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Contexts and concepts

Formal context :=(G ,M, I ) with I ⊆ G ×M.

G :≡ set of objects and M :≡ set of attributes.

Derivation. A ⊆ G and B ⊆ M.

A′ := {m ∈ M | ∀g ∈ A gIm}
B ′ := {g ∈ G | ∀m ∈ B gIm}.
Formal concept := a pair (A,B) with A′ = B and B ′ = A.

A :≡ extent of (A,B) and B :≡ intent of (A,B).

B(G ,M, I ) := set of all concepts of (G ,M, I ).

Concept hierarchy

(A,B) ≤ (C ,D) :⇐⇒ A ⊆ C (⇐⇒ D ⊆ B).

B(G ,M, I ) := (B(G ,M, I ),≤)
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The Basic Theorem on Concept Lattices

B(G ,M, I ) is a complete lattice in which infimum and supremum are
given by: ∧

t∈T
(At ,Bt) =

(⋂
t∈T

At ,

(⋃
t∈T

Bt

)′′)

∨
t∈T

(At ,Bt) =

((⋃
t∈T

At

)′′
,
⋂
t∈T

Bt

)
.

B(G ,M, I ) is called the concept lattice of the context (G ,M, I ).

A complete lattice L is isomorphic to a concept lattice B(G ,M, I ) iff there
are mappings γ̃ : G → L and µ̃ : M → L such that γ̃(G ) is ∨-dense in L,
µ̃(M) is ∧-dense in L and for all g ∈ G and m ∈ M

gIm ⇐⇒ γ̃(g) ≤ µ̃(m).
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Examples

Finite lattices L ∼= B(L, L,≤) ∼= B(J(L),M(L),≤).

Powerset algebras B(X ,X , 6=) ∼= PX .

Distributive lattices B(P,P,�) ∼= O(P,≤).

Dedekind-MacNeil completion B(P,P,≤) ∼= DM(P,≤).

Remark

The derivation (′,′ ) is a Galois connection between P(G ) and P(M).

The operator ′′ is a closure operator on G (resp. M).

Ext(K) denotes the set of extents of K, and is a closure system on G .

Int(K) denotes the set of intents of K, and is a closure system on M.
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An example of data analysis
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An example of data analysis (cont’)
Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear

100 × ×
200 × × × × ×
300 × × × × ×
400 × ×
500 × ×
600 × × ×

Any transaction with clothes and footwear has hiking boots.

{Clothes, Footwear } =⇒ { Outerwear, Hiking Boots}.
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Contexts in triadic setting

.

proposed by Lehmann and Wille

triadic context: K := (K1,K2,K3,R) with R ⊆ K1 × K2 × K3.

K1 ≡ objects, K2 ≡ attributes and K3 ≡ conditions

From K we get three dyadic contexts:
K(1) := (K1,K2 × K3,R(1)R), K(2) := (K2,K1 × K3,R(2)R) and
K(3) := (K3,K1 × K2,R(3)R) s.t. for all (o, a, c) ∈ K1 × K2 × K3,

oR(1)R(a, c)⇔ aR(2)R(o, c)⇔ cR(3)R(o, a)⇔ (o, a, c) ∈ R.

For i ∈ {1, 2, 3}, the derivation K(i) is called (i)R-derivation.

For X ⊆ Ki and Z ⊆ Kj × Kk , with j < k ,

I X (i)R = {(aj , ak) ∈ Kj × Kk | ∀ai ∈ X , (a1, a2, a3) ∈ R},
I Z (i)R = {ai ∈ Ki | ∀(aj , ak) ∈ Z , (a1, a2, a3) ∈ R}.
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Contexts in triadic setting (cont’)

K P F S
a b c d a b c d a b c d

1 x x
�� ��x x x

2 x x x x x x x x
3 x x x
4 x x x x x
5 x x x x x x x

K P F S

1 a bc bd

2 abc ac acd

3 b d b

4 d bd ac

5 acd ac bd
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Concepts in triadic setting

A triadic concept of K is a triple (A1,A2,A3) with Ai ⊆ Ki and

Ai = (Aj × Ak)(i)R , {i , j , k} = {1, 2, 3} with j < k . We call A1

extent, A2 intent and A3 modus.

