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A very short summary

In the context of supremum-preserving functions as morphisms, complete
lattices are called suplattices.

We introduce a noncommutative version of complete lattices, which we
call quantum suplattices, which:

are obtained via a scheme called discrete quantization;

are algebras for monads that are quantum versions of the power set
monad and the lower set monad;

are not generalizations of ordinary suplattices;

satisfy usual theorems for ordinary suplattices such as the existence of
Galois connections and the Knaster-Tarski Theorem;

Lead to possible quantum versions of topological spaces.
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Non-commutative mathematics

A program to obtain natural models of quantum structures;

Main idea: algebras of operators on a Hilbert space H can be used to
construct ‘non-commutative’ generalizations of classical structures;

Example: X 7→ C (X ) yields a categorical duality between the
categories of compact Hausdorff spaces and of commutative unital
C*-algebras (Gelfand duality);

Hence the dual of the category of unital C*-algebras can be regarded
as the category of ‘non-commutative’ compact Hausdorff spaces.

Quantization is the process of finding noncommutative versions of a
mathematical structure.
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Background

Duan, Severini, Winter: quantum graphs in quantum error correction;

Kuperberg and Weaver: quantization of metric spaces; quantum
hamming metric in quantum error correction

Weaver: identification of quantum relations as underlying structure of
quantum metric spaces and quantum graphs;

Weaver: quantum posets;

Kornell: quantum sets and their categorical properties;

Kornell, L., Mislove: categorical structure of quantum posets;

Kornell, L., Mislove: quantum cpos and their application in the
semantics of quantum programming languages.
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Internalization

Internalization is the process of generalizing set-theoretic constructions
that can be defined in terms of the categorical structure of Set or Rel to
other categories that posses the same categorical structure needed for
these constructions. Example: in any category with all finite products, a
group G is an object equipped with morphisms m : G × G → G ,
e : 1 → G , and (−)−1 : G → G such that:

Unitality:
G × 1 G × G

G G

idG×e

∼= m

=

1× G G × G

G G

e×idG

∼= m

=

Associativity:
G × G × G G × G

G × G G

m×idG

idG×m m

m

Inverses:
G G × G G × G

1 G

diagG

!

idG×(−)−1

m

e

G G × G G × G

1 G

diagG

!

(−)−1×idG

m

e

Groups in Top are topological groups, groups in SmoothManifolds are
Lie groups.
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Quantization by internalization

We employ a method of quantization by internalizing structures in a
suitable category of C*-algebras whose objects are noncommutative
generalizations of sets;

In general, one can internalize functions in a category resembling Rel,
whereas binary relations cannot always be internalized in a category
resembling Set;

Therefore, our category of operator algebras should be a
noncommutative generalization of the category Rel;

The dual of the category WStar of von Neumann algebras can be
regarded the category of ‘non-commutative’ measure spaces.

Weaver: quantum relations between von Neumann algebras are
certain operator spaces generalizing measurable binary relations1.

1N. Weaver, Quantum relations, Mem. Amer. Math. Soc. 215 (2012).
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Hereditarily atomic von Neumann algebras

Hereditarily atomic von Neumann algebras are von Neumann algebras
isomorphic to

⊕
i∈I L(Hi ) with Hi a finite-dimensional Hilbert space,

and can be used as non-commutative generalizations of sets;

The category WRel of von Neumann algebras and quantum relations
is a quantaloid (Sup-enriched category) with a dagger;

Its full subcategory WRelHA of hereditarily atomic von Neumann
algebras is a dagger compact quantaloid2 just like Rel.

Discrete quantization is the process of internalizing mathematical
structures in WRelHA;

Compare: fuzzification can be regarded as internalizing structures in
V -Rel for a quantale V such as [0, 1];

WRelHA is equivalent to a category qRel of quantum sets, which are
essentially families of finite-dimensional Hilbert spaces called atoms;

We have a fully faithful functor ‘(−) : Rel → qRel preserving the
dagger structure and the order between relations.

