On Congruences of Weakly Dicomplemented Lattices

Claudia MUREŞAN*
cmuresan@fmi.unibuc.ro, claudia.muresan@g.unibuc.ro

Joint work with Leonard KWUIDA*

* UNIVERRSITY $\mathbb{O F} \mathbb{B U C H A R E S T}$, Faculty of Mathematics and Computer Science ${ }^{\star} \mathbb{B E R} \mathbb{R}$ UNIVERSSITY $\mathbb{O F}$ APPPLIED SCIENCES

September $2^{\text {nd }}-8^{\text {th }}, 2023$ Stará Lesná, Slovakia

Contents

(1) Preliminaries on Weakly Dicomplemented Lattices
(2) The Largest Numbers of Congruences of Finite (Dual) Weakly (Di)Complemented Lattices
(1) Preliminaries on Weakly Dicomplemented Lattices
(2) The Largest Numbers of Congruences of Finite (Dual) Weakly (Di)Complemented Lattices

Presenting results from:
圁 L. Kwuida, C. Mureșan, On Nontrivial Weak Dicomplementations and the Lattice Congruences that Preserve Them, Order 40 (2), 423-453, 2023.

Weakly dicomplemented lattices:

- abstractions of CONCEPT algebras
- introduced by Rudolf Wille in:
R. Wille, Boolean Concept Logic. In B. Ganter \& G.W. Mineau (Eds.) ICCS 2000, Conceptual Structures: Logical, Linguistic, and Computational Issues, Springer LNAI 1867 (2000), 317-331.

Notation

- $\mathbb{W C L}:=$ the variety of weakly complemented lattices
- $\mathbb{D W C L}:=$ the variety of dual weakly complemented lattices
- WWLL := the variety of weakly dicomplemented lattices

Notation

\mathbb{V} : variety; $A \in \mathbb{V}$. Then:
$\operatorname{Con}_{\mathbb{V}}(A):=$ the lattice of the congruences of A (w.r.t. the type of \mathbb{V}).

Definition

- ($L, \wedge, \vee, 0,1$): bounded lattice
- ${ }^{\Delta}, \nabla: L \rightarrow L$, order-reversing
$(L, \Delta):=(L, \wedge, \vee, \Delta, 0,1) \in \mathbb{W} \mathbb{C} L$ and ${ }^{\Delta}$: weak complementation on L iff, for all $x, y \in L$:
- $x^{\Delta \Delta} \leq x$ and
- $(x \wedge y) \vee\left(x \wedge y^{\Delta}\right)=x$
$(L, \nabla):=(L, \wedge, \vee, \nabla, 0,1) \in \mathbb{D W C L}$ and ${ }^{\nabla}$: dual weak complementation on L iff, for all $x, y \in L$:
- $x \leq x^{\nabla \nabla}$ and
- $(x \vee y) \wedge\left(x \vee y^{\nabla}\right)=x$
$(L, \Delta, \nabla):=(L, \wedge, \vee, \Delta, \nabla, 0,1) \in \mathbb{W} \mathbb{D L}$ and $\left({ }^{\Delta}, \nabla\right)$: weak dicomplementation on L iff:
- $\left(L,{ }^{\Delta}\right) \in \mathbb{W} \mathbb{C L}$ and
- $\left(L,{ }^{\nabla}\right) \in \mathbb{D} \mathbb{W} \mathbb{C} L$

Example

If $\left(B, \wedge, \vee,^{-}, 0,1\right)$: Boolean algebra, then $\left(B,^{-},-\right) \in \mathbb{W} \mathbb{D} \mathbb{L}$.

Notation

For any $n \in \mathbb{N}^{*}: \mathcal{C}_{n}:=$ the n-element chain.

Example

If L : bounded lattice, then $\left(L,{ }^{\Delta}, \nabla\right) \in \mathbb{W} \mathbb{D L}$, where:
the trivial (Δ, ∇) :

- If $1 \in \mathrm{Ji}(L)$ (in particular if $L=K \oplus \mathcal{C}_{n}$ for some bounded lattice K and some $n \in \mathbb{N} \backslash\{0,1\})$, then the only Δ on L is the trivial one.
- If $0 \in \operatorname{Mi}(L)$ (in particular if $L=\mathcal{C}_{n} \oplus K$ for some...), then the only ∇ on L is the trivial one.