In dyadic FCA, concepts are maximal rectangles of I . In triadic
setting, (tri)concepts are maximal cuboids of R. i.e.
A1 × A2 × A3 ⊆ R, maximal with respect to inclusion.

K P F S

1 a bc bd

2 abc ac acd

3 b d b

4 d bd ac

5 acd ac bd

2× ac × PF ( 25× ac × PF ⊆ R.

(2, ac,PF ) is not a triconcept and (25, ac ,PF ) is a triconcept.

K has 24 concepts and K(i) 16, 11, 8 concepts for i = 1, 2, 3 resp.
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Concept hierarchy

The set T(K) of all triconcepts of K is quasi-ordered by set inclusion
on each component: (T(K),.1,.2,.3) with

(A1,A2,A3) .i (B1,B2,B3) :⇐⇒ Ai ⊆ Bi

Set ∼i :=.i ∩ &i . Then (A1,A2,A3) ∼i (B1,B2,B3) ⇐⇒ Ai = Bi .

(1) x .i y and x .j y , imply x &k y , (antiordinality)

(2) x ∼i y and x ∼j y , imply x = y . (uniqueness condition)

A triordered set is a relational structure (T ,.1,.2,.3) for which, .i is
a quasi-order, 1 ≤ i ≤ 3 and (1), (2) are satisfied above.

What about completeness?
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Concept hierarchy

For Ak ⊆ Kk , set Kij
Ak

:= (Ki ,Kj ,Rij
Ak

), with i < j and define: xRij
Ak
y

iff x , y and z are (after reordering) in R, for all z ∈ Ak .

Derivation operators in this context are called (i , j ,Ak)R-derivations.

The triadic concept generated by (Xi ,Xk), Xi ⊆ Ki and Xk ⊆ Kk ,
is bik(Xi ,Xk) := (B1,B2,B3), where:

Bj = X
(i ,j ,Xk )R
i , Bi = X

(i ,j ,Xk )R(i ,j ,Xk )R
i and Bk = (Bi × Bj)

(k)R

Let α and β be sets of concepts of a triadic context K. We set
Xi =

⋃
{Ai : (A1,A2,A3) ∈ α} and Xk =

⋃
{Ak : (A1,A2,A3) ∈ β}.

The ik-join of (α, β) is the triadic concept ∇ik(α, β) := bik(Xi ,Xk).

Quite complicated structure: Biedermann
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Trilattices

A trilattice is a structure (T ,∇12,∇21,∇13,∇31,∇23,∇32) where T is a
non-empty set and ∇ik are six (2,2)-ary operators which satisfying
Idempotent laws : x∇ikx = x (T1)
1st comp. comm. laws : x1x2∇ik ȳ = x2x1∇ik ȳ (T2)
Bound laws : x1(x1x2∇ik ȳ)∇ik ′ z̄ = (x1x2∇ik ȳ)∇ik ′ z̄ (T3)
Limit laws : (x̄∇ik ȳ)(ȳ∇ki x̄)∇jk(x̄∇ik ȳ) = x̄∇ik ȳ (T4)
Antiordinal laws : (x1∇ik ȳ)(x1x2∇ik ȳ)∇jk(x1∇ik ȳ) = x1∇ik ȳ (T5)
Commutative laws : x̄∇ik ȳ = ȳ∇kj(ȳ∇ki x̄) (T6)
Separation laws : x1x2∇ik ȳ = (x1∇ik ȳ)(x2∇ik ȳ)∇ik ȳ (T7)
Absobtion laws : x̄∇ik ȳ = (x̄∇ik ȳ)∇ik ȳ (T8)
Assoc laws : (x1x2∇ik ȳ)(x3∇ik ȳ)∇ik ȳ = (x1∇ik ȳ)(x2x3∇ik ȳ)∇ik ȳ (T9)

{i , j , k} = {1, 2, 3} and k ′ 6= i .
x1, x2, x3, y1, y2, z1, z2 ∈ T ,
x̄ = x1x2, ȳ = y1y2 and z̄ = z1z2.
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Line Diagrams

O3 with K1 = K2 = K3 = {1, 2, 3} and (i , j , k) ∈ R iff i ≤ j ≤ k.

