Quantum Suplattices

Gejza Jenča, Bert Lindenhovius

Slovak University of Technology, Slovak Academy of Sciences

SSAOS 2023 September 4, 2023

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization.
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces...

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces.

In the context of supremum-preserving functions as morphisms, complete lattices are called <u>suplattices</u>.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces.

In the context of supremum-preserving functions as morphisms, complete lattices are called <u>suplattices</u>.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces.

In the context of supremum-preserving functions as morphisms, complete lattices are called <u>suplattices</u>.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces.

In the context of supremum-preserving functions as morphisms, complete lattices are called <u>suplattices</u>.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces.

In the context of supremum-preserving functions as morphisms, complete lattices are called <u>suplattices</u>.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem;
- Lead to possible quantum versions of topological spaces.

• A program to obtain natural models of quantum structures;

- Main idea: algebras of operators on a Hilbert space H can be used to construct 'non-commutative' generalizations of classical structures;
- Example: $X \mapsto C(X)$ yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- Quantization is the process of finding noncommutative versions of a mathematical structure.

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space H can be used to construct 'non-commutative' generalizations of classical structures;
- Example: $X \mapsto C(X)$ yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- Quantization is the process of finding noncommutative versions of a mathematical structure.

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: $X \mapsto C(X)$ yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- Quantization is the process of finding noncommutative versions of a mathematical structure.

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space H can be used to construct 'non-commutative' generalizations of classical structures;
- Example: $X \mapsto C(X)$ yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- Quantization is the process of finding noncommutative versions of a mathematical structure.

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: $X \mapsto C(X)$ yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- Quantization is the process of finding noncommutative versions of a mathematical structure.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

Internalization is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. Example: in any category with all finite products, a group G is an object equipped with morphisms $m: G \times G \to G$, $e: 1 \to G$, and $(-)^{-1}: G \to G$ such that:

• Unitality:
$$G \times 1 \xrightarrow{\operatorname{id}_G \times e} G \times G \quad 1 \times G \xrightarrow{e \times \operatorname{id}_G} G \times G$$

$$G \longrightarrow G \longrightarrow G \quad G \longrightarrow G \longrightarrow G$$

- Inverses: $\begin{vmatrix} G & \frac{\operatorname{diag} \mathcal{E}}{\operatorname{G}} & G \times G & \frac{\operatorname{diag} \mathcal{E}}{\operatorname{G}} & G \times G & G & \frac{\operatorname{diag} \mathcal{E}}{\operatorname{G}} & G \times G & \frac{\operatorname{d$

Internalization is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. Example: in any category with all finite products, a group G is an object equipped with morphisms $m: G \times G \to G$, $e: 1 \to G$, and $(-)^{-1}: G \to G$ such that:

• Unitality:
$$G \times 1 \xrightarrow{\operatorname{id}_G \times e} G \times G \quad 1 \times G \xrightarrow{e \times \operatorname{id}_G} G \times G$$

$$\downarrow m \qquad \cong \downarrow \qquad \qquad \downarrow m$$

$$G \xrightarrow{} G \xrightarrow{} G \xrightarrow{} G \xrightarrow{} G \xrightarrow{} G$$

<u>Internalization</u> is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. <u>Example</u>: in any category with all finite products, a group G is an object equipped with morphisms $m: G \times G \to G$, $e: 1 \to G$, and $(-)^{-1}: G \to G$ such that:

- Inverses: $G \xrightarrow{\operatorname{diag}_{G}} G \times G \xrightarrow{\operatorname{id}_{G} \times (-)^{-1}} G \times G \xrightarrow{G} G \xrightarrow{\operatorname{diag}_{G}} G \times G \xrightarrow{(-)^{-1} \times \operatorname{id}_{G}} G \times G$ $\downarrow \downarrow m \qquad \downarrow \downarrow m$ $\downarrow m \qquad \downarrow m$ $\downarrow m \qquad \downarrow m$

<u>Internalization</u> is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. <u>Example</u>: in any category with all finite products, a group G is an object equipped with morphisms $m: G \times G \to G$, $e: 1 \to G$, and $(-)^{-1}: G \to G$ such that:

- Inverses: $G \xrightarrow{\operatorname{diag}_{G}} G \times G \xrightarrow{\operatorname{id}_{G} \times (-)^{-1}} G \times G \xrightarrow{G} G \xrightarrow{\operatorname{diag}_{G}} G \times G \xrightarrow{(-)^{-1} \times \operatorname{id}_{G}} G \times G$ $\downarrow \downarrow m \qquad \downarrow \downarrow m$ $\downarrow m \qquad \downarrow m$ $\downarrow m \qquad \downarrow m$

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling Rel, whereas binary relations cannot always be internalized in a category resembling Set;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category Rel;
- The dual of the category WStar of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations¹.

