong\{+1,-1\})$
\leq order relation on (finite) base set A.
$F \subseteq{ }^{S} \operatorname{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.

"motivating" Example

$S=\{+,-\}$ two-element group with unit element.$+(S \cong\{+1,-1\})$
\leq order relation on (finite) base set A.
$F \subseteq{ }^{S} \operatorname{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.
Proposition: F is an S-preclone.

"motivating" Example

$S=\{+,-\}$ two-element group with unit element.$+(S \cong\{+1,-1\})$
\leq order relation on (finite) base set A.
$F \subseteq{ }^{S} \operatorname{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.
Proposition: F is an S-preclone.
E.g., the composition
$(f \circ g)\left(x_{1}, x_{2}, x_{3}\right)=f\left(g\left(x_{1}, x_{2}\right), x_{3}\right)=\neg\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3}=\neg x_{1} \wedge x_{2} \wedge x_{3}$ has signum $\left(s_{1}^{\prime} s_{1}, s_{2}^{\prime} s_{1}, s_{2}\right)=(+\cdot-,-\cdot-,+)=(-,+,+)$.

"motivating" Example

$S=\{+,-\}$ two-element group with unit element.$+(S \cong\{+1,-1\})$
\leq order relation on (finite) base set A.
$F \subseteq{ }^{S} \operatorname{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$
$\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.
Proposition: F is an S-preclone.
E.g., the composition
$(f \circ g)\left(x_{1}, x_{2}, x_{3}\right)=f\left(g\left(x_{1}, x_{2}\right), x_{3}\right)=\neg\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3}=\neg x_{1} \wedge x_{2} \wedge x_{3}$ has signum $\left(s_{1}^{\prime} s_{1}, s_{2}^{\prime} s_{1}, s_{2}\right)=(+\cdot-,-\cdot-,+)=(-,+,+)$.
One is allowed to identify x_{2} and x_{3}, but not x_{2} and x_{1}.

Outline

S-preclones

S-relational clones

$$
\begin{aligned}
& \text { The Galois connection }{ }^{S} \text { Pol - }{ }^{S} \text { Inv } \\
& \text { The lattice }{ }^{S} \mathcal{L}_{A} \text { of } S \text {-preclones }
\end{aligned}
$$

S-relations

m-ary S-relation: $\varrho=\left(\varrho_{s}\right)_{s \in S}$ with $\varrho_{s} \subseteq A^{m}$

${ }^{S} \operatorname{Rel}(A):=$ the set of all finitary S-relations

S-relations

m-ary S-relation: $\varrho=\left(\varrho_{s}\right)_{s \in S}$ with $\varrho_{s} \subseteq A^{m}$
notation also
$\varrho=\left(\varrho_{s}, \varrho_{s^{\prime}}, \ldots, \varrho_{s^{\prime \prime}}\right)\left(\right.$ for $\left.S=\left\{s, s^{\prime}, \ldots, s^{\prime \prime}\right\}\right)$ or
$\varrho=\left(r_{1}, \ldots, r_{t}\right)$ with $\boldsymbol{\lambda}_{\varrho}=\left(s_{1}, \ldots, s_{t}\right)$ s.t. $\varrho_{s}=\left\{r_{i} \mid s_{i}=s\right\}$
Example: $S=\{+,-\}, A=\{0,1\}$,
$\varrho=\left(\varrho_{s}\right)_{s \in S}$ with $\varrho_{+}:=\leq, \varrho_{-}:=\geq$, i.e.,

$$
\begin{gathered}
\varrho=(\leq, \geq)=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
0 & 1 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right) \\
\quad \text { with } \boldsymbol{\lambda}_{\varrho}=(+,+,+,-,-,-)
\end{gathered}
$$

S-relations

m-ary S-relation: $\varrho=\left(\varrho_{s}\right)_{s \in S}$ with $\varrho_{s} \subseteq A^{m}$
notation also
$\varrho=\left(\varrho_{s}, \varrho_{s^{\prime}}, \ldots, \varrho_{s^{\prime \prime}}\right)\left(\right.$ for $\left.S=\left\{s, s^{\prime}, \ldots, s^{\prime \prime}\right\}\right)$ or
$\varrho=\left(r_{1}, \ldots, r_{t}\right)$ with $\boldsymbol{\lambda}_{\varrho}=\left(s_{1}, \ldots, s_{t}\right)$ s.t. $\varrho_{s}=\left\{r_{i} \mid s_{i}=s\right\}$
Example: $S=\{+,-\}, A=\{0,1\}$,
$\varrho=\left(\varrho_{s}\right)_{s \in S}$ with $\varrho_{+}:=\leq, \varrho_{-}:=\geq$, i.e.,

$$
\begin{aligned}
& \varrho=(\leq, \geq)=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right) \\
& \text { with } \lambda_{e}=(+,+,+,-,-,-,-)
\end{aligned}
$$

${ }^{S} \operatorname{Rel}(A):=$ the set of all finitary S-relations

S-relational clones

$$
\text { S-relational clone }:=\text { set } Q \subseteq{ }^{S} \operatorname{Rel}(A) \text { of } S \text {-relations closed under: }
$$

