An introduction to Triadic Concept Analysis

Léonard Kwuida

Bern University of Applied Sciences, Switzerland

joint work with Koguep Njionou Blaise Blériot Kouankam Djouohou Aubin Kwessy Mouona Romuald

SSAOS 2023, Stará Lesná, 2.9 - 8.9 2023

(日) (四) (코) (코) (코) (코)

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

★ ∃ ► ★

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

★ ∃ ► ★

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $A' := \{m \in M \mid \forall g \in A \ glm\}$

(4) (5) (4) (5)

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

$$A' := \{ m \in M \mid \forall g \in A \quad glm \}$$

 $B' := \{g \in G \mid \forall m \in B \quad glm\}.$

A B A A B A

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $\begin{array}{ll} A' := \{m \in M \mid \forall g \in A \quad glm\} \\ B' := \{g \in G \mid \forall m \in B \quad glm\}. \end{array}$

• Formal concept := a pair (A, B) with A' = B and B' = A.

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $\begin{array}{ll} A' := \{m \in M \mid \forall g \in A \quad glm\} \\ B' := \{g \in G \mid \forall m \in B \quad glm\}. \end{array}$

• Formal concept := a pair (A, B) with A' = B and B' = A.

 $A :\equiv$ extent of (A, B) and $B :\equiv$ intent of (A, B).

A B A A B A

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $\begin{array}{ll} A' := \{ m \in M \mid \forall g \in A \quad glm \} \\ B' := \{ g \in G \mid \forall m \in B \quad glm \}. \end{array}$

• Formal concept := a pair (A, B) with A' = B and B' = A.

 $A :\equiv$ extent of (A, B) and $B :\equiv$ intent of (A, B).

 $\mathfrak{B}(G, M, I) :=$ set of all concepts of (G, M, I).

• • = • • = •

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $\begin{array}{ll} A' := \{ m \in M \mid \forall g \in A \quad glm \} \\ B' := \{ g \in G \mid \forall m \in B \quad glm \}. \end{array}$

- Formal concept := a pair (A, B) with A' = B and B' = A. $A :\equiv$ extent of (A, B) and $B :\equiv$ intent of (A, B). $\mathfrak{B}(G, M, I) :=$ set of all concepts of (G, M, I).
- Concept hierarchy

<日

<</p>

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $\begin{array}{ll} A' := \{ m \in M \mid \forall g \in A \quad glm \} \\ B' := \{ g \in G \mid \forall m \in B \quad glm \}. \end{array}$

- Formal concept := a pair (A, B) with A' = B and B' = A. $A :\equiv$ extent of (A, B) and $B :\equiv$ intent of (A, B). $\mathfrak{B}(G, M, I) :=$ set of all concepts of (G, M, I).
- Concept hierarchy

 $(A,B) \leq (C,D) : \iff A \subseteq C \qquad (\iff D \subseteq B).$

• Formal context :=(G, M, I) with $I \subseteq G \times M$.

 $G :\equiv$ set of **objects** and $M :\equiv$ set of **attributes**.

• Derivation. $A \subseteq G$ and $B \subseteq M$.

 $\begin{array}{ll} A' := \{ m \in M \mid \forall g \in A \quad glm \} \\ B' := \{ g \in G \mid \forall m \in B \quad glm \}. \end{array}$

- Formal concept := a pair (A, B) with A' = B and B' = A. $A :\equiv$ extent of (A, B) and $B :\equiv$ intent of (A, B). $\mathfrak{B}(G, M, I) :=$ set of all concepts of (G, M, I).
- Concept hierarchy

 $(A,B) \leq (C,D)$: $\iff A \subseteq C$ ($\iff D \subseteq B$).

