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e Formal context :=(G, M, /) with | C G x M.
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e Formal context :=(G, M, /) with | C G x M.
G := set of objects and M := set of attributes.

@ Derivation. AC G and B C M.

A={meM| Vge A glm}
B :={ge G| Vme B gim}.

e Formal concept := a pair (A, B) with A= B and B’ = A.
A= extent of (A,B) and B := intent of (A, B).
B(G, M, 1) := set of all concepts of (G, M, ).

@ Concept hierarchy
(A,B)<(C,D):<—= ACC (<= DCB).

e B(G,M,I):=(B(G,M,I),<)
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The Basic Theorem on Concept Lattices

B(G, M, 1) is a complete lattice in which infimum and supremum are

given by:
N\ (A B:) = (ﬂ A, (U Bt) >
teT teT teT
\ (A, B) = ((Um) ,ﬂBt).
teT teT teT
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The Basic Theorem on Concept Lattices

B(G, M, 1) is a complete lattice in which infimum and supremum are

given by: s (m . (U Bt) )

teT teT teT

"
\ (A, B) = ((U&) ,ﬂBt).
teT teT teT

B(G, M, ) is called the concept lattice of the context (G, M, /).
A complete lattice L is isomorphic to a concept lattice B(G, M, 1) iff there

are mappings 7 : G — L and i : M — L such that 5(G) is V-dense in L,
fi(M) is N\-dense in L and for all g € G and me M

glm <= 4(g) < ji(m).
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Examples

Finite lattices L = B(L, L, <) = B(J(L), M(L), <).
Powerset algebras B(X, X, #) = PX.

Distributive lattices B(P, P, #) = O(P, <).
Dedekind-MacNeil completion B(P, P, <) = DM(P, <).

Remark

@ The derivation (’,”) is a Galois connection between P(G) and P(M).
@ The operator ” is a closure operator on G (resp. M).

o Ext(K) denotes the set of extents of K, and is a closure system on G.

o Int(K) denotes the set of intents of K, and is a closure system on M.
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An example of data analysis

Database D - Taxonomy T
Transaction Items Bought
100 Shirt

Clothes Footwear
200 Jacket, Hiking Boots / \ / \

300 Ski Pants, Hiking Boots . .
400 Shoes Outerwear Shirts  Shoes  Hiking Boots
500 Shoes / \

600 Jacket Jackets  Ski Pants

Frequent Itemsets

Itemaet Support

{ Jacket } 2

{ Outerwear } 3 Rules

{ Clothes } 4 Rule Support Conf.
{ Shoes } 2 Outerwear = Hiking Boota 31% 66.6%
{ Hiking Boots } 2 Outerwear = Footwear 33%  66.6%
{ Footwear } 4 Hiking Boots = Quterwear  33% 100%
{ Outerwear, Hiking Boots } 2 Hiking Boots = Clothes 33% 100%
{ Clothes, Hiking Boots } 2

{ Outerwear, Footwear } 2

{ Clothes, Footwear } 2
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An example of data analysis (cont')

Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear

100 X X

200 X X X X X
300 X X X X X
400 X X
500 X X
600 X X X

=] & = E E
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An example of data analysis (cont')

Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear
100 X X
200 X X X X X
300 X X X X X
400 X X
500 X X
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An example of data analysis (cont')

Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear
100 X X
200 X X X X X
300 X X X X X
400 X X
500 X X
600 X X X

Any transaction with clothes and footwear has hiking boots.

{Clothes, Footwear } = { Outerwear, Hiking Boots}.

Kwuida (BFH)
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Contexts in triadic setting

@ proposed by Lehmann and Wille
e triadic context: K := (K1, Kz, K3, R) with R C K; x Ky x K3.
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°

From K we get three dyadic contexts:
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@ proposed by Lehmann and Wille

e triadic context: K := (K1, Kz, K3, R) with R C K; x Ky x K3.
@ Kj = objects, K, = attributes and K3 = conditions

°

From K we get three dyadic contexts:
KM = (Ky, Ko x K3, RDR), KO := (K, K1 x K3, R(=®) and
KO := (K3, K1 x Ky, RBG)IR) s.t. for all (0,a,c) € K1 x Ky x K3,

OR(I)R(Q, C) ~ a”R(2)R(07 C) g CR(3)R(07 3) g (O’ a, C) €R.

