Preliminaries

A dagger kernel category of orthomodular lattices

Jan Paseka¹ Milan Lekár¹

¹Department of Mathematics and Statistics, Faculty of Science Masaryk University, Brno, Czech Republic e-mail: paseka@math.muni.cz

Summer School on General Algebra and Ordered Sets 2022

Stará Lesná, Vysoké Tatry, Slovakia September 2 – September 8, 2023

A dagger kernel category of orthomodular lattices

Jan Paseka

Introduction Preliminaries Category OMLatLin of OMLs Dagge

Dagger kernel category OMLatLin

Conclusion R o c

References 00

Acknowledgements

Jan Paseka acknowledges the support of the bilateral project "The many facets of orthomodularity" of the Austrian Science Fund (FWF) (project No. I 4579-N) and the Czech Science Foundation (GAČR) (project No. 20-09869L).

Der Wissenschaftsfonds.

Introduction 00	Preliminaries 0000	Category OMLatLin of OMLs	Dagger kernel category OMLatLin	Conclusion O	Reference 00

Outline

- 2 Algebraic and categorical preliminaries
- 3 Category OMLatLin of orthomodular lattices
- Dagger kernel category OMLatLin

5 Conclusion

- Dagger kernel categories in which morphisms $f: X \to Y$ can be reversed to obtain $f^*: Y \to X$ have been introduced by Heunen and Jacobs in [HeJa] as a simple setting in which one can study categorical quantum logic.
- Generally, a dagger on a category could be said to implement conservation of information.
- The present paper continues the study of dagger kernel categories in relation to orthomodular lattices in the spirit of Jacobs [Jac].

- Dagger kernel categories in which morphisms $f: X \to Y$ can be reversed to obtain $f^*: Y \to X$ have been introduced by Heunen and Jacobs in [HeJa] as a simple setting in which one can study categorical quantum logic.
- Generally, a dagger on a category could be said to implement conservation of information.
- The present paper continues the study of dagger kernel categories in relation to orthomodular lattices in the spirit of Jacobs [Jac].

A dagger kernel category of orthomodular lattices

Dagger Kerner Categories

- Dagger kernel categories in which morphisms f: X → Y can be reversed to obtain f*: Y → X have been introduced by Heunen and Jacobs in [HeJa] as a simple setting in which one can study categorical quantum logic.
- Generally, a dagger on a category could be said to implement conservation of information.
- The present paper continues the study of dagger kernel categories in relation to orthomodular lattices in the spirit of Jacobs [Jac].

Introduction ○●	Preliminaries 0000	Category OMLatLin of OMLs	Dagger kernel category OMLatLin	Conclusion O	References 00		
Dagger kernel categories							
Aim of the talk							

- This talk shows that the category of orthomodular lattices **OM**-LatLin where morphisms are mappings having adjoints is a dagger kernel category.
- We describe finite dagger biproducts and free objects over finite sets in **OMLatLin**.

Introduction ○●	Preliminaries 0000	Category OMLatLin of OMLs	Dagger kernel category OMLatLin	Conclusion O	References 00		
Dagger kernel categories							
Aim of the talk							

- This talk shows that the category of orthomodular lattices **OM**-LatLin where morphisms are mappings having adjoints is a dagger kernel category.
- We describe finite dagger biproducts and free objects over finite sets in **OMLatLin**.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

•
$$x^{\perp\perp} = x;$$

• $x \le y$ implies $y^{\perp} \le x^{\perp};$
• $x \land x^{\perp} = 1^{\perp}.$

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$. We write $x \downarrow y$ if and only if $x \leq y^{\perp}$.

A dagger kernel category of orthomodular lattices

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

- $x^{\perp\perp} = x;$
- $x \leq y$ implies $y^{\perp} \leq x^{\perp}$;
- $x \wedge x^{\perp} = 1^{\perp}$.

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

- $x^{\perp\perp} = x;$
- $x \leq y$ implies $y^{\perp} \leq x^{\perp}$;
- $x \wedge x^{\perp} = 1^{\perp}$.

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

- $x^{\perp\perp} = x;$
- $x \leq y$ implies $y^{\perp} \leq x^{\perp}$;
- $x \wedge x^{\perp} = 1^{\perp}$.

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

- $x^{\perp\perp} = x;$
- $x \leq y$ implies $y^{\perp} \leq x^{\perp}$;
- $x \wedge x^{\perp} = 1^{\perp}$.

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion O

References

Orthomodular structures

Ortholattices

Definition 1

A meet semi-lattice $(X, \wedge, 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} : X \to X$ satisfying:

- $x^{\perp\perp} = x;$
- $x \leq y$ implies $y^{\perp} \leq x^{\perp}$;
- $x \wedge x^{\perp} = 1^{\perp}$.