•
$$\underline{\mathfrak{B}}(G, M, I) := (\mathfrak{B}(G, M, I), \leq)$$

The Basic Theorem on Concept Lattices

 $\underline{\mathfrak{B}}(G, M, I)$ is a complete lattice in which infimum and supremum are given by:

$$\bigwedge_{t \in T} (A_t, B_t) = \left(\bigcap_{t \in T} A_t, \left(\bigcup_{t \in T} B_t \right)'' \right)$$
$$\bigvee_{t \in T} (A_t, B_t) = \left(\left(\bigcup_{t \in T} A_t \right)'', \bigcap_{t \in T} B_t \right).$$

< ∃ > <

The Basic Theorem on Concept Lattices

 $\underline{\mathfrak{B}}(G, M, I)$ is a complete lattice in which infimum and supremum are given by:

$$\bigwedge_{t\in T} (A_t, B_t) = \left(\bigcap_{t\in T} A_t, \left(\bigcup_{t\in T} B_t\right)''\right)$$
$$\bigvee_{t\in T} (A_t, B_t) = \left(\left(\bigcup_{t\in T} A_t\right)'', \bigcap_{t\in T} B_t\right).$$

 $\mathfrak{B}(G, M, I)$ is called the **concept lattice** of the context (G, M, I).

★ ∃ ► ★

The Basic Theorem on Concept Lattices

 $\underline{\mathfrak{B}}(G, M, I)$ is a complete lattice in which infimum and supremum are given by:

$$\bigwedge_{t\in T} (A_t, B_t) = \left(\bigcap_{t\in T} A_t, \left(\bigcup_{t\in T} B_t\right)''\right)$$
$$\bigvee_{t\in T} (A_t, B_t) = \left(\left(\bigcup_{t\in T} A_t\right)'', \bigcap_{t\in T} B_t\right).$$

 $\mathfrak{B}(G, M, I)$ is called the **concept lattice** of the context (G, M, I).

A complete lattice *L* is isomorphic to a concept lattice $\mathfrak{B}(G, M, I)$ iff there are mappings $\tilde{\gamma} : G \to L$ and $\tilde{\mu} : M \to L$ such that $\tilde{\gamma}(G)$ is \vee -dense in *L*, $\tilde{\mu}(M)$ is \wedge -dense in *L* and for all $g \in G$ and $m \in M$

$$gIm \iff \tilde{\gamma}(g) \leq \tilde{\mu}(m).$$

A D N A B N A B N A B N

Finite lattices $L \cong \underline{\mathfrak{B}}(L, L, \leq) \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

< □ > < □ > < □ > < □ > < □ >

Finite lattices $L \cong \underline{\mathfrak{B}}(L, L, \leq) \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

Powerset algebras $\underline{\mathfrak{B}}(X, X, \neq) \cong \mathcal{P}X$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite lattices $L \cong \underline{\mathfrak{B}}(L, L, \leq) \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

```
Powerset algebras \underline{\mathfrak{B}}(X, X, \neq) \cong \mathcal{P}X.
```

Distributive lattices $\mathfrak{B}(P, P, \not\geq) \cong \mathcal{O}(P, \leq)$.

イロト 不得下 イヨト イヨト 二日

Finite lattices $L \cong \underline{\mathfrak{B}}(L, L, \leq) \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

```
Powerset algebras \underline{\mathfrak{B}}(X, X, \neq) \cong \mathcal{P}X.
```

Distributive lattices $\mathfrak{B}(P, P, \not\geq) \cong \mathcal{O}(P, \leq)$.

Dedekind-MacNeil completion $\mathfrak{B}(P, P, \leq) \cong DM(P, \leq)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Finite lattices $L \cong \underline{\mathfrak{B}}(L, L, \leq) \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

```
Powerset algebras \underline{\mathfrak{B}}(X, X, \neq) \cong \mathcal{P}X.
```

Distributive lattices $\mathfrak{B}(P, P, \not\geq) \cong \mathcal{O}(P, \leq)$.

Dedekind-MacNeil completion $\mathfrak{B}(P, P, \leq) \cong DM(P, \leq)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Finite lattices $L \cong \underline{\mathfrak{B}}(L, L, \leq) \cong \underline{\mathfrak{B}}(J(L), M(L), \leq)$.

Powerset algebras $\underline{\mathfrak{B}}(X, X, \neq) \cong \mathcal{P}X$.

Distributive lattices $\mathfrak{B}(P, P, \not\geq) \cong \mathcal{O}(P, \leq)$.

