# ON CONGRUENCES OF WEAKLY DICOMPLEMENTED LATTICES

# CLAUDIA MUREŞAN\* cmuresan@fmi.unibuc.ro, claudia.muresan@g.unibuc.ro

#### Joint work with LEONARD KWUIDA $^{\star}$

\*UNIVERSITY OF BUCHAREST, Faculty of Mathematics and Computer Science \*BERN UNIVERSITY OF APPLIED SCIENCES

> September 2<sup>nd</sup>–8<sup>th</sup>, 2023 *Stará Lesná, Slovakia*



1 Preliminaries on Weakly Dicomplemented Lattices

The Largest Numbers of Congruences of Finite (Dual) Weakly 2 (Di)Complemented Lattices

3 1 4 3

### Preliminaries on Weakly Dicomplemented Lattices

The Largest Numbers of Congruences of Finite (Dual) Weakly (Di)Complemented Lattices

Claudia Mureșan (University of Bucharest) ON CONGRUENCES OF LATTICES WITH ( $\Delta$ ,  $\nabla$ ) Stará Lesná, Slovakia, September 2023 3/22

一日

Presenting results from:

L. Kwuida, C. Mureşan, On Nontrivial Weak Dicomplementations and the Lattice Congruences that Preserve Them, *Order* **40** (2), 423–453, 2023.

WEAKLY DICOMPLEMENTED LATTICES:

- abstractions of CONCEPT ALGEBRAS
- introduced by Rudolf Wille in:

R. Wille, Boolean Concept Logic. In B. Ganter & G.W. Mineau (Eds.) ICCS 2000, Conceptual Structures: Logical, Linguistic, and Computational Issues, Springer LNAI 1867 (2000), 317–331.

## Notation

- $\bullet \ \mathbb{WCL}:=$  the variety of weakly complemented lattices
- $\bullet \ \mathbb{DWCL} :=$  the variety of dual weakly complemented lattices
- $\mathbb{WDL} :=$  the variety of *weakly dicomplemented lattices*

## Notation

 $\mathbb{V}$ : variety;  $A \in \mathbb{V}$ . Then:  $\operatorname{Con}_{\mathbb{V}}(A) :=$  the lattice of the congruences of A (w.r.t. the type of  $\mathbb{V}$ ).

### Definition

•  $(L, \land, \lor, 0, 1)$ : bounded lattice •  $\Delta, \nabla: L \to L$ , order-reversing  $(L, \Delta) := (L, \wedge, \vee, \Delta, 0, 1) \in \mathbb{WCL}$  and  $\Delta$ : weak complementation on L iff, for all  $x, y \in L$ : •  $x^{\Delta\Delta} < x$  and •  $(x \wedge y) \vee (x \wedge y^{\Delta}) = x$  $(L, \nabla) := (L, \wedge, \vee, \nabla, 0, 1) \in \mathbb{DWCL}$  and  $\nabla$ : dual weak complementation on L iff, for all  $x, y \in L$ : •  $x < x^{\nabla \nabla}$  and •  $(x \lor y) \land (x \lor y^{\nabla}) = x$  $(L, \Delta, \nabla) := (L, \wedge, \vee, \Delta, \nabla, 0, 1) \in \mathbb{WDL}$  and  $(\Delta, \nabla)$ : weak dicomplementation on L iff: •  $(L, \Delta) \in \mathbb{WCL}$  and •  $(L, \nabla) \in \mathbb{DWCL}$ Example

If  $(B, \land, \lor, \bar{}, 0, 1)$ : Boolean algebra, then  $(B, \bar{}, \bar{}) \in \mathbb{WDL}$ .

#### Notation

For any  $n \in \mathbb{N}^*$ :  $C_n :=$  the *n*-element chain.

# Example

If L: bounded lattice, then  $(L, \Delta^{\Delta}, \nabla) \in \mathbb{WDL}$ , where:



- If  $1 \in \text{Ji}(L)$  (in particular if  $L = K \oplus C_n$  for some bounded lattice K and some  $n \in \mathbb{N} \setminus \{0, 1\}$ ), then the only  $\Delta$  on L is the trivial one.
- If 0 ∈ Mi(L) (in particular if L = C<sub>n</sub> ⊕ K for some...), then the only <sup>∇</sup> on L is the trivial one.