¹N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc. 215 (2012). ← ★ → ★ ◆ へ へ

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling Rel, whereas binary relations cannot always be internalized in a category resembling Set;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category Rel;
- The dual of the category WStar of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations¹.

¹N. Weaver, Quantum relations, Mem. Amer. Math. Soc. ▶215 (20½2). ← 章 ▶ □ ♥ ९ ९

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling Rel, whereas binary relations cannot always be internalized in a category resembling Set;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category Rel;
- The dual of the category WStar of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations¹.

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling Rel, whereas binary relations cannot always be internalized in a category resembling Set;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category Rel;
- The dual of the category WStar of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations¹.

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling Rel, whereas binary relations cannot always be internalized in a category resembling Set;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category Rel;
- The dual of the category WStar of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations¹.

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category **WRel** of von Neumann algebras and quantum relations is a quantaloid (**Sup**-enriched category) with a dagger;
- Its full subcategory $WRel_{\rm HA}$ of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like Rel.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in $V ext{-Rel}$ for a quantale V such as [0,1];
- WRel_{HA} is equivalent to a category qRel of quantum sets, which are essentially families of finite-dimensional Hilbert spaces called atoms;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category **WRel** of von Neumann algebras and quantum relations is a quantaloid (**Sup**-enriched category) with a dagger;
- Its full subcategory $WRel_{\rm HA}$ of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like Rel.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in $V ext{-Rel}$ for a quantale V such as [0,1];
- WRel_{HA} is equivalent to a category qRel of <u>quantum sets</u>, which are essentially families of finite-dimensional Hilbert spaces called <u>atoms</u>;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category **WRel** of von Neumann algebras and quantum relations is a quantaloid (**Sup**-enriched category) with a dagger;
- ullet Its full subcategory **WRel**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like **Rel**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in V-Rel for a quantale V such as [0,1];
- WRel_{HA} is equivalent to a category qRel of <u>quantum sets</u>, which are essentially families of finite-dimensional Hilbert spaces called <u>atoms</u>;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a quantaloid (Sup-enriched category) with a dagger;
- Its full subcategory $\mathbf{WRel}_{\mathrm{HA}}$ of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like \mathbf{Rel} .
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in V-Rel for a quantale V such as [0,1];
- WReI_{HA} is equivalent to a category qReI of quantum sets, which are essentially families of finite-dimensional Hilbert spaces called <u>atoms</u>;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

²A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a quantaloid (Sup-enriched category) with a dagger;
- Its full subcategory $\mathbf{WRel}_{\mathrm{HA}}$ of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like \mathbf{Rel} .
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- ullet Compare: fuzzification can be regarded as internalizing structures in $V ext{-Rel}$ for a quantale V such as [0,1];
- WReI_{HA} is equivalent to a category qReI of quantum sets, which are essentially families of finite-dimensional Hilbert spaces called atoms;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

²A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a quantaloid (Sup-enriched category) with a dagger;
- Its full subcategory $\mathbf{WRel}_{\mathrm{HA}}$ of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like \mathbf{Rel} .
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in $V ext{-Rel}$ for a quantale V such as [0,1];
- WRel_{HA} is equivalent to a category qRel of <u>quantum sets</u>, which are essentially families of finite-dimensional Hilbert spaces called <u>atoms</u>;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

²A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a quantaloid (**Sup**-enriched category) with a dagger;
- Its full subcategory WRel_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid² just like **Rel**.
- Discrete quantization is the process of internalizing mathematical structures in WRelHA:
- Compare: fuzzification can be regarded as internalizing structures in V-**Rel** for a quantale V such as [0,1];
- WRel_{HA} is equivalent to a category qRel of quantum sets, which are essentially families of finite-dimensional Hilbert spaces called atoms;
- We have a fully faithful functor (-): Rel \rightarrow qRel preserving the dagger structure and the order between relations.