S-relational clones

S-relational clone : $=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q$
$\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)

S-relational clones

S-relational clone $:=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)

S-relational clones

S-relational clone $:=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)
(3) deleting of rows (projection on selected rows)

S-relational clones

S-relational clone $:=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)
(3) deleting of rows (projection on selected rows)
(4) Cartesian product: $\varrho \times \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \times\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \times \varrho_{s}^{\prime}\right)_{s \in S}$

S-relational clones

S-relational clone $:=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)
(3) deleting of rows (projection on selected rows)
(4) Cartesian product: $\varrho \times \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \times\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \times \varrho_{s}^{\prime}\right)_{s \in S}$
(5) intersection: $\varrho \wedge \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \wedge\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \wedge \varrho_{s}^{\prime}\right)_{s \in S}$

S-relational clones

S-relational clone $:=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)
(3) deleting of rows (projection on selected rows)
(4) Cartesian product: $\varrho \times \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \times\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \times \varrho_{s}^{\prime}\right)_{s \in S}$
(5) intersection: $\varrho \wedge \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \wedge\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \wedge \varrho_{s}^{\prime}\right)_{s \in S}$
(6) index translation by $t \in S: \mu_{t}(\varrho):=\left(\varrho_{s t}\right)_{s \in S}$

S-relational clones

S-relational clone : $=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)
(3) deleting of rows (projection on selected rows)
(4) Cartesian product: $\varrho \times \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \times\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \times \varrho_{s}^{\prime}\right)_{s \in S}$
(5) intersection: $\varrho \wedge \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \wedge\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \wedge \varrho_{s}^{\prime}\right)_{s \in S}$
(6) index translation by $t \in S: \mu_{t}(\varrho):=\left(\varrho_{s t}\right)_{s \in S}$
(7) t-self-intersection
(i.e., via the (right) multiplicative action of an element $t \in S$):
$\sqcap^{t} \varrho=\left(\left(\sqcap^{t} \varrho\right)_{s}\right)_{s \in S}:=\left(\bigcap\left\{\varrho_{s^{\prime}} \mid s^{\prime} t=s\right\}\right)_{s \in S}$

S-relational clones

S-relational clone : $=$ set $Q \subseteq{ }^{S} \operatorname{Rel}(A)$ of S-relations closed under:
(1) $\delta^{S}:=\left(\Delta_{A}\right)_{s \in S} \in Q \quad\left(\Delta_{A}:=\{(x, x) \mid x \in A\}\right.$ diagonal)
(2) permutation of rows (consider the elements $r \in \varrho_{s}$ as columns)
(3) deleting of rows (projection on selected rows)
(4) Cartesian product: $\varrho \times \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \times\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \times \varrho_{s}^{\prime}\right)_{s \in S}$
(5) intersection: $\varrho \wedge \varrho^{\prime}=\left(\varrho_{s}\right)_{s \in S} \wedge\left(\varrho_{s}^{\prime}\right)_{s \in S}:=\left(\varrho_{s} \wedge \varrho_{s}^{\prime}\right)_{s \in S}$
(6) index translation by $t \in S: \mu_{t}(\varrho):=\left(\varrho_{s t}\right)_{s \in S}$
(7) t-self-intersection (i.e., via the (right) multiplicative action of an element $t \in S$): $\sqcap^{t} \varrho=\left(\left(\sqcap^{t} \varrho\right)_{s}\right)_{s \in S}:=\left(\bigcap\left\{\varrho_{s^{\prime}} \mid s^{\prime} t=s\right\}\right)_{s \in S}$
${ }^{S}[Q]:=S$-relational clone generated by $Q \subseteq{ }^{S} \operatorname{Rel}(A)$.

Outline

S-preclones

S-relational clones

The Galois connection ${ }^{S} \mathrm{Pol}-{ }^{S} \operatorname{Inv}$

The lattice ${ }^{S} \mathcal{L}_{A}$ of S-preclones

S-preservation $\stackrel{S}{\triangleright}$

classical notion of preservation: $f \triangleright \varrho: \Longleftrightarrow f(\varrho, \ldots, \varrho) \subseteq \varrho$

S-preservation $\stackrel{S}{\triangleright}$

classical notion of preservation: $f \triangleright \varrho: \Longleftrightarrow f(\varrho, \ldots, \varrho) \subseteq \varrho$
The " S-version":
$f \in{ }^{S} \operatorname{Op}(A)$ with $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right), \varrho=\left(\varrho_{s}\right)_{s \in S} \in{ }^{S^{\operatorname{Rel}}}{ }^{(m)}(A)$

S-preservation $\stackrel{S}{\triangleright}$

classical notion of preservation: $f \triangleright \varrho: \Longleftrightarrow f(\varrho, \ldots, \varrho) \subseteq \varrho$
The " S-version":
$f \in{ }^{S} \operatorname{Op}(A)$ with $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right), \varrho=\left(\varrho_{s}\right)_{s \in S} \in{ }^{S^{\operatorname{Rel}}}{ }^{(m)}(A)$
$f \stackrel{S}{\triangleright}\left(\varrho_{s}\right)_{s \in S}: \Longleftrightarrow \forall s \in S: f\left(\varrho_{s_{1} s}, \ldots, \varrho_{s_{n} s}\right) \subseteq \varrho_{s}$.