One can then define a bottom element as $0 = 1 \land 1^{\perp} = 1^{\perp}$ and join by $x \lor y = (x^{\perp} \land y^{\perp})^{\perp}$, satisfying $x \lor x^{\perp} = 1$. We write $x \perp y$ if and only if $x \leq y^{\perp}$.

Conclusion References 0 00

Orthomodular structures

Orthomodular lattices

Preliminaries

0000

Definition 2

An ortholattice $(X, \wedge, 1)$ is called *orthomodular* if it satisfies (one of) the three equivalent conditions:

- $x \leq y$ implies $y = x \lor (x^{\perp} \land y)$;
- $x \leq y$ implies $x = y \land (y^{\perp} \lor x)$;
- $x \leq y$ and $x^{\perp} \wedge y = 0$ implies x = y.

Example 3 (Our guiding example)

Conclusion References 0 00

Orthomodular structures

Orthomodular lattices

Preliminaries

Definition 2

An ortholattice $(X, \wedge, 1)$ is called *orthomodular* if it satisfies (one of) the three equivalent conditions:

•
$$x \leq y$$
 implies $y = x \lor (x^{\perp} \land y)$;

•
$$x \leq y$$
 implies $x = y \land (y^{\perp} \lor x);$

• $x \leq y$ and $x^{\perp} \wedge y = 0$ implies x = y.

Example 3 (Our guiding example)

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion References

Orthomodular structures

Orthomodular lattices

Preliminaries

0000

Definition 2

An ortholattice $(X, \wedge, 1)$ is called *orthomodular* if it satisfies (one of) the three equivalent conditions:

- $x \leq y$ implies $y = x \lor (x^{\perp} \land y)$;
- $x \leq y$ implies $x = y \land (y^{\perp} \lor x)$;
- $x \leq y$ and $x^{\perp} \wedge y = 0$ implies x = y.

Example 3 (Our guiding example)

Conclusion R 0 0

References 00

Orthomodular structures

Orthomodular lattices

Preliminaries

0000

Definition 2

An ortholattice $(X, \wedge, 1)$ is called *orthomodular* if it satisfies (one of) the three equivalent conditions:

- $x \leq y$ implies $y = x \lor (x^{\perp} \land y)$;
- $x \leq y$ implies $x = y \land (y^{\perp} \lor x)$;
- $x \leq y$ and $x^{\perp} \wedge y = 0$ implies x = y.

Example 3 (Our guiding example)

Conclusion References

Orthomodular structures

Orthomodular lattices

Preliminaries

0000

Definition 2

An ortholattice $(X, \land, 1)$ is called *orthomodular* if it satisfies (one of) the three equivalent conditions:

- $x \leq y$ implies $y = x \lor (x^{\perp} \land y)$;
- $x \leq y$ implies $x = y \land (y^{\perp} \lor x)$;
- $x \leq y$ and $x^{\perp} \wedge y = 0$ implies x = y.

Example 3 (Our guiding example)

Conclusion O

References 00

Dagger categories

Dagger categories

0000

Preliminaries

Definition 4

A *dagger* on a category C is a functor $*: C^{\text{op}} \to C$ that is involutive $(f^{**} = f)$ and the identity on objects. We will call f^* the *adjoint morphism* of f or simply the *adjoint* of f. A category equipped with a dagger is called a *dagger category*. Let C be a dagger category. A morphism $f: A \to B$ is called the *a* dagger monomorphism if $f = f = id_A$ and the field a dagger momorphism if $f = f = id_A$ and A dagger automorphism is a dagger isomorphism $f: A \to A$.

Conclusion

References 00

Dagger categories

Dagger categories

0000

Preliminaries

Definition 4

A dagger on a category C is a functor $*: C^{\text{op}} \to C$ that is involutive $(f^{**} = f)$ and the identity on objects. We will call f^* the *adjoint morphism* of f or simply the *adjoint* of f. A category equipped with a dagger is called a *dagger category*. Let C be a dagger category. A morphism $f: A \to B$ is called a *dagger monomorphism* if $f^* \circ f = \text{id}_A$, and f is called a *dagger isomorphism* if $f^* \circ f = \text{id}_A$ and $f \circ f^* = \text{id}_B$. A *dagger automorphism* is a dagger isomorphism $f: A \to A$.

Conclusion O

References 00

Dagger categories

Dagger categories

0000

Preliminaries

Definition 4

A dagger on a category C is a functor $*: C^{\text{op}} \to C$ that is involutive $(f^{**} = f)$ and the identity on objects. We will call f^* the adjoint morphism of f or simply the adjoint of f. A category equipped with a dagger is called a *dagger category*. Let C be a dagger category. A morphism $f: A \to B$ is called a dagger monomorphism if $f^* \circ f = \text{id}_A$, and f is called a *dagger isomorphism* if $f^* \circ f = \text{id}_A$ and $f \circ f^* = \text{id}_B$.