²A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020) Jenča, Lindenhovius (STU, SAS)

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \geq 1_X$ and $f \circ f^{\dagger} \leq 1_Y$.

Definition

- qSet is complete, cocomplete and symmetric monoidal closed³,
- The assignment $\mathcal{X} \mapsto \ell^{\infty}(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(−) restricts to a fully faithful functor Set → qSet;
- Instead of 'quantum relation' and 'quantum function', we say simply 'relation' and 'function', respectively.

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \geq 1_X$ and $f \circ f^{\dagger} \leq 1_Y$.

Definition

- qSet is complete, cocomplete and symmetric monoidal closed³
- The assignment $\mathcal{X} \mapsto \ell^\infty(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic vor Neumann algebras and normal unital *-homomorphisms;
- ullet '(-) restricts to a fully faithful functor $\mathbf{Set} o \mathbf{qSet}$
- Instead of 'quantum relation' and 'quantum function', we say simply 'relation' and 'function', respectively.

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \geq 1_X$ and $f \circ f^{\dagger} \leq 1_Y$.

Definition

- qSet is complete, cocomplete and symmetric monoidal closed³;
- The assignment $\mathcal{X} \mapsto \ell^{\infty}(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic vor Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$;
- Instead of 'quantum relation' and 'quantum function', we say simply 'relation' and 'function', respectively.

³A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020) ←□ → ←② → ←② → ←② → ◆② → ◆②

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \geq 1_X$ and $f \circ f^{\dagger} \leq 1_Y$.

Definition

- qSet is complete, cocomplete and symmetric monoidal closed³;
- The assignment $\mathcal{X} \mapsto \ell^\infty(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$;
- Instead of 'quantum relation' and 'quantum function', we say simply 'relation' and 'function', respectively.

³A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020) ←□ → ←② → ←② → ←② → ◆② → ◆②

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \geq 1_X$ and $f \circ f^{\dagger} \leq 1_Y$.

Definition

- qSet is complete, cocomplete and symmetric monoidal closed³;
- The assignment $\mathcal{X} \mapsto \ell^\infty(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$;
- Instead of 'quantum relation' and 'quantum function', we say simply 'relation' and 'function', respectively.

³A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \geq 1_X$ and $f \circ f^{\dagger} \leq 1_Y$.

Definition

- qSet is complete, cocomplete and symmetric monoidal closed³;
- The assignment $\mathcal{X} \mapsto \ell^\infty(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$;
- Instead of 'quantum relation' and 'quantum function', we say simply 'relation' and 'function', respectively.

³A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020) ←□ → ←♂ → ← ≧ → ← ≧ → ← ≧ → ← ② → ← ○ →

Quantum posets

An order \sqsubseteq on a set X is a binary relation such that $1_X \leq (\sqsubseteq)$, $(\sqsubseteq \circ \sqsubseteq) \leq (\sqsubseteq)$, and $(\sqsubseteq) \wedge (\supseteq) = 1_X$, where $\supseteq := \sqsubseteq^{\dagger}$.

Definition

- A preorder on a quantum set $\mathcal X$ is a binary relation $\preccurlyeq : \mathcal X \to \mathcal X$ such that
 - (1) $I_{\mathcal{X}} \leq \preceq$ (reflexivity);
 - (2) $\preccurlyeq \circ \preccurlyeq \leq \preccurlyeq$ (transitivity).
- The opposite $\succcurlyeq := \preccurlyeq^{\dagger}$ of a preorder is a preorder.
- ullet A preorder \preccurlyeq on ${\mathcal X}$ is called an order if
 - (3) $\preccurlyeq \land \succcurlyeq \leq I_{\mathcal{X}}$ (antisymmetry)
- A function $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ is monotone if $F \circ \preccurlyeq_{\mathcal{X}} \leq \preccurlyeq_{\mathcal{Y}} \circ F$

Proposition

The functors (-): Rel \rightarrow qRel and (-): Set \rightarrow qSet induce a fully faithful functor (-): Pos \rightarrow qPos, $(X, \sqsubseteq) \mapsto (X, \subseteq)$.