Dedekind-MacNeil completion $\mathfrak{B}(P, P, \leq) \cong DM(P, \leq)$.

Remark

- The derivation (', ') is a Galois connection between $\mathcal{P}(G)$ and $\mathcal{P}(M)$.
- The operator " is a closure operator on G (resp. M).
- $Ext(\mathbb{K})$ denotes the set of extents of \mathbb{K} , and is a closure system on G.
- $Int(\mathbb{K})$ denotes the set of intents of \mathbb{K} , and is a closure system on M.

イロト イポト イヨト イヨト

An example of data analysis

	Database \mathcal{D}	Taxonomy T				
Transaction	Items Bought		-			
100	Shirt	Clothes	Footwear			
200	Jacket, Hiking Boots					
300	Ski Pants, Hiking Boots	Outomunar Shirts	Choos Liking Doots			
400	Shoes	Outerwear Shirts	Shoes Hiking Books			
500	Shoes					
600	Jacket	Jackets Ski Pants				

Frequent Itemsets

Itemset	Support
{ Jacket }	2
{ Outerwear }	3
{ Clothes }	4
{ Shoes }	2
{ Hiking Boots }	2
{ Footwear }	4
{ Outerwear, Hiking Boots }	2
{ Clothes, Hiking Boots }	2
{ Outerwear, Footwear }	2
{ Clothes, Footwear }	2

Rules	Rules					
Rule	Support	Conf.				
Outerwear ⇒ Hiking Boots	33%	66.6%				
$Outerwear \Rightarrow Footwear$	33%	66.6%				
Hiking Boots \Rightarrow Outerwear	33%	100%				
Hiking Boots \Rightarrow Clothes	33%	100%				

< □ > < □ > < □ > < □ > < □ >

	Shirt	Jacket	Hiking Boots	Ski Pants	Shoes	Outerwear	Clothes	Footwear
100	×						×	
200		×	×			×	×	×
300			×	×		×	×	×
400					×			×
500					×			×
600		Х				×	×	

• • • • • • • • • • • •

	Shirt	Jacket	Hiking Boots	Ski Pants	Shoes	Outerwear	Clothes	Footwear
100	×						×	
200		×	×			×	×	×
300			×	×		×	×	×
400					×			×
500					×			×
600		×				×	×	

(日)

	Shirt	Jacket	Hiking Boots	Ski Pants	Shoes	Outerwear	Clothes	Footwear
100	×						×	
200		×	×			×	×	×
300			×	×		×	×	×
400					×			×
500					Х			×
600		×				×	×	

Any transaction with clothes and footwear has hiking boots.

{Clothes, Footwear } \implies { Outerwear, Hiking Boots}.

.

• proposed by Lehmann and Wille

→ Ξ →

.

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.

→ ∃ ▶

٠

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.
- $K_1 \equiv$ objects, $K_2 \equiv$ attributes and $K_3 \equiv$ conditions

< ∃ > <

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.
- $K_1 \equiv$ objects, $K_2 \equiv$ attributes and $K_3 \equiv$ conditions
- From \mathbb{K} we get three dyadic contexts: $\mathbb{K}^{(1)} := (K_1, K_2 \times K_3, \mathcal{R}^{(1)_{\mathcal{R}}}), \mathbb{K}^{(2)} := (K_2, K_1 \times K_3, \mathcal{R}^{(2)_{\mathcal{R}}})$ and $\mathbb{K}^{(3)} := (K_3, K_1 \times K_2, \mathcal{R}^{(3)_{\mathcal{R}}})$ s.t. for all $(o, a, c) \in K_1 \times K_2 \times K_3$,

$$o\mathcal{R}^{(1)_{\mathcal{R}}}(a,c) \Leftrightarrow a\mathcal{R}^{(2)_{\mathcal{R}}}(o,c) \Leftrightarrow c\mathcal{R}^{(3)_{\mathcal{R}}}(o,a) \Leftrightarrow (o,a,c) \in \mathcal{R}.$$