O3 1 2 3

1 1 12 123

2 2 23

3 3

3

2

1

1

2

3

23 1

9 concepts: (123, 3, 3); (12, 23, 3); (1, 12, 23); (12, 2, 23); (1, 1, 123);
(1, 123, 3); (123, 123; ∅); (123, ∅, 123); (∅, 123, 123).
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Line diagrams (cont’)

P F
a b a b

1 x x
2 x x

γγ

γ
α β

λ

f

concepts: O1 := (∅, ab,PF ), O2 := (12, ∅,PF ), O3 := (12, ab, ∅),
α := (2, a,P), β := (2, b,F ), λ := (1, b,P) and γ := (1, a,F ).

α ∼1 β, β ∼2 λ and λ ∼3 α, a form a cycle, (α, β, λ).

In addition, γ verifies γ ∼1 λ, γ ∼3 β and γ ∼2 α.

Once α, β, and λ are represented, it is possible to represent γ, since
there is no common point to the three dotted lines.
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Line diagram: an alternative

b

a

P

F

2

1

∼3

∼
1

∼
2
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Line diagram (cont’)

12345

abcd�� ��∅

1

a

3
b d

4

c
5

c
2 �� ��P

b

3
dc

25

1 4�� ��F

d

3
b ac

4

215 �� ��S

25

ac

4

d�� ��PF

3

b

5

d�� ��PS

1

b�� ��FS

�� ��PFS

1345

2
ac

bd
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Implications in Formal Contexts

An implication between attributes in M is a pair (B1,B2) of subsets
of M, and is usually denoted by B1 → B2.

An implication B1 → B2 holds in a context K := (G ,M, I ) if every
object having all the attributes in B1 also has all the attributes in B2.

Notation: K |= B1 → B2

K |= B1 → B2 ⇐⇒ ∀g ∈ G , g ∈ B ′1 =⇒ g ∈ B ′2

⇐⇒ B2 ⊆ B ′′1

⇐⇒
∧
{µa | a ∈ B1} ≤ µm for all m ∈ B2

Thus, implications can be read from line diagrams
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An example of data analysis (cont’)
Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear

100 × ×
200 × × × × ×
300 × × × × ×
400 × ×
500 × ×
600 × × ×

Any transaction with clothes and footwear has hiking boots.

{Clothes, Footwear } =⇒ { Outerwear, Hiking Boots}.
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A concise and parsimonious set of implications

The set of all possible implications in K := (G ,M, I ) is 2M × 2M .

Finding a minimal set of valid implications from which we can infer
all implications valid in K.

A subset T ⊆ M respects B1 → B2 if B1 * T or B2 ⊆ T

B1 → B2 follows from L, (notation: L ` B1 → B2), if each subset of
M respecting L also respects B1 → B2.

L is closed if every implication following from L is in L, and non
redundant if no implication in L follows from other implications of L.

A set L of implications of K is complete if any implication that holds
in K follows from L, and sound if every implication of L holds in K.

An implication basis of K is a set L that is sound, complete and non
redundant.
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Triadic implications

Biedermann

An implication is a relation of the form (E → F )G valid in the context
with E ,F ⊆ Kj and G ⊆ Kk with {j , k} = {2, 3}.
(1) conditional attribute implications: (A1 → A2)C

(2) attributional condition implications: (C1 → C2)A

A1,A2,A ⊆ K2 and C1,C2,C ⊆ K3.
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