### Example

- L: complete lattice
- $J, M \subseteq L, J$ : join-dense and M: meet-dense in L
- $^{\Delta J}, ^{\nabla M}: L \to L$ , for all  $x \in L$ :

$$x^{\Delta J} = igvee (J \setminus (x]) ext{ and } x^{
abla M} = igwee (M \setminus [x))$$

Then:

- (L,<sup>ΔJ</sup>,<sup>∇M</sup>) ≅ B(J, M, ≤) ∈ WDL: the weakly dicomplemented lattice of the formal concepts of the context (J, M, ≤) (SEE LEONARD KWUIDA'S TALK FROM A COUPLE OF DAYS AGO) and
- $(^{\Delta J}, ^{\nabla M})$ : representable weak dicomplementation on L.

Note that  $(\Delta L, \nabla L)$  is the trivial weak dicomplementation on L.

伺 ト イヨト イヨト

# Weak dicomplementations on ordinal/glued sums

Now let:

- L, M: bounded lattices with
- |L| > 1 and |M| > 1.

Then:



# Weak dicomplementations on horizontal sums

Now assume:

• |L| > 2 and |M| > 2. Then:



For all  $x \in L \setminus \{0,1\}$  and all  $y \in M \setminus \{0,1\}$ : •  $x^{\nabla} \leq y \leq x^{\Delta}$  and

• 
$$y^{\nabla} \leq x \leq y^{\Delta}$$
.

Claudia Mureșan (University of Bucharest)

Hence the only  $\triangle$  on  $L \boxplus M$  are:

- the trivial one  $(\Delta(L \boxplus M)$  when L and M are complete),
- and, if (and only if)  $1 \in \text{Sji}(L) \cap \text{Sji}(M)$ , then also the following  $(\Delta(L \boxplus M) \setminus \{1\})$  when L and M are complete):



Dually for  $\nabla$ : a (single) nontrivial one exists iff  $0 \in \text{Smi}(L) \cap \text{Smi}(M)$ , namely the dual of the  $\Delta$  above:  $\nabla(L \boxplus M) \setminus \{0\}$  when L and M are complete.

#### Preliminaries on Weakly Dicomplemented Lattices

The Largest Numbers of Congruences of Finite (Dual) Weakly (Di)Complemented Lattices

#### Theorem

For any  $n \in \mathbb{N}^*$ , any lattice L with |L| = n and any weak complementation  $\Delta$  on L, we have:

• 
$$|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| \le 2^{n-2} + 1;$$
  
 $(\mathbb{D} | \operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| = 2^{n-2} + 1 \text{ iff } \operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong \mathcal{C}_2^{n-2} \oplus \mathcal{C}_2 \text{ iff } n \ge 2 \text{ and}$   
 $L \cong \mathcal{C}_n;$ 



(2)  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| = 2^{n-2}$  iff n = 4 and  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong C_2^2$  iff  $L \cong C_2^2$  and  $\Delta = \Delta L \setminus \{1\}$  is the Boolean complementation;



• if  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| < 2^{n-2}$ , then  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| \leq 2^{n-3} + 1$ ; (3)  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| = 2^{n-3} + 1$  iff  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong \mathcal{C}_2^{n-3} \oplus \mathcal{C}_2$  iff  $n \geq 5$  and  $L \cong \mathcal{C}_{n-k-2} \oplus \mathcal{C}_2^2 \oplus \mathcal{C}_k$  for some  $k \in [2, n-3]$ ;



(4)  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| = 3 \cdot 2^{n-5}$  iff n = 5 and  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong C_3$  or n = 6 and  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong C_2 \times C_3$  iff  $L \cong \mathcal{N}_5$  or  $L \cong C_2 \times C_3$  and  $\Delta = \Delta C_2 \times \Delta C_3$  is the direct product of the trivial weak complementations on the chains  $C_2$  and  $C_3$ ;



• if  $L \ncong \mathcal{N}_5$ ,  $(L,^{\Delta}) \ncong_{\mathbb{WCL}} (\mathcal{C}_2,^{\Delta \mathcal{C}_2}) \times (\mathcal{C}_3,^{\Delta \mathcal{C}_3})$  and  $|\operatorname{Con}_{\mathbb{WCL}} (L,^{\Delta})| \le 2^{n-3}$ , then  $|\operatorname{Con}_{\mathbb{WCL}} (L,^{\Delta})| \le 5 \cdot 2^{n-6} + 1$ ; (5)  $|\operatorname{Con}_{\mathbb{WCL}} (L,^{\Delta})| = 5 \cdot 2^{n-6} + 1$  iff  $\operatorname{Con}_{\mathbb{WCL}} (L,^{\Delta}) \cong (\mathcal{C}_2^{n-6} \times (\mathcal{C}_2 \oplus \mathcal{C}_2^2)) \oplus \mathcal{C}_2$  iff  $n \ge 6$  and  $L \cong \mathcal{C}_{n-k-3} \oplus \mathcal{N}_5 \oplus \mathcal{C}_k$  for some  $k \in [2, n-4]$ ;