S-preservation $\stackrel{S}{\triangleright}$

classical notion of preservation: $f \triangleright \varrho: \Longleftrightarrow f(\varrho, \ldots, \varrho) \subseteq \varrho$
The " S-version":
$f \in{ }^{S} \operatorname{Op}(A)$ with $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right), \varrho=\left(\varrho_{s}\right)_{s \in S} \in{ }^{S^{\operatorname{Rel}}}{ }^{(m)}(A)$

$$
f \stackrel{S}{\triangleright}\left(\varrho_{s}\right)_{s \in S}: \Longleftrightarrow \forall s \in S: f\left(\varrho_{s_{1} s}, \ldots, \varrho_{s_{n} s}\right) \subseteq \varrho_{s} .
$$

S-preservation $\stackrel{S}{\triangleright}$

classical notion of preservation: $f \triangleright \varrho: \Longleftrightarrow f(\varrho, \ldots, \varrho) \subseteq \varrho$
The " S-version":
$f \in{ }^{S} \operatorname{Op}(A)$ with $\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right), \varrho=\left(\varrho_{s}\right)_{s \in S} \in{ }^{S^{\operatorname{Rel}}}{ }^{(m)}(A)$

$$
f \stackrel{S}{\triangleright}\left(\varrho_{s}\right)_{s \in S}: \Longleftrightarrow \forall s \in S: f\left(\varrho_{s_{1} s}, \ldots, \varrho_{s_{n} s}\right) \subseteq \varrho_{s} .
$$

$f \stackrel{S}{\triangleright} \varrho: f$-preserves ϱ, f is an S-polymorphism of ϱ, ϱ is (S-)invariant for f

The Galois connection ${ }^{S} \mathrm{Pol}-{ }^{S} \operatorname{Inv}$

$\stackrel{S}{\triangleright}$ induces a Galois connection

The Galois connection ${ }^{S} \mathrm{Pol}-{ }^{S}$ Inv

$\stackrel{S}{\triangleright}$ induces a Galois connection with the operators

$$
\begin{aligned}
& { }^{S} \mathrm{Pol} Q:=\left\{f \in{ }^{S} \mathrm{Op}(A) \mid \forall \varrho \in Q: f \stackrel{S}{\triangleright} \varrho\right\} \\
& { }^{S} \operatorname{Inv} F:=\left\{\varrho \in{ }^{S} \operatorname{Rel}(A) \mid \forall f \in F: f \stackrel{S}{\triangleright} \varrho\right\} \\
& \text { (invariant } S \text {-relations). } \\
& \text { for } F \subseteq{ }^{S} \mathrm{Op}(A) \text { and } Q \subseteq{ }^{S} \operatorname{Rel}(A) .
\end{aligned}
$$

once more: "motivating" Example

(A, \leq) poset, $S=\{+,-\}$ (group).

once more: "motivating" Example

(A, \leq) poset, $S=\{+,-\}$ (group).
Example: $F \subseteq{ }^{S} \mathrm{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.
Proposition: F is an S-preclone.

once more: "motivating" Example

(A, \leq) poset, $S=\{+,-\}$ (group).
Example: $F \subseteq{ }^{S} \mathrm{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.
Proposition: F is an S-preclone.
Then we have:

$$
F={ }^{S} \text { Pol } \varrho \text { for the } S \text {-relation } \varrho=\left(\varrho_{+}, \varrho_{-}\right):=(\leq, \geq) \text {. }
$$

once more: "motivating" Example

(A, \leq) poset, $S=\{+,-\}$ (group).
Example: $F \subseteq{ }^{S} \mathrm{Op}(A):=$ set of all S-operations $f\left(x_{1}, \ldots, x_{n}\right)$ $\left(\operatorname{sgn}(f)=\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right)$ such that argument x_{i} is order-preserving if $s_{i}=+$, otherwise order-reversing (signum -)
e.g., $A=\{0,1\}, 0<1$,
$f\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}, \operatorname{sgn}(f)=\left(s_{1}, s_{2}\right)=(-,+)$,
$g\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}, \operatorname{sgn}(g)=\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=(+,-)$.
Proposition: F is an S-preclone.
Then we have:

$$
F={ }^{S} \text { Pol } \varrho \text { for the } S \text {-relation } \varrho=\left(\varrho_{+}, \varrho_{-}\right):=(\leq, \geq) \text {. }
$$

Example: $A=\{0,1\}$,
$\varrho=\left(\varrho_{s}\right)_{s \in S}$ with $\varrho_{+}:=\leq, \varrho_{-}:=\geq$, i.e.,
$\varrho=(\leq, \geq)=\left(\begin{array}{ccccc}0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)$

The Galois closures

Let A be a finite set

i.e., the Galois closure is the S-preclone generated by F.

The Galois closures

Let A be a finite set
Theorem
Let S be a finite monoid. Then, for $F \subseteq{ }^{S} \mathrm{Op}(A)$, we have

$$
{ }^{S}\langle F\rangle={ }^{S} \text { Pol }{ }^{S} \operatorname{Inv} F,
$$

i.e., the Galois closure is the S-preclone generated by F.