Quantum posets

An order \sqsubseteq on a set X is a binary relation such that $1_X \leq (\sqsubseteq)$, $(\sqsubseteq \circ \sqsubseteq) \leq (\sqsubseteq)$, and $(\sqsubseteq) \wedge (\supseteq) = 1_X$, where $\supseteq := \sqsubseteq^{\dagger}$.

Definition

- A preorder on a quantum set $\mathcal X$ is a binary relation \preccurlyeq : $\mathcal X \to \mathcal X$ such that
 - (1) $I_{\mathcal{X}} \leq \preceq$ (reflexivity);
 - (2) $\preccurlyeq \circ \preccurlyeq \leq \preccurlyeq$ (transitivity).
- The opposite $\succcurlyeq := \preccurlyeq^{\dagger}$ of a preorder is a preorder.
- ullet A preorder \preccurlyeq on ${\mathcal X}$ is called an order if
 - (3) $\preccurlyeq \land \succcurlyeq \leq I_{\mathcal{X}}$ (antisymmetry)
- A function $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ is monotone if $F \circ \preccurlyeq_{\mathcal{X}} \leq \preccurlyeq_{\mathcal{Y}} \circ F$

Proposition

The functors (-): Rel \rightarrow qRel and (-): Set \rightarrow qSet induce a fully faithful functor (-): Pos \rightarrow qPos, $(X, \sqsubseteq) \mapsto (X, \subseteq)$.

Quantum posets

An order \sqsubseteq on a set X is a binary relation such that $1_X \leq (\sqsubseteq)$, $(\sqsubseteq \circ \sqsubseteq) \leq (\sqsubseteq)$, and $(\sqsubseteq) \wedge (\supseteq) = 1_X$, where $\supseteq := \sqsubseteq^{\dagger}$.

Definition

- A preorder on a quantum set $\mathcal X$ is a binary relation \preccurlyeq : $\mathcal X \to \mathcal X$ such that
 - (1) $I_{\mathcal{X}} \leq \preceq$ (reflexivity);
- The opposite $\succcurlyeq := \preccurlyeq^{\dagger}$ of a preorder is a preorder.
- ullet A preorder \preccurlyeq on ${\mathcal X}$ is called an order if
 - (3) $\preccurlyeq \land \succcurlyeq \leq I_{\mathcal{X}}$ (antisymmetry)
- A function $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ is monotone if $F \circ \preccurlyeq_{\mathcal{X}} \leq \preccurlyeq_{\mathcal{Y}} \circ F$

Proposition

The functors (-): Rel \rightarrow qRel and (-): Set \rightarrow qSet induce a fully faithful functor (-): Pos \rightarrow qPos, $(X, \sqsubseteq) \mapsto (X, \subseteq)$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation $r: X \to Y$ corresponds to a monotone function $X^{op} \times Y \to 2$, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding $\operatorname{Pos} \to \operatorname{RelPos}$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \to D(X), x \mapsto \downarrow x$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation $r: X \to Y$ corresponds to a monotone function $X^{op} \times Y \to 2$, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed
- The embedding $\operatorname{Pos} \to \operatorname{RelPos}$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \to D(X), x \mapsto \downarrow x$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation $r: X \to Y$ corresponds to a monotone function $X^{op} \times Y \to 2$, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed
- The embedding $\operatorname{Pos} \to \operatorname{RelPos}$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \to D(X), x \mapsto \downarrow x$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation $r: X \to Y$ corresponds to a monotone function $X^{op} \times Y \to 2$, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding $Pos \rightarrow RelPos$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \rightarrow D(X), x \mapsto \downarrow x$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation r: X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding $\operatorname{Pos} \to \operatorname{RelPos}$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \to D(X), x \mapsto \downarrow x$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation $r: X \to Y$ corresponds to a monotone function $X^{\mathrm{op}} \times Y \to 2$, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category **RelPos** of posets and monotone relations is compact closed.
- The embedding $\operatorname{Pos} \to \operatorname{RelPos}$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \to D(X), x \mapsto \downarrow x$.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X)$, $x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation $r: X \to Y$ corresponds to a monotone function $X^{\mathrm{op}} \times Y \to 2$, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding $\operatorname{Pos} \to \operatorname{RelPos}$ has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding $X \to D(X), x \mapsto \downarrow x$.