Example

- L: complete lattice
- $J, M \subseteq L, J$: join-dense and M : meet-dense in L
- ${ }^{\Delta J}, \nabla M: L \rightarrow L$, for all $x \in L$:

$$
x^{\Delta J}=\bigvee(J \backslash(x]) \text { and } x^{\nabla M}=\bigwedge(M \backslash[x))
$$

Then:

- $\left(L,{ }^{\Delta J},{ }^{\nabla M}\right) \cong \mathcal{B}(J, M, \leq) \in \mathbb{W} \mathbb{D L}$: the weakly dicomplemented lattice of the formal concepts of the context (J, M, \leq) (see Leonard Kwuida's talk FROM A COUPLE OF DAYS AGO) and
- $\left({ }^{\Delta J}, \nabla M\right)$: representable weak dicomplementation on L.

Note that $\left({ }^{\Delta L}, \nabla L\right)$ is the trivial weak dicomplementation on L.

Weak dicomplementations on ordinal/glued sums

Now let:

- L, M : bounded lattices with
- $|L|>1$ and $|M|>1$.

Then:
Any (Δ, ∇) on $L \oplus M$:

Weak dicomplementations on horizontal sums

Now assume:

$$
\text { - }|L|>2 \text { and }|M|>2
$$

Then:

For any (Δ, ∇) on $L \boxplus M$:

For all $x \in L \backslash\{0,1\}$ and all $y \in M \backslash\{0,1\}$:

- $x^{\nabla} \leq y \leq x^{\Delta}$ and
- $y^{\nabla} \leq x \leq y^{\Delta}$.

Hence the only ${ }^{\Delta}$ on $L \boxplus M$ are:

- the trivial one (${ }^{\Delta(L \boxplus M)}$ when L and M are complete),
- and, if (and only if) $1 \in \operatorname{Sji}(L) \cap \mathrm{Sji}(M)$, then also the following (${ }^{\Delta(L \boxplus M) \backslash\{1\}}$ when L and M are complete):

Dually for ∇ : a (single) nontrivial one exists iff $0 \in \operatorname{Smi}(L) \cap \operatorname{Smi}(M)$, namely the dual of the ${ }^{\Delta}$ above: $\nabla(L \boxplus M) \backslash\{0\}$ when L and M are complete.

(1) Preliminaries on Weakly Dicomplemented Lattices

(2) The Largest Numbers of Congruences of Finite (Dual) Weakly (Di)Complemented Lattices

Theorem

For any $n \in \mathbb{N}^{*}$, any lattice L with $|L|=n$ and any weak complementation ${ }^{\Delta}$ on L, we have:

- $\left|\operatorname{Con}_{W \mathbb{W L}}\left(L,{ }^{\Delta}\right)\right| \leq 2^{n-2}+1$;
(1) $\left|\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right)\right|=2^{n-2}+1$ iff $\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2}^{n-2} \oplus \mathcal{C}_{2}$ iff $n \geq 2$ and $L \cong \mathcal{C}_{n}$;
$\left.\begin{array}{ccc|}\hline \text { The next largest number of congruences } \\ \text { of an } n \text {-element } L \in W C L \text { (then WDLL). }\end{array}\right)$
(2) $\left|\operatorname{ConwCL}\left(L,{ }^{\Delta}\right)\right|=2^{n-2}$ iff $n=4$ and $\operatorname{Con}_{W C L}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2}^{2}$ iff $L \cong \mathcal{C}_{2}^{2}$ and $\Delta=\Delta L \backslash\{1\}$ is the Boolean complementation;

$$
\begin{aligned}
& 2^{n-2} \\
& n=4
\end{aligned}
$$

- if $\left|\operatorname{Con}_{\mathbb{W C L}}\left(L,^{\Delta}\right)\right|<2^{n-2}$, then $\left|\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right)\right| \leq 2^{n-3}+1$;
(3) $\left|\operatorname{Con}_{W \mathbb{W} L}(L, \Delta)\right|=2^{n-3}+1$ iff $\operatorname{Con}_{\mathbb{W} \mathbb{C L}}(L, \Delta) \cong \mathcal{C}_{2}^{n-3} \oplus \mathcal{C}_{2}$ iff $n \geq 5$ and $L \cong \mathcal{C}_{n-k-2} \oplus \mathcal{C}_{2}^{2} \oplus \mathcal{C}_{k}$ for some $k \in[2, n-3]$;