Conclusion O

References

Dagger categories

Dagger categories

0000

Preliminaries

Definition 4

A dagger on a category C is a functor $*: C^{op} \to C$ that is involutive $(f^{**} = f)$ and the identity on objects. We will call f^* the adjoint morphism of f or simply the adjoint of f. A category equipped with a dagger is called a dagger category. Let C be a dagger category. A morphism $f: A \to B$ is called a dagger monomorphism if $f^* \circ f = id_A$, and f is called a dagger isomorphism if $f^* \circ f = id_A$ and $f \circ f^* = id_B$. A dagger automorphism is a dagger isomorphism $f: A \to A$.

A dagger kernel category of orthomodular lattices

Conclusion F

References 00

Dagger categories

Examples of dagger categories

Example 5

Let $K \in \{\mathbb{R}, \mathbb{C}\}$, C be a category with objects K^n , $n \in \mathbb{N}$ and morphisms $A: K^n \to K^m$ where A is a matrix over K and type $m \times n$. Composition of matrices of suitable type is their multiplication.

• If
$$\mathsf{K}=\mathbb{R}$$
 then $\mathsf{A}^*=\mathsf{A}^{\mathsf{T}}$.

• If
$$\mathsf{K} = \mathbb{C}$$
 then $A^* = \overline{A}'$.

Then $\ensuremath{\mathcal{C}}$ is a dagger category.

Example 6

Let **Rel** be a category of relations with objects sets and morphisms relations $R: A \to B$. Composition of relations is the classical composition $S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B) \ R(a, b) \land S(b, c)\}$. We put $R^* = R^{-1}$. Then **Rel** is a dagger category.

A dagger kernel category of orthomodular lattices

Jan Paseka

Conclusion 0

References 00

Dagger categories

Examples of dagger categories

Example 5

Let $K \in \{\mathbb{R}, \mathbb{C}\}$, C be a category with objects K^n , $n \in \mathbb{N}$ and morphisms $A \colon K^n \to K^m$ where A is a matrix over K and type $m \times n$. Composition of matrices of suitable type is their multiplication.

• If
$$\mathsf{K}=\mathbb{R}$$
 then $\mathsf{A}^*=\mathsf{A}^{\mathsf{T}}$.

• If
$$\mathsf{K} = \mathbb{C}$$
 then $A^* = \overline{A}'$.

Then $\ensuremath{\mathcal{C}}$ is a dagger category.

Example 6

Let **Rel** be a category of relations with objects sets and morphisms relations $R: A \to B$. Composition of relations is the classical composition $S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B) \ R(a, b) \land S(b, c)\}$. We put $R^* = R^{-1}$. Then **Rel** is a dagger category.

Introduction 00	Preliminaries 0000	Category OMLatLin of OMLs ●0000000	Dagger kernel category OMLatLin	Conclusion O	References 00			
Linear maps between orthomodular lattices								
Linear	maps							

We now introduce a new way of organising orthomodular lattices into a dagger category.

Definition 7

The category **OMLatLin** has orthomodular lattices as objects. A morphism $f: X \to Y$ in **OMLatLin** is a function $f: X \to Y$ between the underlying sets such that there is a function $h: Y \to X$ and, for any $x \in X$ and $y \in Y$,

$$f(x) \perp y$$
 if and only if $x \perp h(y)$.

We say that h is an *adjoint* of a *linear map* f. It is clear that adjointness is a symmetric property: if a map f possesses an adjoint h, then f is also an adjoint of h.

Introduction 00	Preliminaries 0000	Category OMLatLin of OMLs ○●○○○○○	Dagger kernel category OMLatLin	Conclusion O	References 00		
Linear maps between orthomodular lattices							
Linear	maps						

Moreover, a map $f: X \to X$ is called *self-adjoint* if f is an adjoint of itself.

The identity morphism on X is the self-adjoint identity map $id: X \to X$. Composition of $X \xrightarrow{f} Y \xrightarrow{g} Z$ is given by usual composition of maps.

Example 8 (Our guiding example - continuation)

Let $f: H_1 \to H_2$ be a bounded linear map between Hilbert spaces and let f^* be the usual adjoint of f given by $\langle f(x), y \rangle = \langle x, f^*(y) \rangle$. Then the induced map $C(H_1) \to C(H_2), \langle S \rangle \mapsto \langle f(S) \rangle$ has the adjoint $C(H_2) \to C(H_1), \langle T \rangle \mapsto \langle f^*(T) \rangle$.