2A. Kornell, Quantum sets, J. Math. Phys. 61 (2020)
Jenča, Lindenhovius (STU, SAS) Quantum Suplattices SSAOS 2023 7 / 20
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Quantum sets and functions

A morphism f : X → Y in Rel is a function if and only if f † ◦ f ≥ 1X and
f ◦ f † ≤ 1Y .

Definition

A quantum function F : X → Y between quantum sets is a quantum
relation satisfying F † ◦ F ≥ IX and F ◦ F † ≤ IY . The category of quantum
sets and functions is denoted by qSet.

qSet is complete, cocomplete and symmetric monoidal closed3;

The assignment X 7→ ℓ∞(X ) :=
⊕

X∈X L(X ) extends to a duality
between qSet and the category WStarHA of hereditarily atomic von
Neumann algebras and normal unital ∗-homomorphisms;

‘(−) restricts to a fully faithful functor Set → qSet;

Instead of ‘quantum relation’ and ‘quantum function’, we say simply
’relation’ and ‘function’, respectively.

3A. Kornell, Quantum sets, J. Math. Phys. 61 (2020)
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Quantum posets
An order ⊑ on a set X is a binary relation such that 1X ≤ (⊑),
(⊑ ◦ ⊑) ≤ (⊑), and (⊑) ∧ (⊒) = 1X , where ⊒:=⊑†.

Definition

A preorder on a quantum set X is a binary relation ≼≼≼ : X → X such
that

(1) IX ≤ ≼≼≼ (reflexivity);
(2) ≼≼≼ ◦≼≼≼ ≤ ≼≼≼ (transitivity).

The opposite ≽≽≽ := ≼≼≼† of a preorder is a preorder.

A preorder ≼≼≼ on X is called an order if

(3) ≼≼≼ ∧≽≽≽ ≤ IX (antisymmetry)

A function F : (X ,≼≼≼X ) → (Y,≼≼≼Y) is monotone if F ◦≼≼≼X ≤ ≼≼≼Y ◦ F

Proposition

The functors ‘(−) : Rel → qRel and ‘(−) : Set → qSet induce a fully
faithful functor ‘(−) : Pos → qPos, (X ,⊑) 7→ (‘X , ‘⊑).
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Lower sets, suplattices and monotone relations
(1) Suplattices are the algebras of the lower set monad D on Pos;

(2) Suplattices are posets X such that the canonical embedding
X → D(X ), x 7→↓ x has a lower Galois adjoint

∨
.

Definition

A monotone relation r : X → Y between posets is a binary relation such
that (x1, y1) ∈ r implies (x2, y2) ∈ r for each x1 ≤ x2 in X and each
y1 ≥ y2 in Y .

Any monotone relation r : X → Y corresponds to a monotone
function X op × Y → 2, so to a 2-enriched profunctor when X and Y
are regarded as 2-enriched categories;

The category RelPos of posets and monotone relations is compact
closed.

The embedding Pos → RelPos has a right adjoint; the induced
monad on Pos is the lower set monad D. The unit of the adjunction
is the embedding X → D(X ), x 7→↓ x .
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Monotone relations between quantum posets

Definition

A monotone relation R : (X ,≼≼≼X ) → (Y,≼≼≼Y) between quantum posets is
a binary relation R : X → Y such that ≽≽≽Y ◦ R ≤ R and R ◦≽≽≽X ≤ R.

Theorem

The category qRelPos of quantum posets and monotone relations is
compact closed.

Theorem

The embedding qPos → qRelPos has a right adjoint; its induced monad
D is called the quantum lower set monad.

The existence of right adjoints of embeddings Pos → RelPos, Set → Rel,
qSet → qRel and qPos → qRelPos can all be proven in one scheme
involving the embedding of a symmetric monoidal closed category S into a
compact closed category R.
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Galois connections between quantum posets

Definition

The pointwise order ⊑Y of functions F ,G : X → Y where X is a quantum
set and Y is a quantum poset ordered by ≼≼≼ is defined by F ⊑Y G if and
only if F ≤ ≽≽≽ ◦ G .

Definition

A Galois connection between quantum posets (X ,≼≼≼X ) and (Y,≼≼≼Y)
consists of a pair of monotone maps F : X → Y and G : Y → X such that
IX ⊑X G ◦ F and F ◦ G ⊑Y IY . F is called the lower Galois adjoint of G .