For i € {1,2,3}, the derivation K() is called (i),-derivation.
For X C Kj and Z C Kj x K, with j < k,

> X(’)R = {(aj’ak) € /<J X Kk |val’ € X7(317327a3) S R},
> Z0= = {a; € Ki | Y(aj,a) € Z, (a1, 22, 33) € R}.
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Contexts in triadic setting (cont’)

K P F S
abcd|ab c d|abcd|

1 | x X (x) X X

2 | x x X X X X X X

3 X X X

4 X X X | x X

5 | x X X | X X X X

=] =
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Contexts in triadic setting (cont’)

K P F
a b c d | a b ¢ d | a b d |
1 | x X (x) X X
2 | x x X X X X X
3 X X X
4 X X X | x
5 | x X X | X X X X
K| P F S
1 a bc bd
2 | abc ac acd
3 b d b
4 d bd ac
5| acd ac bd
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Concepts in triadic setting

e A triadic concept of K is a triple (A1, Az, A3) with A; C K; and
Ai = (A x A=, {0k} = {1,2,3} with j < k. We call A;
extent, A, intent and A3 modus.
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e A triadic concept of K is a triple (A1, Az, A3) with A; C K; and
Ai = (A x A=, {0k} = {1,2,3} with j < k. We call A;
extent, A, intent and A3 modus.

@ In dyadic FCA, concepts are maximal rectangles of /. In triadic
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A1 x Ax x Az C 'R, maximal with respect to inclusion.

K| P F S
1 a bc bd
o 2 | abc ac acd
3 b d b
4 d bd ac
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@ 2xacx PFC25xacx PFCTR.
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Concepts in triadic setting

e A triadic concept of K is a triple (A1, Az, A3) with A; C K; and
Ai = (A x A=, {0k} = {1,2,3} with j < k. We call A;
extent, A, intent and A3 modus.

In dyadic FCA, concepts are maximal rectangles of /. In triadic

setting, (tri)concepts are maximal cuboids of R. i.e.
A1 x Ax x Az C 'R, maximal with respect to inclusion.

K| P F S
1 a bc bd
2 | abc ac acd
3 b d b
4 d bd ac
5 lacd ac bd

2 x acx PFC 25 x acx PFCR.
(2, ac, PF) is not a triconcept and (25, ac, PF) is a triconcept.
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Concepts in triadic setting

e A triadic concept of K is a triple (A1, Az, A3) with A; C K; and

Ai = (A x A=, {0k} = {1,2,3} with j < k. We call A;
extent, A, intent and A3 modus.

In dyadic FCA, concepts are maximal rectangles of /. In triadic

setting, (tri)concepts are maximal cuboids of R. i.e.
A1 x Ax x Az C 'R, maximal with respect to inclusion.

K| P F S
1 a bc bd
2 | abc ac acd
3 b d b
4 d bd ac
5 lacd ac bd

2 x acx PFC 25 x acx PFCR.
(2, ac, PF) is not a triconcept and (25, ac, PF) is a triconcept.

K has 24 concepts and K() 16, 11, 8 concepts for i = 1,2, 3 resp.
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Concept hierarchy

o The set T(K) of all triconcepts of K is quasi-ordered by set inclusion
on each component: (T(K), <1, <z, <3) with

(A1,A2,A3) Si (B1, B2, Bs) : <= A; C B;

@ Set ~;:=<;N 2;. Then (Al,AQ,Ag,) ~j (Bl, By, 83) <~ A, =B;.

(1) xSiyand x Sjy, imply x 2k y, (antiordinality)
(2) x ~jyand x ~j y, imply x = y. (uniqueness condition)
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Concept hierarchy

o The set T(K) of all triconcepts of K is quasi-ordered by set inclusion
on each component: (T(K), <1, 52, <3) with

(A1, A2,A3) Si (B1, B, Bs) 1 <= A C B;

@ Set ~; —< N > . Then (Al,AQ,Ag,) ~i (81,32,33) <~— A; =B,

(1) xSiyand x Sjy, imply x 2k y, (antiordinality)

(2) x ~jyand x ~j y, imply x = y. (uniqueness condition)

A triordered set is a relational structure (T, <1, <2, S3) for which, < is
a quasi-order, 1 </ < 3 and (1), (2) are satisfied above. J
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Concept hierarchy

o The set T(K) of all triconcepts of K is quasi-ordered by set inclusion
on each component: (T(K), <1, 52, <3) with

(A1, A2,A3) Si (B1, B, Bs) 1 <= A C B;

@ Set ~; —< N > . Then (Al,Ag,Ag,) ~i (81,32,33) <~— A; =B,

(1) xSiyand x Sjy, imply x 2k y, (antiordinality)
(2) x ~jyand x ~j y, imply x = y. (uniqueness condition)

A triordered set is a relational structure (T, <1, <2, S3) for which, < is
a quasi-order, 1 </ < 3 and (1), (2) are satisfied above. J

What about completeness?
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Concept hierarchy

o For Ax C K, set Kﬁk = (Ki, KpRZk). with i < j and define: xRZky
iff x, y and z are (after reordering) in R, for all z € Ay.
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Kwuida (BFH) Towards TCA SSAOS 2023 11/20



Concept hierarchy

o For A, C Ky, set K% = (Ki, Kj;,RY ), with i < j and define: xRY y
iff x, y and z are (after reordering) in R, for all z € Ay.
@ Derivation operators in this context are called (/, j, Ax)x-derivations.