Category OMLatLin of OMLs 00000000

Dagger kernel category OMLatLin Conclusion

References

Preliminaries Linear maps between orthomodular lattices

Properties of the category **OMLatLin**

Lemma 9

Let $f: X \rightarrow Y$ be a map between orthomodular lattices and assume that f possesses the adjoint h: $Y \rightarrow X$. Then we have:

Moreover, we define the *kernel* and the *range* of f, respectively, by

ker
$$f = \{x \in X : f(x) = 0\},\$$

im $f = \{f(x) : x \in X\}.$

Category OMLatLin of OMLs 00000000

Dagger kernel category OMLatLin

References

Preliminaries Linear maps between orthomodular lattices

Properties of the category **OMLatLin**

Lemma 9

Let $f: X \rightarrow Y$ be a map between orthomodular lattices and assume that f possesses the adjoint h: $Y \rightarrow X$. Then we have:

(i) f possesses a right order-adjoint $\hat{h}: Y \to X$ such that $\hat{h} =$ $\perp \circ h \circ \perp$

Moreover, we define the *kernel* and the *range* of f, respectively, by

ker
$$f = \{x \in X : f(x) = 0\},\$$

im $f = \{f(x) : x \in X\}.$

A dagger kernel category of orthomodular lattices

Dagger kernel category OMLatLin

References

Preliminaries Linear maps between orthomodular lattices

Properties of the category OMLatLin

Lemma 9

Let $f: X \rightarrow Y$ be a map between orthomodular lattices and assume that f possesses the adjoint h: $Y \rightarrow X$. Then we have:

- (i) f possesses a right order-adjoint $\hat{h}: Y \to X$ such that $\hat{h} =$ $\perp \circ h \circ \perp$
- (ii) f preserves arbitrary existing joins in X. In particular, f preserves finite joins and f(0) = 0.

Moreover, we define the *kernel* and the *range* of f, respectively, by

ker
$$f = \{x \in X : f(x) = 0\},\$$

im $f = \{f(x) : x \in X\}.$

A dagger kernel category of orthomodular lattices

Category OMLatLin of OMLs 0000000

Dagger kernel category OMLatLin Conclusion

References

Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin

Remark 10

The categories **OMLatLin** and **OMLatGal** [Jac] both have orthomodular lattices as objects.

A morphism $X \to Y$ in **OMLatGal** is a pair $\hat{f} = (f_{\bullet}, f^{\bullet})$ of "antitone" functions $f_{\bullet}: X^{\mathrm{op}} \to Y$ and $f^{\bullet}: Y \to X^{\mathrm{op}}$ forming a Galois connection (or adjunction $f^{\bullet} \dashv f_{\bullet}$): $x < f^{\bullet}(y)$ iff $y < f_{\bullet}(x)$ for

adjoint map $\mathrm{id}^{\bullet} = \mathrm{id}_{\bullet} = (-)^{\perp} \colon X^{\mathrm{op}} \to X$. Composition of

 $(g \circ f)_{\bullet} = g_{\bullet} \circ \bot \circ f_{\bullet}, (g \circ f)^{\bullet} = f^{\bullet} \circ \bot \circ g^{\bullet}, (f_{\bullet}, f^{\bullet})^{*} = (f^{\bullet}, f_{\bullet}).$

f. preserves meets, as right adjoint, and thus sends joins in X (meets) in X^{op}) to meets in Y, and dually, f[•] preserves joins and sends joins Macanyk Univers A dagger ke lan Dacaka

Category OMLatLin of OMLs 0000000

Dagger kernel category OMLatLin Conclusion

References

Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin

Remark 10

The categories **OMLatLin** and **OMLatGal** [Jac] both have orthomodular lattices as objects.

A morphism $X \to Y$ in **OMLatGal** is a pair $\hat{f} = (f_{\bullet}, f^{\bullet})$ of "antitone" functions $f_{\bullet}: X^{\mathrm{op}} \to Y$ and $f^{\bullet}: Y \to X^{\mathrm{op}}$ forming a Galois connection (or adjunction $f^{\bullet} \dashv f_{\bullet}$): $x < f^{\bullet}(y)$ iff $y < f_{\bullet}(x)$ for

adjoint map $\mathrm{id}^{\bullet} = \mathrm{id}_{\bullet} = (-)^{\perp} \colon X^{\mathrm{op}} \to X$. Composition of

 $(g \circ f)_{\bullet} = g_{\bullet} \circ \bot \circ f_{\bullet}, (g \circ f)^{\bullet} = f^{\bullet} \circ \bot \circ g^{\bullet}, (f_{\bullet}, f^{\bullet})^{*} = (f^{\bullet}, f_{\bullet}).$

f. preserves meets, as right adjoint, and thus sends joins in X (meets) in X^{op}) to meets in Y, and dually, f[•] preserves joins and sends joins Macanyk Univers A dagger ke lan Dacaka

Category OMLatLin of OMLs Introduction Preliminaries 00000000

Dagger kernel category OMLatLin Conclusion

References

Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin

Remark 10

The categories **OMLatLin** and **OMLatGal** [Jac] both have orthomodular lattices as objects.