Definition

A monotone relation $R: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R: \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding $qPos \rightarrow qRelPos$ has a right adjoint; its induced monad \mathcal{D} is called the quantum lower set monad.

The existence of right adjoints of embeddings $Pos \to RelPos$, $Set \to Rel$, $qSet \to qRel$ and $qPos \to qRelPos$ can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category S.

Definition

A monotone relation $R: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R: \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding **qPos** \rightarrow **qRelPos** has a right adjoint; its induced monad \mathcal{D} is called the quantum lower set monad.

The existence of right adjoints of embeddings $Pos \to RelPos$, $Set \to Rel$, $qSet \to qRel$ and $qPos \to qRelPos$ can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category R.

Definition

A monotone relation $R: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R: \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding $qPos \rightarrow qRelPos$ has a right adjoint; its induced monad $\mathcal D$ is called the <u>quantum lower set monad</u>.

The existence of right adjoints of embeddings $Pos \rightarrow RelPos$, $Set \rightarrow Rel$, $qSet \rightarrow qRel$ and $qPos \rightarrow qRelPos$ can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category S.

Definition

A monotone relation $R: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R: \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding $qPos \rightarrow qRelPos$ has a right adjoint; its induced monad \mathcal{D} is called the <u>quantum lower set monad</u>.

The existence of right adjoints of embeddings $Pos \rightarrow RelPos$, $Set \rightarrow Rel$, $qSet \rightarrow qRel$ and $qPos \rightarrow qRelPos$ can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category S.

Definition

The <u>pointwise order</u> $\sqsubseteq_{\mathcal{Y}}$ of functions $F, G : \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} is a quantum set and \mathcal{Y} is a quantum poset ordered by \preccurlyeq is defined by $F \sqsubseteq_{\mathcal{Y}} G$ if and only if $F \leq \succcurlyeq \circ G$.

Definition

A <u>Galois connection</u> between quantum posets $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ and $(\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ consists of a pair of monotone maps $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{X}$ such that $I_{\mathcal{X}} \sqsubseteq_{\mathcal{X}} G \circ F$ and $F \circ G \sqsubseteq_{\mathcal{Y}} I_{\mathcal{Y}}$. F is called the <u>lower Galois adjoint of</u> G.

Also in the quantum case there is a concept of closure operators related to Galois connections:

Definition

Definition

The <u>pointwise order</u> $\sqsubseteq_{\mathcal{Y}}$ of functions $F, G : \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} is a quantum set and \mathcal{Y} is a quantum poset ordered by \preccurlyeq is defined by $F \sqsubseteq_{\mathcal{Y}} G$ if and only if $F \leq \succcurlyeq \circ G$.

Definition

A <u>Galois connection</u> between quantum posets $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ and $(\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ consists of a pair of monotone maps $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{X}$ such that $I_{\mathcal{X}} \sqsubseteq_{\mathcal{X}} G \circ F$ and $F \circ G \sqsubseteq_{\mathcal{Y}} I_{\mathcal{Y}}$. F is called the <u>lower Galois adjoint of</u> G.

Also in the quantum case there is a concept of closure operators related to Galois connections:

Definition

Definition

The <u>pointwise order</u> $\sqsubseteq_{\mathcal{Y}}$ of functions $F, G : \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} is a quantum set and \mathcal{Y} is a quantum poset ordered by \preccurlyeq is defined by $F \sqsubseteq_{\mathcal{Y}} G$ if and only if $F \leq \succcurlyeq \circ G$.

Definition

A <u>Galois connection</u> between quantum posets $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ and $(\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ consists of a pair of monotone maps $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{X}$ such that $I_{\mathcal{X}} \sqsubseteq_{\mathcal{X}} G \circ F$ and $F \circ G \sqsubseteq_{\mathcal{Y}} I_{\mathcal{Y}}$. F is called the <u>lower Galois adjoint of</u> G.