(6)  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta^{\Delta})| = 5 \cdot 2^{n-6}$  iff n = 6 and either  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta^{\Delta}) \cong C_2 \oplus C_2^2$  or  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta^{\Delta}) \cong C_2^2 \oplus C_2$  iff one of the following holds:

- $L \cong C_2 \times C_3$  and  $\Delta = \Delta L \setminus \{1\}$ , case in which  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong C_2 \oplus C_2^2$ ;
- $L \cong C_3 \boxplus C_5$  or  $L \cong C_4 \boxplus C_4$  and  $^{\Delta} = ^{\Delta L}$  is trivial, case in which  $\operatorname{Con}_{\mathbb{WCL}}(L, ^{\Delta}) \cong C_2^2 \oplus C_2;$



• if  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| < 5 \cdot 2^{n-6}$ , then  $|\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| \le 2^{n-4} + 1$ ;  $(\mathcal{O}) |\operatorname{Con}_{\mathbb{WCL}}(L, \Delta)| = 2^{n-4} + 1$  iff  $n \ge 5$  and  $\operatorname{Con}_{\mathbb{WCL}}(L, \Delta) \cong C_2^{n-4} \oplus C_2$  iff one of the following holds:

- $n \geq 5$ ,  $L \cong C_{n-r-s+3} \oplus (C_r \boxplus C_s)$  for some  $r, s \in \mathbb{N} \setminus \{0, 1, 2\}$  such that  $r+s \leq n+2$  and, if r+s > 6 (that is if  $L \ncong C_{n-3} \oplus C_2^2$ ), then  $\Delta = \Delta L$  is trivial;
- $n \ge 7$  and  $L \cong C_{n-k-4} \oplus (C_2 \times C_3) \oplus C_k$  for some  $k \in [2, n-5]$ ;
- $n \geq 8$  and  $L \cong C_{n-r-s-4} \oplus C_2^2 \oplus C_r \oplus C_2^2 \oplus C_s$  for some  $r, s \in \mathbb{N}^*$  such that s > 1 and  $r + s \leq n 5$ .



#### Dually in $\mathbb{DWCL}$ .

#### Corollary

For any  $n \in \mathbb{N}^*$ , any lattice L with |L| = n and any weak dicomplementation  $(^{\Delta}, ^{\nabla})$  on L, we have:

$$|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| \leq 2^{n-1};$$
  

$$|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| = 2^{n-1} \text{ iff } n \in \{1, 2\};$$
  

$$2^{n-1}, n \in \{1, 2\};$$
  

$$L \cong C_1 \operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla) \cong C_2$$
  

$$L \cong C_2 \operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla) \cong C_2$$

(2)  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| = 2^{n-2}$  iff n = 4 and  $\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla) \cong C_2^2$  iff  $L \cong C_2^2$  and  $\Delta = \nabla$  is the Boolean complementation;



• if  $L \ncong C_2^2$  or its weak dicomplementation is not Boolean, then:  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| < 2^{n-1}$  iff  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| \le 2^{n-3} + 1$ ; (3)  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| = 2^{n-3} + 1$  iff  $\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla) \cong C_2^{n-3} \oplus C_2$  iff  $n \ge 3$  and  $L \cong C_n$ ;



- if  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| \leq 2^{n-3}$ , then  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| \leq 2^{n-4} + 1$ ; (4)  $|\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla)| = 2^{n-4} + 1$  iff  $\operatorname{Con}_{\mathbb{WDL}}(L, \Delta, \nabla) \cong \mathcal{C}_2^{n-4} \oplus \mathcal{C}_2$  iff one of the following holds:
  - n ≥ 5, L ≃ C<sub>k</sub> ⊞ C<sub>n-k+2</sub> for some k ∈ [3, n − 2] and (<sup>Δ</sup>,<sup>∇</sup>) is the trivial weak dicomplementation on L;
  - $n \ge 6$  and  $L \cong C_k \oplus C_2^2 \oplus C_{n-k-2}$  for some  $k \in [2, n-4]$ .



## THANK YOU FOR YOUR ATTENTION!

メロト メタト メヨト メヨト

æ