A morphism $X \to Y$ in **OMLatGal** is a pair $\hat{f} = (f_{\bullet}, f^{\bullet})$ of "antitone" functions $f_{\bullet} : X^{\mathrm{op}} \to Y$ and $f^{\bullet} : Y \to X^{\mathrm{op}}$ forming a Galois connection (or adjunction $f^{\bullet} \dashv f_{\bullet}$): $x \leq f^{\bullet}(y)$ iff $y \leq f_{\bullet}(x)$ for $x \in X$ and $y \in Y$.

adjoint map $\mathrm{id}^{\bullet} = \mathrm{id}_{\bullet} = (-)^{\perp} \colon X^{\mathrm{op}} \to X$. Composition of

 $(g \circ f)_{\bullet} = g_{\bullet} \circ \bot \circ f_{\bullet}, (g \circ f)^{\bullet} = f^{\bullet} \circ \bot \circ g^{\bullet}, (f_{\bullet}, f^{\bullet})^{*} = (f^{\bullet}, f_{\bullet}).$

f. preserves meets, as right adjoint, and thus sends joins in X (meets) in X^{op}) to meets in Y, and dually, f[•] preserves joins and sends joins Mesenyk Universi A dagger lan Dacaka

Category OMLatLin of OMLs Preliminaries Introduction 00000000

Dagger kernel category OMLatLin Conclusion

References

Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin

Remark 10

The categories **OMLatLin** and **OMLatGal** [Jac] both have orthomodular lattices as objects. A morphism $X \to Y$ in **OMLatGal** is a pair $\hat{f} = (f_{\bullet}, f^{\bullet})$ of "antitone" functions $f_{\bullet} : X^{\mathrm{op}} \to Y$ and $f^{\bullet} : Y \to X^{\mathrm{op}}$ forming a Galois connection (or adjunction $f^{\bullet} \dashv f_{\bullet}$): $x \leq f^{\bullet}(y)$ iff $y \leq f_{\bullet}(x)$ for $x \in X$ and $y \in Y$. The identity morphism on X is the pair (\perp, \perp) given by the selfadjoint map $\mathrm{id}^{\bullet} = \mathrm{id}_{\bullet} = (-)^{\perp} \colon X^{\mathrm{op}} \to X$. Composition of $X \xrightarrow{r} Y \xrightarrow{g} Z$ and dagger [†] are given by:

 $(g \circ f)_{\bullet} = g_{\bullet} \circ \bot \circ f_{\bullet}, (g \circ f)^{\bullet} = f^{\bullet} \circ \bot \circ g^{\bullet}, (f_{\bullet}, f^{\bullet})^{*} = (f^{\bullet}, f_{\bullet}).$

f. preserves meets, as right adjoint, and thus sends joins in X (meets in X^{op}) to meets in Y, and dually, f^{\bullet} preserves joins and sends joins in Y to meets in X. Masande Univ lan Dacaka

Category OMLatLin of OMLs

Dagger kernel category OMLatLin ററ്റ്ററ

References

Preliminaries Linear maps between orthomodular lattices

OMLatGal vs. OMLatLin

Theorem 11

OMLatGal and **OMLatLin** are dagger isomorphic via functors Λ : OMLatLin \rightarrow OMLatGal and Γ : OMLatGal \rightarrow OMLatLin which are identities on objects and otherwise given by

$$\Lambda(f) = (\perp \circ f, \perp \circ f^*)$$
 and $\Gamma(f_{\bullet}, f^{\bullet}) = \perp \circ f_{\bullet}$.

A dagger kernel category of orthomodular lattices

Conclusion 0 References

Sasaki projection

Principal downsets in orthomodular lattices

Lemma 12

[Jac, Lemma 3.4] Let X be an orthomodular lattice, with element $a \in X$. The (principal) downset $\downarrow a = \{u \in X \mid u \leq a\}$ is again an orthomodular lattice, with order, meets and joins as in X, but with its own orthocomplement \bot_a given by $u^{\bot_a} = a \land u^{\bot}$, where \bot is the orthocomplement from X.

Definition 13

Let X be an orthomodular lattice. Then the map $\pi_a : X \to X$, $y \mapsto a \land (a^{\perp} \lor y)$ is called the *Sasaki projection* to $a \in X$.

Conclusion 0 References

Sasaki projection

Principal downsets in orthomodular lattices

Lemma 12

[Jac, Lemma 3.4] Let X be an orthomodular lattice, with element $a \in X$. The (principal) downset $\downarrow a = \{u \in X \mid u \leq a\}$ is again an orthomodular lattice, with order, meets and joins as in X, but with its own orthocomplement \bot_a given by $u^{\bot_a} = a \land u^{\bot}$, where \bot is the orthocomplement from X.

Definition 13

Let X be an orthomodular lattice. Then the map $\pi_a : X \to X$, $y \mapsto a \land (a^{\perp} \lor y)$ is called the *Sasaki projection* to $a \in X$.