Also in the quantum case there is a concept of closure operators related to
Galois connections:

Definition

A closure operator on a quantum poset (X ,≼≼≼) is a monotone map
C : X → X such that IX ⊑X C and C ◦ C = C .
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Quantum suplattices
The unit of the qPos/qRelPos adjunction yields a canonical order
embedding X → D(X ); a quantum generalization of the order embedding
X → D(X ), x 7→↓ x for ordinary posets X .

Definition

A quantum poset (X ,≼≼≼X ) is called a quantum suplattice if the canonical
order embedding X → D(X ) has a lower Galois adjoint

∨∨∨
X . A monotone

map F : (X ,≼≼≼X ) → (Y,≼≼≼Y) between quantum suplattices is called a
sup-homomorphism if F ◦

∨∨∨
X =

∨∨∨
Y ◦ D(F ). The category of quantum

suplattices and sup-homomorphisms is denoted by qSup.

Example

Let X be a quantum poset. Then D(X ) is a quantum suplattice where∨∨∨
D(X ) is the multiplication D2(X ) → D(X ).

Theorem

qSup is equivalent to the Eilenberg-Moore category of D.
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Suplattices are not quantum suplattices

Proposition

The fully faithful functor ‘(−) : Pos → qPos does not restrict and
corestrict to a functor Sup → qSup.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

If X is a poset with poset D(X ) of lower sets, then ‘X is a quantum
poset, and ‘D(X ) is a quantum poset which embeds into D(‘X );

The image of this embedding are the one-dimensional atoms of
D(‘X ), i.e., its classical part of D(‘X ).

However, D(‘X ) has also higher-dimensional atoms.

Conjecture

Let (X ,⊑) be a complete linearly ordered lattice. Then (‘X , ‘⊑) is a
quantum suplattice.
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Let (X ,⊑) be a complete linearly ordered lattice. Then (‘X , ‘⊑) is a
quantum suplattice.

Jenča, Lindenhovius (STU, SAS) Quantum Suplattices SSAOS 2023 14 / 20



Suplattices are not quantum suplattices

Proposition

The fully faithful functor ‘(−) : Pos → qPos does not restrict and
corestrict to a functor Sup → qSup.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

If X is a poset with poset D(X ) of lower sets, then ‘X is a quantum
poset, and ‘D(X ) is a quantum poset which embeds into D(‘X );

The image of this embedding are the one-dimensional atoms of
D(‘X ), i.e., its classical part of D(‘X ).

However, D(‘X ) has also higher-dimensional atoms.

Conjecture

Let (X ,⊑) be a complete linearly ordered lattice. Then (‘X , ‘⊑) is a
quantum suplattice.
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Quantum versions of some theorems on suplattices

Theorem

The opposite (X ,≽≽≽) of a quantum suplattice (X ,≼≼≼) is a quantum
suplattice.

Theorem

Let F : X → Y be a monotone map between quantum suplattices. Then
F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let F : X → X be a monotone endomap on a quantum poset X . A
subset Y ⊆ X with canonical embedding JY : Y → X is called a subset of
fixpoints if F ◦ JY = JY .

Theorem (Quantum Knaster-Tarski)

Let F : X → X be a monotone endomap on a quantum suplattice (X ,≼≼≼).
Then the largest subset of fixpoints Y of X exists and is a quantum
suplattice in its relative order J†Y ◦≼≼≼ ◦ JY .
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Jenča, Lindenhovius (STU, SAS) Quantum Suplattices SSAOS 2023 15 / 20



Quantum versions of some theorems on suplattices

Theorem

The opposite (X ,≽≽≽) of a quantum suplattice (X ,≼≼≼) is a quantum
suplattice.

Theorem

Let F : X → Y be a monotone map between quantum suplattices. Then
F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let F : X → X be a monotone endomap on a quantum poset X . A
subset Y ⊆ X with canonical embedding JY : Y → X is called a subset of
fixpoints if F ◦ JY = JY .

