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Dagger kernel categories

Dagger kernel categories

Dagger kernel categories in which morphisms f : X → Y can
be reversed to obtain f ∗ : Y → X have been introduced by
Heunen and Jacobs in [HeJa] as a simple setting in which one
can study categorical quantum logic.

Generally, a dagger on a category could be said to implement
conservation of information.

The present paper continues the study of dagger kernel cate-
gories in relation to orthomodular lattices in the spirit of Jacobs
[Jac].
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Dagger kernel categories

Aim of the talk

This talk shows that the category of orthomodular lattices OM-
LatLin where morphisms are mappings having adjoints is a dag-
ger kernel category.

We describe finite dagger biproducts and free objects over finite
sets in OMLatLin.
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Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice (X ,∧, 1) is called an ortholattice if it comes
equipped with a function (−)⊥ : X → X satisfying:

x⊥⊥ = x ;

x ≤ y implies y⊥ ≤ x⊥;

x ∧ x⊥ = 1⊥.

One can then define a bottom element as 0 = 1 ∧ 1⊥ = 1⊥ and
join by x ∨ y = (x⊥ ∧ y⊥)⊥, satisfying x ∨ x⊥ = 1.

We write x ⊥ y if and only if x ≤ y⊥.
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Orthomodular structures

Orthomodular lattices

Definition 2

An ortholattice (X ,∧, 1) is called orthomodular if it satisfies (one
of) the three equivalent conditions:

x ≤ y implies y = x ∨ (x⊥ ∧ y);

x ≤ y implies x = y ∧ (y⊥ ∨ x);

x ≤ y and x⊥ ∧ y = 0 implies x = y .

Example 3 (Our guiding example)

The collection C(H) of closed subspaces of a Hilbert space H is the
prototypical example of an orthomodular lattice such that ∧ = ∩
and P⊥ is the orthogonal complement of a closed subspace P of H.
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Dagger categories

Dagger categories

Definition 4

A dagger on a category C is a functor ⋆ : Cop → C that is involutive
(f ∗∗ = f ) and the identity on objects.
We will call f ∗ the adjoint morphism of f or simply the adjoint of f .
A category equipped with a dagger is called a dagger category.

Let C be a dagger category. A morphism f : A → B is called
1 a dagger monomorphism if f ⋆ ◦ f = idA, and
2 f is called a dagger isomorphism if f ⋆◦f = idA and f ◦f ⋆ = idB .
A dagger automorphism is a dagger isomorphism f : A → A.
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Dagger categories

Examples of dagger categories

Example 5

Let K ∈ {R,C}, C be a category with objects Kn, n ∈ N and
morphisms A : Kn → Km where A is a matrix over K and type m×n.
Composition of matrices of suitable type is their multiplication.

If K = R then A∗ = AT .

If K = C then A∗ = A
T
.

Then C is a dagger category.

Example 6

Let Rel be a category of relations with objects sets and morphisms
relations R : A → B. Composition of relations is the classical com-
position S ◦ R = {(a, c) ∈ A× C | (∃b ∈ B) R(a, b) ∧ S(b, c)}.
We put R∗ = R−1. Then Rel is a dagger category.
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Linear maps between orthomodular lattices

Linear maps

We now introduce a new way of organising orthomodular lattices
into a dagger category.

Definition 7

The category OMLatLin has orthomodular lattices as objects.
A morphism f : X → Y in OMLatLin is a function f : X → Y
between the underlying sets such that there is a function h : Y → X
and, for any x ∈ X and y ∈ Y ,

f (x) ⊥ y if and only if x ⊥ h(y).

We say that h is an adjoint of a linear map f . It is clear that
adjointness is a symmetric property: if a map f possesses an adjoint
h, then f is also an adjoint of h.
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Linear maps between orthomodular lattices

Linear maps

Moreover, a map f : X → X is called self-adjoint if f is an adjoint
of itself.
The identity morphism on X is the self-adjoint identity map
id : X → X . Composition of X f→ Y

g→ Z is given by usual
composition of maps.

Example 8 (Our guiding example - continuation)

Let f : H1 → H2 be a bounded linear map between Hilbert spaces
and let f ⋆ be the usual adjoint of f given by ⟨f (x), y⟩ = ⟨x , f ⋆(y)⟩.

Then the induced map C (H1) → C (H2), ⟨S⟩ 7→ ⟨f (S)⟩ has the
adjoint C (H2) → C (H1), ⟨T ⟩ 7→ ⟨f ⋆(T )⟩.
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Linear maps between orthomodular lattices

Properties of the category OMLatLin

Lemma 9

Let f : X → Y be a map between orthomodular lattices and assume
that f possesses the adjoint h : Y → X . Then we have:

(i) f possesses a right order-adjoint ĥ : Y → X such that ĥ =
⊥ ◦ h ◦ ⊥.

(ii) f preserves arbitrary existing joins in X . In particular, f pre-
serves finite joins and f (0) = 0.

Moreover, we define the kernel and the range of f , respectively, by

ker f = {x ∈ X : f (x) = 0},
im f = {f (x) : x ∈ X}.