Conclusion O

References 00

Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let $a \in X$. Then for each $y, z \in L$ we have

(a)
$$y \le a$$
 if and only if $\pi_a(y) = y$;

(b)
$$\pi_a(\pi_a(y^{\perp})^{\perp})) \leq y;$$

(c) $\pi_a(y) = 0$ if and only if $y \le a^{\perp}$;

(d) $\pi_a(y) \perp z$ if and only if $y \perp \pi_a(z)$.

Corollary 15

Let X be an orthomodular lattice, and let $a \in X$. Then π_a is selfadjoint and idempotent.

Conclusion References

Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let $a \in X$. Then for each $y, z \in L$ we have (a) $y \leq a$ if and only if $\pi_a(y) = y$; (b) $\pi_a(\pi_a(y^{\perp})^{\perp})) \leq y$; (c) $\pi_a(y) = 0$ if and only if $y \leq a^{\perp}$; (d) $\pi_a(y) \perp z$ if and only if $y \perp \pi_a(z)$.

Corollary 15

Let X be an orthomodular lattice, and let $a \in X$. Then π_a is selfadjoint and idempotent.

A dagger kernel category of orthomodular lattices

Jan Paseka

Conclusion References

Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let $a \in X$. Then for each $y, z \in L$ we have (a) $y \leq a$ if and only if $\pi_a(y) = y$; (b) $\pi_a(\pi_a(y^{\perp})^{\perp})) \leq y$; (c) $\pi_a(y) = 0$ if and only if $y \leq a^{\perp}$; (d) $\pi_a(y) \perp z$ if and only if $y \perp \pi_a(z)$.

Corollary 15

Let X be an orthomodular lattice, and let $a \in X$. Then π_a is selfadjoint and idempotent.

A dagger kernel category of orthomodular lattices

Jan Paseka

Conclusion O

References 00

Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let $a \in X$. Then for each $y, z \in L$ we have (a) $y \leq a$ if and only if $\pi_a(y) = y$; (b) $\pi_a(\pi_a(y^{\perp})^{\perp})) \leq y$; (c) $\pi_a(y) = 0$ if and only if $y \leq a^{\perp}$; (d) $\pi_a(y) \perp z$ if and only if $y \perp \pi_a(z)$.

Corollary 15

Let X be an orthomodular lattice, and let $a \in X$. Then π_a is selfadjoint and idempotent.

A dagger kernel category of orthomodular lattices

Jan Paseka

Conclusion 0 References

Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let $a \in X$. Then for each $y, z \in L$ we have (a) $y \leq a$ if and only if $\pi_a(y) = y$; (b) $\pi_a(\pi_a(y^{\perp})^{\perp})) \leq y$; (c) $\pi_a(y) = 0$ if and only if $y \leq a^{\perp}$; (d) $\pi_a(y) \perp z$ if and only if $y \perp \pi_a(z)$.

Corollary 15

Let X be an orthomodular lattice, and let $a \in X$. Then π_a is selfadjoint and idempotent.

A dagger kernel category of orthomodular lattices

Jan Paseka

Conclusion O References 00

Sasaki projection

Properties of Sasaki projection

Lemma 14 ([LiVe])

Let X be an orthomodular lattice, and let $a \in X$. Then for each $y, z \in L$ we have (a) $y \leq a$ if and only if $\pi_a(y) = y$; (b) $\pi_a(\pi_a(y^{\perp})^{\perp})) \leq y$; (c) $\pi_a(y) = 0$ if and only if $y \leq a^{\perp}$; (d) $\pi_a(y) \perp z$ if and only if $y \perp \pi_a(z)$.

Corollary 15

Let X be an orthomodular lattice, and let $a \in X$. Then π_a is selfadjoint and idempotent.

A dagger kernel category of orthomodular lattices

Jan Paseka

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion 0 References 00

Sasaki projection

Dagger monomorphisms in OMLatLin

Lemma 16

Let X be an orthomodular lattice, with element $a \in X$. There is a dagger monomorphism $\downarrow a \rightarrow X$ in **OMLatLin**, for which we also write a, with

$$a(u) = u$$
 and $a^*(x) = \pi_a(x)$.

_emma 17

Let $f: X \to Y$ be a morphism of orthomodular lattices. Then ker $f = \downarrow f^*(1)^{\perp}$ is an orthomodular lattice.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion 0 References 00

Sasaki projection

Dagger monomorphisms in OMLatLin

Lemma 16

Let X be an orthomodular lattice, with element $a \in X$. There is a dagger monomorphism $\downarrow a \rightarrow X$ in **OMLatLin**, for which we also write a, with

$$a(u) = u$$
 and $a^*(x) = \pi_a(x)$.