@ The triadic concept generated by (X;, Xx), Xi C K; and Xx C Kj,
is b,‘k(X;,Xk) = (Bl, B2, B3), where:

B — Xi(iJ,Xk)R, B — Xl_(inxk)R(iJ,Xk)R and By = (B; x Bj)(k)R
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Concept hierarchy

o For A, C Ky, set K% = (Ki, Kj;,RY ), with i < j and define: xRY y
iff x, y and z are (after reordering) in R, for all z € Ay.
@ Derivation operators in this context are called (/, j, Ax)x-derivations.
@ The triadic concept generated by (X;, Xx), Xi C K; and Xy C K,
is bi(Xi, Xk) := (B1, Bz, B3), where:
B; = xR g — x(XIRIXIR ang B, — (B; x B;)WI

Y

@ Let o and 3 be sets of concepts of a triadic context K. We set
Xi = U{Ai : (A1, A2, A3) € a} and Xy = U{A« : (A1, Az, A3) € B}
The ik-join of (a, 3) is the triadic concept V(v ) := bix(X;, Xi).
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Concept hierarchy

o For A, C Ky, set K% = (Ki, Kj;,RY ), with i < j and define: xRY y
iff x, y and z are (after reordering) in R, for all z € Ay.

@ Derivation operators in this context are called (/, j, Ax)x-derivations.

@ The triadic concept generated by (X;, Xx), Xi C K; and Xx C Kj,
is b,‘k(X;,Xk) = (Bl, 82, B3), where:

B — Xi(iJ,Xk)R B — Xl_(i,jyxk)R(iJ,Xk)R and By = (B; x Bj)(k)R

Y

@ Let o and 3 be sets of concepts of a triadic context K. We set
Xi = U{Ai : (A1, A2, A3) € a} and Xy = U{A« : (A1, Az, A3) € B}
The ik-join of (a, 3) is the triadic concept V(v ) := bix(X;, Xi).

@ Quite complicated structure: Biedermann

Kwuida (BFH) Towards TCA SSAOS 2023 11/20



Trilattices

A trilattice is a structure (T, V12, Va1, Vi3, V31, V23, V32) where T is a
non-empty set and Vj are six (2,2)-ary operators which satisfying
Idempotent laws : xVjx = x (T1)
1st comp. comm. laws : x10Viyy = xox1V iy (T2)
Bound laws : X1(X1X2V,'k)_/)v,'k/2 = (X1X2V,'k)7)v,'k/2 (T3)
Limit laws :  (XVyy)(YViiX)Vic(XViy) = xViy (T4)
Antiordinal laws : (X1V,’k}_/)(X1X2V,'k)7)vj'k(xlv,'k)7) = x1Viy (T5)
Commutative laws : XV y = yV (¥ ViX) (T6)
Separation laws : x10Viy = (x1Viy)(x2Viky)Viky (T7)
Absobtion laws : XV y = ()_(V;kY)V;ky (T8)
Assoc laws : (X1X2V,'k}7)(X3V,'k}7)V,'k)7 = (le,'kY)(XQXg,V,'kY)V,'kY (T9)

A\

{i,j, kY ={1,2,3} and k' # i.
X1,X2,X3,¥1,Y2,21,22 € T,
X = X1X2, )_/ = Vi) and z = Z127.
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Line Diagrams

O3 with K; = Ko = Kz = {1,2,3} and (i,j, k) € R iff i < j < k.

o ) - = DA
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Line Diagrams
O3 with Ky = Ko = K3 = {1,2,3} and (i,j, k) e R iff i < j < k.

O3 |1 2
1 ]1 12
2 2
3

9 concepts: (123,3,3); (12,23,3); (1,12,23); (12,2,23); (1,1,123);

‘1i123i3i;‘123i123; ‘;‘123i®i123z;‘®i123i123)
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Line diagrams (cont’)

[y
V]
o
o
o

o ) - = DA
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Line diagrams (cont’)

ol
s

e concepts: Oy := (0, ab, PF), Oy := (12,0, PF), O3 := (12, ab, ),
a:=(2,a,P), B:=(2,b,F), \:=(1,b,P) and v :=(1,a, F).

@ aw~1 3, B~z Xand X ~3 a, a form a cycle, («, 3, \).

@ In addition, y verifies v ~1 A, 7 ~3 8 and v ~3 a.