(4) $\left|\operatorname{Con}_{W \mathbb{W L L}}\left(L,{ }^{\Delta}\right)\right|=3 \cdot 2^{n-5}$ iff $n=5$ and $\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{3}$ or $n=6$ and $\operatorname{Con}_{W \mathbb{W L L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2} \times \mathcal{C}_{3}$ iff $L \cong \mathcal{N}_{5}$ or $L \cong \mathcal{C}_{2} \times \mathcal{C}_{3}$ and ${ }^{\Delta}=\Delta \mathcal{C}_{2} \times \Delta \mathcal{C}_{3}$ is the direct product of the trivial weak complementations on the chains \mathcal{C}_{2} and \mathcal{C}_{3};

- if $L \not \not \mathcal{N}_{5},\left(L,{ }^{\Delta}\right) \not \not_{\mathbb{W C L}}\left(\mathcal{C}_{2},,^{\mathcal{C}_{2}}\right) \times\left(\mathcal{C}_{3},,^{\Delta \mathcal{C}_{3}}\right)$ and $\left|\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right)\right| \leq 2^{n-3}$, then $\left|\operatorname{Con}_{W \mathrm{WCL}}\left(L,{ }^{\Delta}\right)\right| \leq 5 \cdot 2^{n-6}+1$;
(5) $\left|\operatorname{Con}_{W \mathbb{W C L}}\left(L,{ }^{\Delta}\right)\right|=5 \cdot 2^{n-6}+1$ iff $\operatorname{Con}_{W C L}(L, \Delta) \cong\left(\mathcal{C}_{2}^{n-6} \times\left(\mathcal{C}_{2} \oplus \mathcal{C}_{2}^{2}\right)\right) \oplus \mathcal{C}_{2}$ iff $n \geq 6$ and $L \cong \mathcal{C}_{n-k-3} \oplus \mathcal{N}_{5} \oplus \mathcal{C}_{k}$ for some $k \in[2, n-4]$;

(6) $\left|\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right)\right|=5 \cdot 2^{n-6}$ iff $n=6$ and either $\operatorname{Con}_{\mathbb{W C L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2} \oplus \mathcal{C}_{2}^{2}$ or $\operatorname{Con}_{W \mathbb{W L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2}^{2} \oplus \mathcal{C}_{2}$ iff one of the following holds:
- $L \cong \mathcal{C}_{2} \times \mathcal{C}_{3}$ and ${ }^{\Delta}={ }^{\Delta L \backslash\{1\}}$, case in which $\operatorname{Con}_{W \mathbb{W L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2} \oplus \mathcal{C}_{2}^{2}$;
- $L \cong \mathcal{C}_{3} \boxplus \mathcal{C}_{5}$ or $L \cong \mathcal{C}_{4} \boxplus \mathcal{C}_{4}$ and ${ }^{\Delta}={ }^{\Delta L}$ is trivial, case in which $\operatorname{Con}_{W C L}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2}^{2} \oplus \mathcal{C}_{2} ;$