Lemma 17

Let $f: X \to Y$ be a morphism of orthomodular lattices. Then ker $f = \downarrow f^*(1)^{\perp}$ is an orthomodular lattice.

Conclusion O

References

Zero object $\underline{0}$ in **OMLatLin**

We show that **OMLatLin** has a zero object $\underline{0}$; this means that there is, for any orthomodular lattice X, a unique morphism $\underline{0} \rightarrow X$ and hence also a unique morphism $X \rightarrow \underline{0}$.

The zero object $\underline{0}$ will be one-element orthomodular lattice $\{0\}$. Let us show that $\underline{0}$ is indeed an initial object in **OMLatLin**.

Let X be an arbitrary orthomodular lattice. The only function $f: \underline{0} \to X$ is f(0) = 0. Since we may identify $\underline{0}$ with $\downarrow 0$ we have that f is is a dagger monomorphism and it has an adjoint $f^*: X \to \underline{0}$ defined by $f^*(x) = \pi_0(x) = 0$.

A dagger kernel category of orthomodular lattices

Conclusion O References

Dagger kernels in **OMLatLin**

Definition 18

- For a morphism f: A → B in a category with zero morphisms, we say that a morphism k: K → A is a kernel of f if fk = 0_{K,B}, and if m: M → A satisfies fm = 0_{M,B} then there is a unique morphism u: M → K such that ku = m. We sometimes write ker f for k or K.
- ② For a morphism f: A → B in a dagger category with zero morphisms, we say that a morphism k: K → A is a *weak dagger kernel* of f if $fk = 0_{K,B}$, and if m: M → A satisfies $fm = 0_{M,B}$ then $kk^*m = m$.
- A dagger kernel category is a dagger category with a zero object, hence zero morphisms, where each morphism *f* has a weak dagger kernel *k* (called dagger kernel) that additionally satisfies k*k = 1_K.

Conclusion O References 00

Dagger kernels in OMLatLin

Definition 18

- For a morphism f: A → B in a category with zero morphisms, we say that a morphism k: K → A is a kernel of f if fk = 0_{K,B}, and if m: M → A satisfies fm = 0_{M,B} then there is a unique morphism u: M → K such that ku = m. We sometimes write ker f for k or K.
- ② For a morphism f: A → B in a dagger category with zero morphisms, we say that a morphism k: K → A is a *weak dagger kernel* of f if $fk = 0_{K,B}$, and if m: M → A satisfies $fm = 0_{M,B}$ then $kk^*m = m$.
- A dagger kernel category is a dagger category with a zero object, hence zero morphisms, where each morphism f has a weak dagger kernel k (called dagger kernel) that additionally satisfies k*k = 1_K.

Conclusion O References 00

Dagger kernels in OMLatLin

Definition 18

- For a morphism f: A → B in a category with zero morphisms, we say that a morphism k: K → A is a kernel of f if fk = 0_{K,B}, and if m: M → A satisfies fm = 0_{M,B} then there is a unique morphism u: M → K such that ku = m. We sometimes write ker f for k or K.
- ② For a morphism f: A → B in a dagger category with zero morphisms, we say that a morphism k: K → A is a weak dagger kernel of f if $fk = 0_{K,B}$, and if m: M → A satisfies $fm = 0_{M,B}$ then $kk^*m = m$.
- A dagger kernel category is a dagger category with a zero object, hence zero morphisms, where each morphism f has a weak dagger kernel k (called dagger kernel) that additionally satisfies k*k = 1_K.

Conclusion O References 00

Dagger kernels in OMLatLin

Definition 18

- For a morphism f: A → B in a category with zero morphisms, we say that a morphism k: K → A is a kernel of f if fk = 0_{K,B}, and if m: M → A satisfies fm = 0_{M,B} then there is a unique morphism u: M → K such that ku = m. We sometimes write ker f for k or K.
- So For a morphism *f*: *A* → *B* in a dagger category with zero morphisms, we say that a morphism *k*: *K* → *A* is a *weak dagger kernel* of *f* if *fk* = 0_{*K*,*B*}, and if *m*: *M* → *A* satisfies *fm* = 0_{*M*,*B*} then *kk***m* = *m*.
- A dagger kernel category is a dagger category with a zero object, hence zero morphisms, where each morphism *f* has a weak dagger kernel *k* (called dagger kernel) that additionally satisfies k*k = 1_K.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion O

References 00

Dagger kernels in OMLatLin

Theorem 19

Preliminaries

The category **OMLatLin** is a dagger kernel category. The dagger kernel of a morphism $f : X \to Y$ is $k : \downarrow k \to X$, where $k = f^*(1)^{\perp} \in X$, like in Lemma 17.

Corollary 20

Every morphism $f: X \to Y$ in **OMLatLin** has a factorisation me where $m = f(1): \downarrow f(1) \to Y$ and $e = f|^{\downarrow f(1)}: X \to \downarrow f(1)$.