The Galois closures

Let A be a finite set
Theorem
Let S be a finite monoid. Then, for $F \subseteq{ }^{S} \mathrm{Op}(A)$, we have

$$
{ }^{s}\langle F\rangle={ }^{s} \mathrm{Pol}{ }^{s} \operatorname{Inv} F,
$$

i.e., the Galois closure is the S-preclone generated by F.

Theorem
Let S be a finite monoid. Then, for $Q \subseteq{ }^{S} \operatorname{Rel}(A)$, we have

$$
{ }^{S}[Q]={ }^{S} \operatorname{Inv}{ }^{S} \mathrm{Pol} Q,
$$

i.e., the Galois closure is the S-relational clone generated by Q.

Concerning the proofs

$$
{ }^{S}\langle F\rangle \subseteq{ }^{S} \text { Pol }{ }^{S} \operatorname{lnv} F \text { and }{ }^{s}[Q] \subseteq{ }^{S} \text { Inv }{ }^{s} \text { Pol } Q \text { straightforward }
$$

Concerning the proofs

${ }^{S}\langle F\rangle \subseteq{ }^{S}{ }^{\text {Pol }}{ }^{S \operatorname{Inv} F}$ and ${ }^{S}[Q] \subseteq{ }^{S}$ Inv ${ }^{S}$ Pol Q straightforward
for S being a group:
generalization of the proofs for the "classical" Galois connection Pol - Inv
\qquad

Concerning the proofs

${ }^{S}\langle F\rangle \subseteq{ }^{S}$ Pol ${ }^{S} \operatorname{Inv} F$ and ${ }^{S}[Q] \subseteq{ }^{S} \operatorname{Inv}{ }^{S}$ Pol Q straightforward
for S being a group:
generalization of the proofs for the "classical" Galois connection Pol - Inv
for arbitrary (finite) monoids S:
more complicated (proof was completed few months ago)
[JipLP2023]: arXiv http://arxiv.org/abs/2306.00493

Outline

S-preclones

S-relational clones

The Galois connection ${ }^{S} \mathrm{Pol}-{ }^{S}$ Inv

The lattice ${ }^{S} \mathcal{L}_{A}$ of S-preclones

The lattices ${ }^{S} \mathcal{L}_{A}$ and ${ }^{S} \mathcal{L}_{A}^{*}$

${ }^{S} \mathcal{L}_{A}:=$ lattice of all S-preclones on A (w.r.t. \subseteq)

The lattices ${ }^{S} \mathcal{L}_{A}$ and ${ }^{S} \mathcal{L}_{A}^{*}$

$$
\begin{aligned}
& { }^{{ }_{\mathcal{L}} \mathcal{L}_{A}}:=\text { lattice of all } S \text {-preclones on } A \text { (w.r.t. } \subseteq \text {) } \\
& { }^{s} \mathcal{L}_{A}^{*}:=\text { lattice of all } S \text {-relational clones on }
\end{aligned}
$$

The lattices ${ }^{S} \mathcal{L}_{A}$ and ${ }^{S} \mathcal{L}_{A}^{*}$

$$
\begin{aligned}
& { }^{s} \mathcal{L}_{A}:=\text { lattice of all } S \text {-preclones on } A(\text { w.r.t. } \subseteq) \\
& { }^{S} \mathcal{L}_{A}^{*}:=\text { lattice of all } S \text {-relational clones on } A
\end{aligned} \quad\left({ }^{S} \mathcal{L}_{A}^{*} \cong_{d}{ }^{S} \mathcal{L}_{A}\right)
$$

The lattices ${ }^{S} \mathcal{L}_{A}$ and ${ }^{5} \mathcal{L}_{A}^{*}$

${ }^{s} \mathcal{L}_{A}:=$ lattice of all S-preclones on A (w.r.t. \subseteq)
${ }^{S} \mathcal{L}_{A}^{*}:=$ lattice of all S-relational clones on $A \quad\left({ }^{S} \mathcal{L}_{A}^{*} \cong{ }_{d}{ }^{S} \mathcal{L}_{A}\right)$

$S_{A}=S$-projections $={ }^{S}\left\langle\right.$ id $\left._{A}\right\rangle$
${ }^{s} D_{A}=S$-diagonals $={ }^{S}[\delta]$

Some properties

Each S-preclone is contained in a maximal one (coatom) and contains a minimal one (atom):
${ }^{s} \mathcal{L}_{A}$ is atomic and coatomic

There are finitely many atoms and coatoms. ${ }^{5} \mathrm{Op}(A)$ is finitely generated (by at most binary S-operations),

Some properties

Each S-preclone is contained in a maximal one (coatom) and contains a minimal one (atom):
${ }^{s} \mathcal{L}_{A}$ is atomic and coatomic
There are finitely many atoms and coatoms.
${ }^{S} \mathrm{Op}(A)$ is finitely generated (by at most binary S-operations) ${ }^{S} \operatorname{Rel}(A)$ finitely generated (by at most ternary S-relations),