Also in the quantum case there is a concept of closure operators related to Galois connections:

Definition

Definition

The pointwise order $\sqsubseteq_{\mathcal{Y}}$ of functions $F, G : \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} is a quantum set and \mathcal{Y} is a quantum poset ordered by \preccurlyeq is defined by $F \sqsubseteq_{\mathcal{Y}} G$ if and only if $F \leq \succcurlyeq \circ G$.

Definition

A <u>Galois connection</u> between quantum posets $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ and $(\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ consists of a pair of monotone maps $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{X}$ such that $I_{\mathcal{X}} \sqsubseteq_{\mathcal{X}} G \circ F$ and $F \circ G \sqsubseteq_{\mathcal{Y}} I_{\mathcal{Y}}$. F is called the <u>lower Galois adjoint of</u> G.

Also in the quantum case there is a concept of closure operators related to Galois connections:

Definition

The unit of the **qPos/qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to \mathcal{D}(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let $\mathcal X$ be a quantum poset. Then $\mathcal D(\mathcal X)$ is a quantum suplattice where $\bigvee_{\mathcal D(\mathcal X)}$ is the multiplication $\mathcal D^2(\mathcal X) \to \mathcal D(\mathcal X)$.

Theorem

The unit of the qPos/qRelPos adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to \mathcal{D}(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let $\mathcal X$ be a quantum poset. Then $\mathcal D(\mathcal X)$ is a quantum suplattice where $V_{\mathcal D(\mathcal X)}$ is the multiplication $\mathcal D^2(\mathcal X) \to \mathcal D(\mathcal X)$.

Theorem

The unit of the **qPos/qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to \mathcal{D}(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let $\mathcal X$ be a quantum poset. Then $\mathcal D(\mathcal X)$ is a quantum suplattice where $\bigvee_{\mathcal D(\mathcal X)}$ is the multiplication $\mathcal D^2(\mathcal X) \to \mathcal D(\mathcal X)$.

Theorem

The unit of the **qPos/qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to \mathcal{D}(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F: (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let $\mathcal X$ be a quantum poset. Then $\mathcal D(\mathcal X)$ is a quantum suplattice where $\bigvee_{\mathcal D(\mathcal X)}$ is the multiplication $\mathcal D^2(\mathcal X) \to \mathcal D(\mathcal X)$.

Theorem

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor $\mathbf{Sup} \rightarrow \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D(X);
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}(X)$, i.e., its classical part of $\mathcal{D}(X)$.
- However, $\mathcal{D}(X)$ has also higher-dimensional atoms

Conjecture

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor $\mathbf{Sup} \rightarrow \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D(X);
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}(X)$, i.e., its classical part of $\mathcal{D}(X)$.
- ullet However, $\mathcal{D}({}^{\iota}X)$ has also higher-dimensional atoms

Conjecture

Proposition

The fully faithful functor '(-): $\mathbf{Pos} \to \mathbf{qPos}$ does not restrict and corestrict to a functor $\mathbf{Sup} \to \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D(X);
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}({}^{\iota}X)$, i.e., its classical part of $\mathcal{D}({}^{\iota}X)$.
- However, $\mathcal{D}({}^{\iota}X)$ has also higher-dimensional atoms.

Conjecture

Proposition

The fully faithful functor '(-): $\mathbf{Pos} \to \mathbf{qPos}$ does not restrict and corestrict to a functor $\mathbf{Sup} \to \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into $\mathcal{D}(X)$;
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}({}^{\iota}X)$, i.e., its classical part of $\mathcal{D}({}^{\iota}X)$.
- However, $\mathcal{D}({}^{\iota}X)$ has also higher-dimensional atoms.

Conjecture

Proposition

The fully faithful functor '(-): $\mathbf{Pos} \to \mathbf{qPos}$ does not restrict and corestrict to a functor $\mathbf{Sup} \to \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D(X);
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}({}^{\iota}X)$, i.e., its classical part of $\mathcal{D}({}^{\iota}X)$.
- However, $\mathcal{D}({}^{\iota}X)$ has also higher-dimensional atoms.

Conjecture

Proposition

The fully faithful functor '(-): $\mathbf{Pos} \to \mathbf{qPos}$ does not restrict and corestrict to a functor $\mathbf{Sup} \to \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into $\mathcal{D}(X)$;
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}({}^{\iota}X)$, i.e., its classical part of $\mathcal{D}({}^{\iota}X)$.
- However, $\mathcal{D}({}^{\iota}X)$ has also higher-dimensional atoms.