- if $\left|\operatorname{Con}_{W \mathcal{W C L}}\left(L,^{\Delta}\right)\right|<5 \cdot 2^{n-6}$, then $\left|\operatorname{Con}_{W \mathbb{W L L}}\left(L,{ }^{\Delta}\right)\right| \leq 2^{n-4}+1$;
(7) $\left|\operatorname{Con}_{W \mathbb{W L}}\left(L,{ }^{\Delta}\right)\right|=2^{n-4}+1$ iff $n \geq 5$ and $\operatorname{Con}_{W \mathbb{W L}}\left(L,{ }^{\Delta}\right) \cong \mathcal{C}_{2}^{n-4} \oplus \mathcal{C}_{2}$ iff one of the following holds:
- $n \geq 5, L \cong \mathcal{C}_{n-r-s+3} \oplus\left(\mathcal{C}_{r} \boxplus \mathcal{C}_{s}\right)$ for some $r, s \in \mathbb{N} \backslash\{0,1,2\}$ such that $r+s \leq n+2$ and, if $r+s>6$ (that is if $L \not \not \mathcal{C}_{n-3} \oplus \mathcal{C}_{2}^{2}$), then ${ }^{\Delta}={ }^{\Delta L}$ is trivial;
- $n \geq 7$ and $L \cong \mathcal{C}_{n-k-4} \oplus\left(\mathcal{C}_{2} \times \mathcal{C}_{3}\right) \oplus \mathcal{C}_{k}$ for some $k \in[2, n-5]$;
- $n \geq 8$ and $L \cong \mathcal{C}_{n-r-s-4} \oplus \mathcal{C}_{2}^{2} \oplus \mathcal{C}_{r} \oplus \mathcal{C}_{2}^{2} \oplus \mathcal{C}_{s}$ for some $r, s \in \mathbb{N}^{*}$ such that $s>1$ and $r+s \leq n-5$.

Dually in $\mathbb{D W C L}$.

Corollary

For any $n \in \mathbb{N}^{*}$, any lattice L with $|L|=n$ and any weak dicomplementation (Δ, ∇) on L, we have:

- $\left|\operatorname{Con}_{\text {WidL }}\left(L,{ }^{\Delta}, \nabla\right)\right| \leq 2^{n-1}$;
(1) $\left|\operatorname{Con}_{W W D L}(L, \Delta, \nabla)\right|=2^{n-1}$ iff $n \in\{1,2\}$;

(2) $\left|\mathrm{Con}_{\mathbb{W} I D L}\left(L,{ }^{\Delta}, \nabla\right)\right|=2^{n-2}$ iff $n=4$ and $\operatorname{Con}_{\mathbb{W} I D L}(L, \Delta, \nabla) \cong \mathcal{C}_{2}^{2}$ iff $L \cong \mathcal{C}_{2}^{2}$ and $\Delta=\nabla$ is the Boolean complementation;

$$
2^{n-2}
$$

- if $L \not \not \mathcal{C}_{2}^{2}$ or its weak dicomplementation is not Boolean, then:
$\left|\operatorname{Con}_{W \mathbb{W L L}}\left(L,{ }^{\Delta},{ }^{\nabla}\right)\right|<2^{n-1}$ iff $\left|\operatorname{Con}_{\text {WIDL }}\left(L,{ }^{\Delta},{ }^{\nabla}\right)\right| \leq 2^{n-3}+1$;
 $L \cong \mathcal{C}_{n}$;

- if $\left|\operatorname{Con}_{W W I D L}(L, \Delta, \nabla)\right| \leq 2^{n-3}$, then $\left|\operatorname{Con}_{W W D L L}(L, \Delta, \nabla)\right| \leq 2^{n-4}+1$;
(4) $\left|\mathrm{Con}_{\mathbb{W} I D L}\left(L,{ }^{\Delta}, \nabla\right)\right|=2^{n-4}+1$ iff $\mathrm{Con}_{\mathbb{W}}(L, \Delta, \nabla) \cong \mathcal{C}_{2}^{n-4} \oplus \mathcal{C}_{2}$ iff one of the following holds:
- $n \geq 5, L \cong \mathcal{C}_{k} \boxplus \mathcal{C}_{n-k+2}$ for some $k \in[3, n-2]$ and $\left({ }^{\Delta}, \nabla\right)$ is the trivial weak dicomplementation on L;
- $n \geq 6$ and $L \cong \mathcal{C}_{k} \oplus \mathcal{C}_{2}^{2} \oplus \mathcal{C}_{n-k-2}$ for some $k \in[2, n-4]$.

THANK $Y \mathbb{O U} \mathbb{F O R} \mathbb{Y O U R} \mathbb{A} T T E N T I O N!$