Some properties

Each S-preclone is contained in a maximal one (coatom) and contains a minimal one (atom):
${ }^{s} \mathcal{L}_{A}$ is atomic and coatomic
There are finitely many atoms and coatoms.
${ }^{S} \mathrm{Op}(A)$ is finitely generated (by at most binary S-operations),

Some properties

Each S-preclone is contained in a maximal one (coatom) and contains a minimal one (atom):
${ }^{s} \mathcal{L}_{A}$ is atomic and coatomic
There are finitely many atoms and coatoms.
${ }^{S} \mathrm{Op}(A)$ is finitely generated (by at most binary S-operations),
${ }^{S} \operatorname{Rel}(A)$ finitely generated (by at most ternary S-relations),

Some properties

Each S-preclone is contained in a maximal one (coatom) and contains a minimal one (atom):
${ }^{s} \mathcal{L}_{A}$ is atomic and coatomic
There are finitely many atoms and coatoms.
${ }^{S} \mathrm{Op}(A)$ is finitely generated (by at most binary S-operations), e.g., for $A=\{0,1, \ldots, k-1\}$ we have ${ }^{S}\left\langle\left\{m^{(e, e)}\right\} \cup\left\{\right.\right.$ id $\left.\left.^{s} \mid s \in S\right\}\right\rangle={ }^{s} \mathrm{Op}(A)$, where $m^{(e, e)}$ is the binary S-operation defined by the $m(x, y):=\max (x, y) \oplus 1$ (known as Sheffer function, \oplus addition modulo k) with $\operatorname{sgn}(m)=(e, e)$.

e.g., $|A| \geq 3:{ }^{s}[(\Delta, \nabla, \ldots, \nabla),(\leq, \leq, \ldots, \leq),(\neq, \neq, \ldots, \neq)]={ }^{s} \operatorname{Rel}(A)$. Here $\left(\sigma, \sigma^{\prime}, \ldots, \sigma^{\prime}\right)$ denotes the relation $\varrho \in{ }^{s} \operatorname{Rel}(A)$ with $\varrho_{e}=\sigma$ and $\varrho_{s}=\sigma^{\prime}$ for $s \in S \backslash\{e\} .\left(\nabla=\nabla_{A}=A^{2}, \Delta=\Delta_{A}=\{(x, x) \mid x \in A\}\right)$ (For $|A|=2$ a ternary S-relation is needed)

Example: Boolean \pm-preclones

$$
\pm:=S:=\{+,-\} \text { (two-element group } \cong\{+1,-1\})
$$

Example: Boolean 土-preclones

$$
\pm:=S:=\{+,-\} \text { (two-element group } \cong\{+1,-1\})
$$

notation for
S-preclone, ${ }^{S} \mathcal{L}_{A},{ }^{S}\langle F\rangle,{ }^{S}[Q],{ }^{S}$ Pol, ${ }^{S}$ Inv :
士-preclone, ${ }^{ \pm} \mathcal{L}_{A},{ }^{ \pm}\langle F\rangle,{ }^{ \pm}[Q],{ }^{ \pm} \mathrm{Pol},{ }^{ \pm}$Inv $A:=\{0,1\}:$
\pm-preclone $=$ Boolean \pm-preclone
${ }^{ \pm} \mathcal{L}_{2}$ lattice of Boolean \pm-preclones Recall: has 5 maximal and 7 minimal clones

Example: Boolean 土-preclones

$\pm:=S:=\{+,-\}$ (two-element group $\cong\{+1,-1\})$
notation for
S-preclone, ${ }^{S} \mathcal{L}_{A},{ }^{S}\langle F\rangle,{ }^{S}[Q],{ }^{S}$ Pol, ${ }^{S}$ Inv :
士-preclone, ${ }^{ \pm} \mathcal{L}_{A},{ }^{ \pm}\langle F\rangle,{ }^{ \pm}[Q],{ }^{ \pm} \mathrm{Pol},{ }^{ \pm}$Inv
$A:=\{0,1\}:$
\pm-preclone $=$ Boolean \pm-preclone
${ }^{ \pm} \mathcal{L}_{2}$ lattice of Boolean \pm-preclones

Example: Boolean \pm-preclones

$\pm:=S:=\{+,-\}$ (two-element group $\cong\{+1,-1\}$)
notation for
S-preclone, ${ }^{S} \mathcal{L}_{A},{ }^{S}\langle F\rangle,{ }^{S}[Q],{ }^{S}$ Pol, ${ }^{S}$ Inv :
\pm-preclone, ${ }^{ \pm} \mathcal{L}_{A},{ }^{ \pm}\langle F\rangle,{ }^{ \pm}[Q],{ }^{ \pm}$Pol, ${ }^{ \pm}$Inv
$A:=\{0,1\}:$
\pm-preclone $=$ Boolean \pm-preclone
${ }^{ \pm} \mathcal{L}_{2}$ lattice of Boolean \pm-preclones

Recall:
\mathcal{L}_{2}, the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

The maximal Boolean \pm-preclones

Theorem
There are nine maximal Boolean \pm-preclones listed below. Each such preclone is of the form $F={ }^{ \pm} \operatorname{Pol} \varrho$ for some \pm-relation $\varrho=\left(\varrho_{+}, \varrho_{-}\right)$:

The maximal Boolean \pm-preclones

Theorem
There are nine maximal Boolean \pm-preclones listed below. Each such preclone is of the form $F={ }^{ \pm} \operatorname{Pol} \varrho$ for some \pm-relation $\varrho=\left(\varrho_{+}, \varrho_{-}\right)$:
(a) ${ }^{ \pm} \operatorname{Pol}(\sigma, \sigma)$ with $\sigma \in\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ where $\operatorname{Pol} \sigma_{i}$ is maximal in \mathcal{L}_{2} (0-preserving, 1-preserving, monotone, self-dual, linear operations)

$$
\begin{aligned}
& \sigma_{0}=\{0\}, \sigma_{1}=\{1\}, \sigma_{2}=\leq=\{(0,0),(0,1),(1,1)\}, \\
& \sigma_{3}=\{(0,1),(1,0)\}, \sigma_{4}=\left\{(x, y, z, u) \in A^{4} \mid x+y+z+u=0\right\} .
\end{aligned}
$$

The maximal Boolean \pm-preclones

Theorem
There are nine maximal Boolean \pm-preclones listed below. Each such preclone is of the form $F={ }^{ \pm} \operatorname{Pol} \varrho$ for some \pm-relation $\varrho=\left(\varrho_{+}, \varrho_{-}\right)$:
(a) ${ }^{ \pm} \operatorname{Pol}(\sigma, \sigma)$ with $\sigma \in\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ where $\operatorname{Pol} \sigma_{i}$ is maximal in \mathcal{L}_{2} (0-preserving, 1-preserving, monotone, self-dual, linear operations)

$$
\begin{aligned}
& \sigma_{0}=\{0\}, \sigma_{1}=\{1\}, \sigma_{2}=\leq=\{(0,0),(0,1),(1,1)\}, \\
& \sigma_{3}=\{(0,1),(1,0)\}, \sigma_{4}=\left\{(x, y, z, u) \in A^{4} \mid x+y+z+u=0\right\} .
\end{aligned}
$$

(b) ${ }^{ \pm} \operatorname{Pol}(\leq, \geq)$ our motivating example! all \pm-operations where each +argument is order-preserving and each -argument is order-reversing.
\qquad

The maximal Boolean \pm-preclones

Theorem

There are nine maximal Boolean \pm-preclones listed below. Each such preclone is of the form $F={ }^{ \pm} \operatorname{Pol} \varrho$ for some \pm-relation $\varrho=\left(\varrho_{+}, \varrho_{-}\right)$:
(a) ${ }^{ \pm} \operatorname{Pol}(\sigma, \sigma)$ with $\sigma \in\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ where $\operatorname{Pol} \sigma_{i}$ is maximal in \mathcal{L}_{2} (0-preserving, 1-preserving, monotone, self-dual, linear operations)

$$
\begin{aligned}
& \sigma_{0}=\{0\}, \sigma_{1}=\{1\}, \sigma_{2}=\leq=\{(0,0),(0,1),(1,1)\}, \\
& \sigma_{3}=\{(0,1),(1,0)\}, \sigma_{4}=\left\{(x, y, z, u) \in A^{4} \mid x+y+z+u=0\right\} .
\end{aligned}
$$

(b) ${ }^{ \pm} \operatorname{Pol}(\leq, \geq)$ our motivating example! all \pm-operations where each

+ argument is order-preserving and each -argument is order-reversing.
(c) ${ }^{ \pm} \operatorname{Pol}(A, \emptyset)=$ all functions with positive or mixed signum.

The maximal Boolean \pm-preclones

Theorem

There are nine maximal Boolean \pm-preclones listed below. Each such preclone is of the form $F={ }^{ \pm} \operatorname{Pol} \varrho$ for some \pm-relation $\varrho=\left(\varrho_{+}, \varrho_{-}\right)$:
(a) ${ }^{ \pm} \operatorname{Pol}(\sigma, \sigma)$ with $\sigma \in\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ where $\operatorname{Pol} \sigma_{i}$ is maximal in \mathcal{L}_{2} (0-preserving, 1-preserving, monotone, self-dual, linear operations)

$$
\begin{aligned}
& \sigma_{0}=\{0\}, \sigma_{1}=\{1\}, \sigma_{2}=\leq=\{(0,0),(0,1),(1,1)\}, \\
& \sigma_{3}=\{(0,1),(1,0)\}, \sigma_{4}=\left\{(x, y, z, u) \in A^{4} \mid x+y+z+u=0\right\} .
\end{aligned}
$$

(b) ${ }^{ \pm} \operatorname{Pol}(\leq, \geq)$ our motivating example! all \pm-operations where each +argument is order-preserving and each -argument is order-reversing.
(c) ${ }^{ \pm} \operatorname{Pol}(A, \emptyset)=$ all functions with positive or mixed signum.
(d) ${ }^{ \pm} \operatorname{Pol}\left(A^{2}, \Delta_{A}\right)=$ all Boolean \pm-operations, where each negative argument is fictitious (including all negative constants).