A dagger kernel category of orthomodular lattices Jan Paseka Masaryk University 12/25
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Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin
Remark 10

The categories OMLatLin and OMLatGal [Jac] both have ortho-
modular lattices as objects.
A morphism X → Y in OMLatGal is a pair f̂ = (f•, f

•) of “anti-
tone” functions f• : X op → Y and f • : Y → X op forming a Galois
connection (or adjunction f • ⊣ f•): x ≤ f •(y) iff y ≤ f•(x) for
x ∈ X and y ∈ Y .
The identity morphism on X is the pair (⊥,⊥) given by the self-
adjoint map id• = id• = (−)⊥ : X op → X . Composition of
X

f→ Y
g→ Z and dagger † are given by:

(g ◦ f )•=g• ◦ ⊥ ◦ f•, (g ◦ f )•=f • ◦ ⊥ ◦ g•, (f•, f
•)∗=(f •, f•).

f• preserves meets, as right adjoint, and thus sends joins in X (meets
in X op) to meets in Y , and dually, f • preserves joins and sends joins
in Y to meets in X .
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Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin

Theorem 11

OMLatGal and OMLatLin are dagger isomorphic via functors
Λ: OMLatLin → OMLatGal and Γ: OMLatGal → OMLatLin
which are identities on objects and otherwise given by

Λ(f ) = (⊥ ◦ f ,⊥ ◦ f ∗) and Γ(f•, f •) = ⊥ ◦ f•.
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Sasaki projection

Principal downsets in orthomodular lattices

Lemma 12

[Jac, Lemma 3.4] Let X be an orthomodular lattice, with element
a ∈ X . The (principal) downset ↓a = {u ∈ X | u ≤ a} is again an
orthomodular lattice, with order, meets and joins as in X , but with
its own orthocomplement ⊥a given by u⊥a = a ∧ u⊥, where ⊥ is
the orthocomplement from X .

Definition 13

Let X be an orthomodular lattice. Then the map πa : X → X ,
y 7→ a ∧ (a⊥ ∨ y) is called the Sasaki projection to a ∈ X .
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Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let a ∈ X . Then for each
y , z ∈ L we have

(a) y ≤ a if and only if πa(y) = y ;

(b) πa(πa(y⊥)⊥)) ≤ y ;

(c) πa(y) = 0 if and only if y ≤ a⊥;

(d) πa(y) ⊥ z if and only if y ⊥ πa(z).

Corollary 15

Let X be an orthomodular lattice, and let a ∈ X . Then πa is self-
adjoint and idempotent.
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Sasaki projection

Dagger monomorphisms in OMLatLin

Lemma 16

Let X be an orthomodular lattice, with element a ∈ X . There is a
dagger monomorphism ↓a ↣ X in OMLatLin, for which we also
write a, with

a(u) = u and a∗(x) = πa(x).

Lemma 17

Let f : X → Y be a morphism of orthomodular lattices. Then
ker f = ↓f ∗(1)⊥ is an orthomodular lattice.
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Zero object 0 in OMLatLin

We show that OMLatLin has a zero object 0; this means that
there is, for any orthomodular lattice X , a unique morphism
0→ X and hence also a unique morphism X → 0.

The zero object 0 will be one-element orthomodular lattice {0}.
Let us show that 0 is indeed an initial object in OMLatLin.

Let X be an arbitrary orthomodular lattice. The only function
f : 0→ X is f (0) = 0. Since we may identify 0 with ↓0 we have
that f is is a dagger monomorphism and it has an adjoint
f ∗ : X → 0 defined by f ∗(x) = π0(x) = 0.
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Dagger kernels in OMLatLin

Definition 18

1 For a morphism f : A → B in a category with zero morphisms,
we say that a morphism k : K → A is a kernel of f if fk = 0K ,B ,
and if m : M → A satisfies fm = 0M,B then there is a unique
morphism u : M → K such that ku = m.
We sometimes write ker f for k or K .

2 For a morphism f : A → B in a dagger category with zero
morphisms, we say that a morphism k : K → A is a weak dagger
kernel of f if fk = 0K ,B , and if m : M → A satisfies fm = 0M,B

then kk∗m = m.
3 A dagger kernel category is a dagger category with a zero object,
hence zero morphisms, where each morphism f has a weak
dagger kernel k (called dagger kernel) that additionally satisfies
k∗k = 1K .
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Dagger kernels in OMLatLin

Theorem 19

The category OMLatLin is a dagger kernel category. The dagger
kernel of a morphism f : X → Y is k : ↓k → X , where k = f ∗(1)⊥ ∈
X , like in Lemma 17.

Corollary 20

Every morphism f : X → Y in OMLatLin has a factorisation me
where m = f (1) : ↓f (1) → Y and e = f |↓f (1) : X → ↓f (1).

X Y

↓f (1)

e

f

m
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Dagger biproducts

Dagger biproducts in OMLatLin
Definition 21

By a dagger biproduct of objects A,B in a dagger category C with a
zero object, we mean a coproduct A A⊕ B B

ιA ιB such
that ιA, ιB are dagger monomorphisms and ιB⋆ ◦ ιA = 0A,B .
The dagger biproduct of an arbitrary set of objects is defined in the
expected way.

Proposition 22

The category OMLatLin has arbitrary finite dagger biproducts
⊕
.

Explicitly,
⊕

i∈I Xi is the cartesian product of orthomodular lattices
Xi , i ∈ I , I finite.
The coprojections κj : Xj →

⊕
i∈I Xi are defined by (κj)(x) = xj=

with xj=(i) =

{
x if i = j ;

0 otherwise.
and (κj)

∗((xi )i∈I ) = xj . The dual

product structure is given by pj = (κj)
∗.
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Dagger biproducts

Free objects on a finite set in OMLatLin

Proposition 23

A free object on a finite set A in OMLatLin is isomorphic to the
finite Boolean algebra PA.
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Conclusion

Final remarks

This talk presented a new way of organising orthomodular lattices
into a dagger category.
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Thank you for your attention!
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