A dagger kernel category of orthomodular lattices

Jan Paseka

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion O

References 00

Dagger kernels in OMLatLin

Theorem 19

Preliminaries

The category **OMLatLin** is a dagger kernel category. The dagger kernel of a morphism $f : X \to Y$ is $k : \downarrow k \to X$, where $k = f^*(1)^{\perp} \in X$, like in Lemma 17.

Corollary 20

Every morphism $f: X \to Y$ in **OMLatLin** has a factorisation me where $m = f(1): \downarrow f(1) \to Y$ and $e = f|^{\downarrow f(1)}: X \to \downarrow f(1)$.

A dagger kernel category of orthomodular lattices

Jan Paseka

A dagger

Dagger kernel category OMLatLin

Conclusion O References

Dagger biproducts

Dagger biproducts in OMLatLin

Definition 21

Preliminaries

By a *dagger biproduct* of objects *A*, *B* in a dagger category *C* with a zero object, we mean a coproduct $A \xrightarrow{\iota_A} A \oplus B \xleftarrow{\iota_B} B$ such that ι_A, ι_B are dagger monomorphisms and $\iota_B^* \circ \iota_A = 0_{A,B}$. The dagger biproduct of an arbitrary set of objects is defined in the expected way.

Proposition 22

The category **OMLatLin** has arbitrary finite dagger biproducts \bigoplus . Explicitly, $\bigoplus_{i \in I} X_i$ is the cartesian product of orthomodular lattices X_i , $i \in I$, I finite. The coprojections $\kappa_j \colon X_j \to \bigoplus_{i \in I} X_i$ are defined by $(\kappa_j)(x) = x_{j=}$ with $x_{j=}(i) = \begin{cases} x & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$ and $(\kappa_j)^*((x_i)_{i \in I}) = x_j$. The dual product structure is given by $p_j = (\kappa_j)^*$.

Conclusion O References

Dagger biproducts

Dagger biproducts in **OMLatLin**

Definition 21

Preliminaries

By a *dagger biproduct* of objects *A*, *B* in a dagger category *C* with a zero object, we mean a coproduct $A \xrightarrow{\iota_A} A \oplus B \xleftarrow{\iota_B} B$ such that ι_A, ι_B are dagger monomorphisms and $\iota_B^* \circ \iota_A = 0_{A,B}$. The dagger biproduct of an arbitrary set of objects is defined in the expected way.

Proposition 22

The category **OMLatLin** has arbitrary finite dagger biproducts \bigoplus . Explicitly, $\bigoplus_{i \in I} X_i$ is the cartesian product of orthomodular lattices X_i , $i \in I$, I finite. The coprojections $\kappa_j \colon X_j \to \bigoplus_{i \in I} X_i$ are defined by $(\kappa_j)(x) = x_{j=}$ with $x_{j=}(i) = \begin{cases} x & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$ and $(\kappa_j)^*((x_i)_{i \in I}) = x_j$. The dual product structure is given by $p_j = (\kappa_j)^*$.

Category OMLatLin of OMLs

Dagger kernel category OMLatLin ○○○○● Conclusion 0 References 00

Dagger biproducts

Free objects on a finite set in OMLatLin

Proposition 23

A free object on a finite set A in **OMLatLin** is isomorphic to the finite Boolean algebra $\mathcal{P}A$.

A dagger kernel category of orthomodular lattices

Jan Paseka

Introduction 00	Preliminaries 0000	Category OMLatLin of OMLs	Dagger kernel category OMLatLin	Conclusion •	References 00
Conclusion					
Final r	emarks				

This talk presented a new way of organising orthomodular lattices into a dagger category.

Introduction 00	Preliminaries 0000	Category OMLatLin of OMLs	Dagger kernel category OMLatLin 00000	Conclusion O	References ●○
References					
Refere	nces				
	C. Heuner Limits in c Theory Ap	n, M. Karvonen. <i>lagger categories,</i> pl. Categ. 34 468–51	3 (2019).		
	C. Heunen Quantum	, B. Jacobs. Logic in Dagger Kern	el Categories,		

Electr. Notes Theor. Comput. Sci. 270 (2) 79–103 (2011).

Orthomodular lattices, Foulis Semigroups and Dagger Kernel Categories,

Logical Methods in Computer Science, June 18 6 (2:1) 1–26 (2010).

B. Lindenhovius, T. Vetterlein,

A characterisation of orthomodular spaces by Sasaki maps,

Int. J. Theor. Phys., 62, Article number: 59 (2023).

A dagger kernel category of orthomodular lattices

Jan Paseka

Preliminaries

Category OMLatLin of OMLs

Dagger kernel category OMLatLin

Conclusion 0 References ○●

Thank you for your attention!

A dagger kernel category of orthomodular lattices

Jan Paseka

Masaryk University

25/25