The maximal Boolean \pm-preclones

Theorem

There are nine maximal Boolean \pm-preclones listed below. Each such preclone is of the form $F={ }^{ \pm}$Pol ϱ for some \pm-relation $\varrho=\left(\varrho_{+}, \varrho_{-}\right)$:
(a) ${ }^{ \pm} \operatorname{Pol}(\sigma, \sigma)$ with $\sigma \in\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ where $\operatorname{Pol} \sigma_{i}$ is maximal in \mathcal{L}_{2} (0-preserving, 1-preserving, monotone, self-dual, linear operations)

$$
\begin{aligned}
& \sigma_{0}=\{0\}, \sigma_{1}=\{1\}, \sigma_{2}=\leq=\{(0,0),(0,1),(1,1)\}, \\
& \sigma_{3}=\{(0,1),(1,0)\}, \sigma_{4}=\left\{(x, y, z, u) \in A^{4} \mid x+y+z+u=0\right\} .
\end{aligned}
$$

(b) ${ }^{ \pm} \operatorname{Pol}(\leq, \geq)$ our motivating example! all \pm-operations where each +argument is order-preserving and each -argument is order-reversing.
(c) ${ }^{ \pm} \operatorname{Pol}(A, \emptyset)=$ all functions with positive or mixed signum.
(d) ${ }^{ \pm} \operatorname{Pol}\left(A^{2}, \Delta_{A}\right)=$ all Boolean \pm-operations, where each negative argument is fictitious (including all negative constants).
(e) ${ }^{ \pm} \operatorname{Pol}(\{0\},\{1\})$.

The minimal Boolean \pm-preclones

Theorem
There are twenty three minimal Boolean \pm-preclones. Each such
\pm-preclone is of the form ${ }^{ \pm}\langle f\rangle$ with one \pm-operation f as generator: otherwise,

The minimal Boolean \pm-preclones

Theorem
There are twenty three minimal Boolean \pm-preclones. Each such \pm-preclone is of the form ${ }^{ \pm}\langle f\rangle$ with one \pm-operation f as generator:
(A) ${ }^{ \pm}\left\langle h_{0}\right\rangle,{ }^{ \pm}\left\langle h_{1}\right\rangle,{ }^{ \pm}\left\langle h_{y}\right\rangle$ where $h_{i}(x, y, z, u)= \begin{cases}x & \text { if } x=y \text { or } z=u, \\ i & \text { otherwise, }\end{cases}$ where the generators have signum $\lambda=(+,+,-,-)$,

The minimal Boolean \pm-preclones

Theorem

There are twenty three minimal Boolean \pm-preclones. Each such \pm-preclone is of the form ${ }^{ \pm}\langle f\rangle$ with one \pm-operation f as generator:
(A) ${ }^{ \pm}\left\langle h_{0}\right\rangle,{ }^{ \pm}\left\langle h_{1}\right\rangle,{ }^{ \pm}\left\langle h_{y}\right\rangle$ where $h_{i}(x, y, z, u)= \begin{cases}x & \text { if } x=y \text { or } z=u, \\ i & \text { otherwise, }\end{cases}$ where the generators have signum $\lambda=(+,+,-,-)$,
(B) ${ }^{ \pm}\langle(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)\rangle,{ }^{ \pm}\langle x+y+z\rangle$ where the generators have signum $\lambda=(+,+,+,-)$, (the last argument is ficticious)

The minimal Boolean \pm-preclones

Theorem

There are twenty three minimal Boolean \pm-preclones. Each such \pm-preclone is of the form ${ }^{ \pm}\langle f\rangle$ with one \pm-operation f as generator:
(A) ${ }^{ \pm}\left\langle h_{0}\right\rangle,{ }^{ \pm}\left\langle h_{1}\right\rangle, \pm{ }^{ \pm}\left\langle h_{y}\right\rangle$ where $h_{i}(x, y, z, u)= \begin{cases}x & \text { if } x=y \text { or } z=u, \\ i & \text { otherwise },\end{cases}$
where the generators have signum $\lambda=(+,+,-,-)$,
(B) ${ }^{ \pm}\langle(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)\rangle,{ }^{ \pm}\langle x+y+z\rangle$ where the generators have signum $\lambda=(+,+,+,-)$, (the last argument is ficticious)
(C) ${ }^{ \pm}\langle x \wedge y\rangle,{ }^{ \pm}\langle x \vee y\rangle,{ }^{ \pm}\langle x \vee(y \wedge z)\rangle,{ }^{ \pm}\langle x \wedge(y \vee z)\rangle$, ${ }^{ \pm}\langle x \vee(y \wedge \neg z)\rangle,{ }^{ \pm}\langle x \wedge(y \vee \neg z)\rangle,{ }^{ \pm}\langle(x \wedge \neg z) \vee(y \wedge z)\rangle$ ${ }^{ \pm}\langle(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)\rangle,{ }^{ \pm}\langle(x \wedge y) \vee(y \wedge \neg z) \vee(\neg z \wedge x)\rangle$,
where the generators have signum $\lambda=(+,+,-)$,