Conjecture

Proposition

The fully faithful functor '(-): $\mathbf{Pos} \to \mathbf{qPos}$ does not restrict and corestrict to a functor $\mathbf{Sup} \to \mathbf{qSup}$.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D(X);
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}({}^{\iota}X)$, i.e., its classical part of $\mathcal{D}({}^{\iota}X)$.
- However, $\mathcal{D}({}^{\iota}X)$ has also higher-dimensional atoms.

Conjecture

Quantum versions of some theorems on suplattices

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F: \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}}: \mathcal{Y} \to \mathcal{X}$ is called a <u>subset of fixpoints</u> if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Quantum versions of some theorems on suplattices

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F: \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}}: \mathcal{Y} \to \mathcal{X}$ is called a <u>subset of fixpoints</u> if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Quantum versions of some theorems on suplattices

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F: \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}}: \mathcal{Y} \to \mathcal{X}$ is called a <u>subset of fixpoints</u> if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Quantum versions of some theorems on suplattices

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F: \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}}: \mathcal{Y} \to \mathcal{X}$ is called a <u>subset of</u> fixpoints if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F: \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Open problems

Conjecture (Quantum Cantor-Schröder-Bernstein)

Let $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{X}$ be injective functions between quantum sets \mathcal{X} and \mathcal{Y} . Then there is a bijection $\mathcal{X} \cong \mathcal{Y}$.

In terms of operator algebras, this translates to

Conjecture

Let $f: M \to N$ and $g: N \to M$ be surjective normal unital *-homomorphisms between hereditarily atomic von Neumann algebras M and N. Then there is a *-isomorphism $M \to N$.

Open problems

Conjecture (Quantum Cantor-Schröder-Bernstein)

Let $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{X}$ be injective functions between quantum sets \mathcal{X} and \mathcal{Y} . Then there is a bijection $\mathcal{X} \cong \mathcal{Y}$.

In terms of operator algebras, this translates to

Conjecture

Let $f: M \to N$ and $g: N \to M$ be surjective normal unital *-homomorphisms between hereditarily atomic von Neumann algebras M and N. Then there is a *-isomorphism $M \to N$.

- C*-algebras form the standard approach to quantum topology, but only generalize locally compact Hausdorff spaces.
- Several mathematical structures have associated topological spaces that are not locally compact Hausdorff
- Examples: the Alexandrov topology on a poset, the Scott topology on a cpo.
- We propose different definitions of quantum topologies that allows the quantization of specific topological spaces beyond locally compact Hausdorff spaces.

- C*-algebras form the standard approach to quantum topology, but only generalize locally compact Hausdorff spaces.
- Several mathematical structures have associated topological spaces that are not locally compact Hausdorff
- Examples: the Alexandrov topology on a poset, the Scott topology on a cpo.
- We propose different definitions of quantum topologies that allows the quantization of specific topological spaces beyond locally compact Hausdorff spaces.

- C*-algebras form the standard approach to quantum topology, but only generalize locally compact Hausdorff spaces.
- Several mathematical structures have associated topological spaces that are not locally compact Hausdorff
- Examples: the Alexandrov topology on a poset, the Scott topology on a cpo.
- We propose different definitions of quantum topologies that allows the quantization of specific topological spaces beyond locally compact Hausdorff spaces.

- C*-algebras form the standard approach to quantum topology, but only generalize locally compact Hausdorff spaces.
- Several mathematical structures have associated topological spaces that are not locally compact Hausdorff
- Examples: the Alexandrov topology on a poset, the Scott topology on a cpo.
- We propose different definitions of quantum topologies that allows the quantization of specific topological spaces beyond locally compact Hausdorff spaces.