Theorem (Quantum Knaster-Tarski)

Let F : X → X be a monotone endomap on a quantum suplattice (X ,≼≼≼).
Then the largest subset of fixpoints Y of X exists and is a quantum
suplattice in its relative order J†Y ◦≼≼≼ ◦ JY .
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Open problems

Conjecture (Quantum Cantor–Schröder–Bernstein)

Let F : X → Y and G : Y → X be injective functions between quantum
sets X and Y. Then there is a bijection X ∼= Y.

In terms of operator algebras, this translates to

Conjecture

Let f : M → N and g : N → M be surjective normal unital
∗-homomorphisms between hereditarily atomic von Neumann algebras M
and N. Then there is a ∗-isomorphism M → N.
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Towards quantum topology

C*-algebras form the standard approach to quantum topology, but
only generalize locally compact Hausdorff spaces.

Several mathematical structures have associated topological spaces
that are not locally compact Hausdorff

Examples: the Alexandrov topology on a poset, the Scott topology on
a cpo.

We propose different definitions of quantum topologies that allows
the quantization of specific topological spaces beyond locally compact
Hausdorff spaces.
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First two candidate definitions
The quantum power set P(X ) of a quantum set X is given by
D(X , IX ) := [X ∗, 2]qPOS.
Here, 2 = ‘2, where 2 is the ordinary two-element chain.
The ortholattice operations on the ordinary power set can be defined
in terms of ortholattice operations on 2;
The latter operations induce operations on 2, and also operations ∩,
∪, (−)c on P(X ) that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set X is a subset T of P(X ) that
contains the largest and smallest atom of P(X ) such that⋃⋃⋃

X : P2(X ) → P(X ) and ∩ : P(X )× P(X ) → P(X ) restrict and
corestrict to maps P(T ) → T and T × T → T , respectively

Definition (Second candidate definition of a quantum topology)

A quantum topology on a quantum set X is a closure operator C on
P(X ) that preserves the least atom such that ∪ ◦ C = C ◦∪.
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Examples of structures that should be quantum topologies

The quantum Alexandrov topology on a quantum poset (X ,≼≼≼)
should be the internal hom [(X,≽≽≽)∗, 2]qPos.

We previously quantized cpos. The internal hom [(X,≽≽≽)∗, 2]qCPO
should be the quantum Scott topology on a quantum cpo (X ,≼≼≼).

A quantum metric on a quantum set X in the sense of Kuperberg
and Weaver is a family of relations (Dr : X → X , r ≥ 0) such that

(1) Dr =
∧

s>r Ds for each r ∈ [0,∞);
(2) D0 = IX ;
(3) D†

r = Dr for each r ∈ [0,∞);
(4) Dr ◦ Ds ≤ Dr+s for each r , s ∈ [0,∞).

A quantum metric on X induces a closure operator C on P(X ) given
by C = infr>0 P(Dr ), where the infimum is taken in the suplattice
qPOS(P(X ),P(X )).
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The quantum ultrafilter monad

There are two possible definitions of the quantum ultrafilter monad:
▶ As the codensity monad of the embedding of qSetfin into qSet;
▶ As the monad induced by adjunction qSet → qPosInvop, where the

left adjoint is given by the contravariant quantum power set functor.

The existence of the former is assured, but not yet of the latter.

How are the algebras of this monad related to unital C*-algebras?

Monoidal topology: topological spaces are lax algebras of the Barr
extension of the ultrafilter monad to Rel;
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Jenča, Lindenhovius (STU, SAS) Quantum Suplattices SSAOS 2023 20 / 20



The quantum ultrafilter monad

There are two possible definitions of the quantum ultrafilter monad:
▶ As the codensity monad of the embedding of qSetfin into qSet;
▶ As the monad induced by adjunction qSet → qPosInvop, where the

left adjoint is given by the contravariant quantum power set functor.

The existence of the former is assured, but not yet of the latter.

How are the algebras of this monad related to unital C*-algebras?

Monoidal topology: topological spaces are lax algebras of the Barr
extension of the ultrafilter monad to Rel;

Is there a quantum Barr extension of the quantum ultrafilter monad
to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr
extension of the quantum ultrafilter monad to qRel.

Thank you for your attention.
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