The minimal Boolean \pm-preclones

Theorem

There are twenty three minimal Boolean \pm-preclones. Each such \pm-preclone is of the form ${ }^{ \pm}\langle f\rangle$ with one \pm-operation f as generator:
(A) ${ }^{ \pm}\left\langle h_{0}\right\rangle,{ }^{ \pm}\left\langle h_{1}\right\rangle, \pm{ }^{ \pm}\left\langle h_{y}\right\rangle$ where $h_{i}(x, y, z, u)= \begin{cases}x & \text { if } x=y \text { or } z=u, \\ i & \text { otherwise },\end{cases}$
where the generators have signum $\lambda=(+,+,-,-)$,
(B) ${ }^{ \pm}\langle(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)\rangle,{ }^{ \pm}\langle x+y+z\rangle$
where the generators have signum $\lambda=(+,+,+,-)$, (the last argument is ficticious)
(C) ${ }^{ \pm}\langle x \wedge y\rangle,{ }^{ \pm}\langle x \vee y\rangle,{ }^{ \pm}\langle x \vee(y \wedge z)\rangle,{ }^{ \pm}\langle x \wedge(y \vee z)\rangle$, ${ }^{ \pm}\langle x \vee(y \wedge \neg z)\rangle,{ }^{ \pm}\langle x \wedge(y \vee \neg z)\rangle,{ }^{ \pm}\langle(x \wedge \neg z) \vee(y \wedge z)\rangle$ ${ }^{ \pm}\langle(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)\rangle,{ }^{ \pm}\langle(x \wedge y) \vee(y \wedge \neg z) \vee(\neg z \wedge x)\rangle$, where the generators have signum $\lambda=(+,+,-)$,
(D) ${ }^{ \pm}\langle 0\rangle,{ }^{ \pm}\langle 1\rangle,{ }^{ \pm}\langle y\rangle,{ }^{ \pm}\langle\neg y\rangle,{ }^{ \pm}\langle\neg x\rangle,{ }^{ \pm}\langle x \wedge y\rangle,{ }^{ \pm}\langle x \vee y\rangle,{ }^{ \pm}\langle x \wedge \neg y\rangle,{ }^{ \pm}\langle x \vee \neg y\rangle$ where the generators have signum $\lambda=(+,-)$.

Further research

Some open problems that we hope to solve in the future: Is the lattice of Boolean \pm-preclones countable?

Classify the maximal S-preclones for $|S| \geq 2$ and $|A| \geq 2$.

Further research

Some open problems that we hope to solve in the future:
Is the lattice of Boolean \pm-preclones countable?
Classify the maximal S-preclones for $|S| \geq 2$ and $|A| \geq 2$.
Further research:
to the setting where the monoid S of signa is only assumed to be a semigroup?

Further research

Some open problems that we hope to solve in the future:
Is the lattice of Boolean \pm-preclones countable?
Classify the maximal S-preclones for $|S| \geq 2$ and $|A| \geq 2$.
Further research:
Can the notions of S-preclone and S-relational clone be extended to the setting where the monoid S of signa is only assumed to be a semigroup?

Further research

Some open problems that we hope to solve in the future:
Is the lattice of Boolean \pm-preclones countable?
Classify the maximal S-preclones for $|S| \geq 2$ and $|A| \geq 2$.
Further research:
Can the notions of S-preclone and S-relational clone be extended to the setting where the monoid S of signa is only assumed to be a semigroup?

Take an "interesting" result about clones or relational clones or universal algebras and ask for an analogous result for S-preclones or S-relational clones or S-algebras (i.e., $\left(A,\left(f_{i}\right)_{i \in I}\right)$ with fundamental operations $f_{i} \in{ }^{S} \mathrm{Op}(A)$ for a fixed finite monoid S).

References

$=======$ The classical Galois connection Pol $-\ln v=======$
R V.G. Bodnarčuk, L.A. Kalužnin, N.N. Kotov, and B.A. Romov, Galois theory for Post algebras I. Kibernetika (Kiev) (3), (1969), 1-10, (Russian).

R
R. Pöschel and L.A. Kalužnin, Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin, 1979, Birkhäuser Verlag Basel, Math. Reihe Bd. 67, 1979.
$=======$ preclones (operads) $======$
图 Z. ÉsIK AND P. WEIL, Algebraic recognizability of regular tree languages. Theoret. Comput. Sci. 340(2), (2005), 291-321. (notion of preclone)
E. Lehtonen, Characterization of preclones by matrix collections. Asian-Eur. J. Math. 3(3), (2010), 457-473.
$=======$ Analogy to multi-sorted algebras $=======$
E. Lehtonen, R. Pöschel, and T. Waldhauser, Reflection-closed varieties of multisorted algebras and minor identities. Algebra Universalis 79(3), (2018), Art. 70, 22 pages.
$=======$ S-preclones (New) $=======$
E. Jipsen, E. Lehtonen, And R. Pöschel, S-preclones and the Galois connection ${ }^{S}$ Pol- ${ }^{S}$ Inv, Part l, 2023, arXiv http://arxiv.org/abs/2306. 00493.

The lattice ${ }^{S} \mathcal{L}_{A}$ of S-preclones

 00000000