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- Here, 2 = 2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on 2, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology)

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- Here, 2 = 2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on 2, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology)

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- Here, 2 = 2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on **2**, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology)

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- Here, 2 = 2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on **2**, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology)

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- Here, 2 = 2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on **2**, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology)

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- ullet Here, ${f 2}=$ '2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on **2**, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology) A quantum topology on a quantum set \mathcal{X} is a closure operator C on

- The quantum power set $\mathcal{P}(\mathcal{X})$ of a quantum set \mathcal{X} is given by $\mathcal{D}(\mathcal{X}, I_{\mathcal{X}}) := [\mathcal{X}^*, \mathbf{2}]_{qPOS}$.
- Here, 2 = 2, where 2 is the ordinary two-element chain.
- The ortholattice operations on the ordinary power set can be defined in terms of ortholattice operations on 2;
- The latter operations induce operations on **2**, and also operations \cap , \cup , $(-)^c$ on $\mathcal{P}(\mathcal{X})$ that resemble ortholattice operations.

Definition (First candidate definition of a quantum topology)

A quantum topology on a quantum set \mathcal{X} is a subset \mathcal{T} of $\mathcal{P}(\mathcal{X})$ that contains the largest and smallest atom of $\mathcal{P}(\mathcal{X})$ such that $\bigcup_{\mathcal{X}}: \mathcal{P}^2(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ and $\cap: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ restrict and corestrict to maps $\mathcal{P}(\mathcal{T}) \to \mathcal{T}$ and $\mathcal{T} \times \mathcal{T} \to \mathcal{T}$, respectively

Definition (Second candidate definition of a quantum topology)

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r: \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - (2) $D_0 = I_X$
 - (3) $D_r^1 = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$

- The quantum Alexandrov topology on a quantum poset $(\mathcal{X}, \preccurlyeq)$ should be the internal hom $[(\mathbf{X}, \succcurlyeq)^*, \mathbf{2}]_{\mathbf{qPos}}$.
- We previously quantized cpos. The internal hom $[(X, \succeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo (\mathcal{X}, \preceq) .
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r: \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - $(2) D_0 = I_{\mathcal{X}};$
 - (3) $D_r^1 = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - $(2) D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - $(2) D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- The quantum Alexandrov topology on a quantum poset $(\mathcal{X}, \preccurlyeq)$ should be the internal hom $[(\mathbf{X}, \succcurlyeq)^*, \mathbf{2}]_{qPos}$.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - (2) $D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - $(2) D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - $(2) D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - (2) $D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- The quantum Alexandrov topology on a quantum poset (X, ≼) should be the internal hom [(X, ≽)*, 2]_{qPos}.
- We previously quantized cpos. The internal hom $[(X, \succcurlyeq)^*, 2]_{qCPO}$ should be the quantum Scott topology on a quantum cpo $(\mathcal{X}, \preccurlyeq)$.
- A quantum metric on a quantum set \mathcal{X} in the sense of Kuperberg and Weaver is a family of relations $(D_r : \mathcal{X} \to \mathcal{X}, r \ge 0)$ such that
 - (1) $D_r = \bigwedge_{s>r} D_s$ for each $r \in [0, \infty)$;
 - (2) $D_0 = I_{\mathcal{X}};$
 - (3) $D_r^{\dagger} = D_r$ for each $r \in [0, \infty)$;
 - (4) $D_r \circ D_s \leq D_{r+s}$ for each $r, s \in [0, \infty)$.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of αSet₂ into αSet;
 - ► As the monad induced by adjunction **qSet** → **qPosInv**^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not vet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barra extension of the ultrafilter monad to Rel:
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - ► As the codensity monad of the embedding of **gSet**_s into **gSet**;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor
- The existence of the former is assured, but not vet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barra extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - ► As the codensity monad of the embedding of **qSet**_{fin} into **qSet**;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space) A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space) A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space) A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.

- There are two possible definitions of the quantum ultrafilter monad:
 - As the codensity monad of the embedding of qSet_{fin} into qSet;
 - As the monad induced by adjunction qSet → qPosInv^{op}, where the left adjoint is given by the contravariant quantum power set functor.
- The existence of the former is assured, but not yet of the latter.
- How are the algebras of this monad related to unital C*-algebras?
- Monoidal topology: topological spaces are lax algebras of the Barr extension of the ultrafilter monad to Rel;
- Is there a quantum Barr extension of the quantum ultrafilter monad to qRel?

Definition (Third candidate definition of a quantum topological space)

A quantum topological space is a lax algebra of the quantum Barr extension of the quantum ultrafilter monad to **qRel**.