@ Once «, B, and X are represented, it is possible to represent -, since
there is no common point to the three dotted lines.
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Line diagram: an alternative
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Line diagram (cont’)

1345
2
c
bd
PFS
4 25 3 5 1
o O o O ¢}
d ac b d b
(pF) (Fs)
5
b A d A d b N\ [
4 L5
‘) (7] (s)
12345
[¢]
abcd
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Implications in Formal Contexts

@ An implication between attributes in M is a pair (Bi, By) of subsets
of M, and is usually denoted by B; — Bs.
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Implications in Formal Contexts

@ An implication between attributes in M is a pair (Bi, By) of subsets
of M, and is usually denoted by B; — Bs.

@ An implication By — B, holds in a context K := (G, M, /) if every
object having all the attributes in By also has all the attributes in B;.
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Implications in Formal Contexts

@ An implication between attributes in M is a pair (Bi, By) of subsets
of M, and is usually denoted by B; — Bs.

@ An implication By — B, holds in a context K := (G, M, /) if every
object having all the attributes in By also has all the attributes in B;.

e Notation: K = B; — B;
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Implications in Formal Contexts

@ An implication between attributes in M is a pair (Bi, By) of subsets
of M, and is usually denoted by B; — Bs.

@ An implication By — By holds in a context K := (G, M, ) if every
object having all the attributes in B; also has all the attributes in B;.

e Notation: K = B; — B;

KEB =B < VgeG,geB = geB}
<~ B, C BY

= /\{ua|a€Bl}§,umforaIIm€Bz

Thus, implications can be read from line diagrams
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An example of data analysis (cont')

Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear

100 X X

200 X X X X X
300 X X X X X
400 X X
500 X X
600 X X X

=] & = E E
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An example of data analysis (cont')

Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear
100 X X
200 X X X X X
300 X X X X X
400 X X
500 X X
600 X X X
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An example of data analysis (cont')

Shirt Jacket Hiking Boots Ski Pants Shoes Outerwear Clothes Footwear
100 X X
200 X X X X X
300 X X X X X
400 X X
500 X X
600 X X X

Any transaction with clothes and footwear has hiking boots.

{Clothes, Footwear } = { Outerwear, Hiking Boots}.

Kwuida (BFH)

Towards TCA

SSAOS 2023

18/20



A concise and parsimonious set of implications

o The set of all possible implications in K := (G, M, ) is 2M x 2M.
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A concise and parsimonious set of implications

o The set of all possible implications in K := (G, M, ) is 2M x 2M.

e Finding a minimal set of valid implications from which we can infer
all implications valid in K.
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A concise and parsimonious set of implications

o The set of all possible implications in K := (G, M, ) is 2M x 2M.
e Finding a minimal set of valid implications from which we can infer
all implications valid in K.

© Asubset T C M respects B; — By if B¢ Tor B, C T
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A concise and parsimonious set of implications

o The set of all possible implications in K := (G, M, ) is 2M x 2M.

e Finding a minimal set of valid implications from which we can infer
all implications valid in K.

© Asubset T C M respects B; — By if B¢ Tor B, C T

e B; — B, follows from L, (notation: £+ By — By), if each subset of
M respecting L also respects B; — B».
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A concise and parsimonious set of implications

The set of all possible implications in K := (G, M, 1) is 2M x 2M.
Finding a minimal set of valid implications from which we can infer
all implications valid in K.

A subset T C M respects By — By if By Tor B, C T

B; — B; follows from L, (notation: £+ By — Bjy), if each subset of
M respecting L also respects B; — B».

L is closed if every implication following from L is in £, and non
redundant if no implication in £ follows from other implications of L.
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A concise and parsimonious set of implications

The set of all possible implications in K := (G, M, 1) is 2M x 2M.

Finding a minimal set of valid implications from which we can infer
all implications valid in K.

A subset T C M respects By — By if BiZ Tor B C T

B; — B; follows from L, (notation: £+ By — Bjy), if each subset of
M respecting L also respects B; — B».

L is closed if every implication following from L is in £, and non
redundant if no implication in £ follows from other implications of L.

A set L of implications of K is complete if any implication that holds
in K follows from £, and sound if every implication of £ holds in K.
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A concise and parsimonious set of implications

o The set of all possible implications in K := (G, M, ) is 2M x 2M.

e Finding a minimal set of valid implications from which we can infer
all implications valid in K.

@ Asubset T C Mrespects By = By if By TorBoC T

e B; — B, follows from L, (notation: £+ By — By), if each subset of
M respecting L also respects B; — B».

o L is closed if every implication following from L is in £, and non
redundant if no implication in £ follows from other implications of L.

@ A set L of implications of K is complete if any implication that holds
in K follows from £, and sound if every implication of £ holds in K.

@ An implication basis of K is a set £ that is sound, complete and non
redundant.
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Triadic implications

Biedermann

An implication is a relation of the form (E — F)¢ valid in the context
with E, F C Kj and G C K\ with {j, k} = {2,3}.

(1) conditional attribute implications: (A; — A2)c

(2) attributional condition implications: (C; — G)a

A1,A2,A g K2 and Cl, C2, C Q K3.
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