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.
- $K_1 \equiv$ objects, $K_2 \equiv$ attributes and $K_3 \equiv$ conditions
- From \mathbb{K} we get three dyadic contexts: $\mathbb{K}^{(1)} := (K_1, K_2 \times K_3, \mathcal{R}^{(1)_{\mathcal{R}}}), \mathbb{K}^{(2)} := (K_2, K_1 \times K_3, \mathcal{R}^{(2)_{\mathcal{R}}}) \text{ and}$ $\mathbb{K}^{(3)} := (K_3, K_1 \times K_2, \mathcal{R}^{(3)_{\mathcal{R}}}) \text{ s.t. for all } (o, a, c) \in K_1 \times K_2 \times K_3,$ $o\mathcal{R}^{(1)_{\mathcal{R}}}(a, c) \Leftrightarrow a\mathcal{R}^{(2)_{\mathcal{R}}}(o, c) \Leftrightarrow c\mathcal{R}^{(3)_{\mathcal{R}}}(o, a) \Leftrightarrow (o, a, c) \in \mathcal{R}.$
- For $i \in \{1, 2, 3\}$, the derivation $\mathbb{K}^{(i)}$ is called $(i)_{\mathcal{R}}$ -derivation.

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.
- $K_1 \equiv$ objects, $K_2 \equiv$ attributes and $K_3 \equiv$ conditions
- From \mathbb{K} we get three dyadic contexts: $\mathbb{K}^{(1)} := (\mathcal{K}_1, \mathcal{K}_2 \times \mathcal{K}_3, \mathcal{R}^{(1)_{\mathcal{R}}}), \mathbb{K}^{(2)} := (\mathcal{K}_2, \mathcal{K}_1 \times \mathcal{K}_3, \mathcal{R}^{(2)_{\mathcal{R}}})$ and $\mathbb{K}^{(3)} := (\mathcal{K}_3, \mathcal{K}_1 \times \mathcal{K}_2, \mathcal{R}^{(3)_{\mathcal{R}}})$ s.t. for all $(o, a, c) \in \mathcal{K}_1 \times \mathcal{K}_2 \times \mathcal{K}_3$,

$$o\mathcal{R}^{(1)_{\mathcal{R}}}(a,c) \Leftrightarrow a\mathcal{R}^{(2)_{\mathcal{R}}}(o,c) \Leftrightarrow c\mathcal{R}^{(3)_{\mathcal{R}}}(o,a) \Leftrightarrow (o,a,c) \in \mathcal{R}.$$

• For $i \in \{1, 2, 3\}$, the derivation $\mathbb{K}^{(i)}$ is called $(i)_{\mathcal{R}}$ -derivation. For $X \subseteq K_i$ and $Z \subseteq K_j \times K_k$, with j < k,

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.
- $K_1 \equiv$ objects, $K_2 \equiv$ attributes and $K_3 \equiv$ conditions
- From \mathbb{K} we get three dyadic contexts: $\mathbb{K}^{(1)} := (K_1, K_2 \times K_3, \mathcal{R}^{(1)_{\mathcal{R}}}), \mathbb{K}^{(2)} := (K_2, K_1 \times K_3, \mathcal{R}^{(2)_{\mathcal{R}}}) \text{ and}$ $\mathbb{K}^{(3)} := (K_3, K_1 \times K_2, \mathcal{R}^{(3)_{\mathcal{R}}}) \text{ s.t. for all } (o, a, c) \in K_1 \times K_2 \times K_3,$

$$o\mathcal{R}^{(1)_{\mathcal{R}}}(\mathsf{a},\mathsf{c}) \Leftrightarrow \mathsf{a}\mathcal{R}^{(2)_{\mathcal{R}}}(\mathsf{o},\mathsf{c}) \Leftrightarrow \mathsf{c}\mathcal{R}^{(3)_{\mathcal{R}}}(\mathsf{o},\mathsf{a}) \Leftrightarrow (\mathsf{o},\mathsf{a},\mathsf{c}) \in \mathcal{R}.$$

- For $i \in \{1, 2, 3\}$, the derivation $\mathbb{K}^{(i)}$ is called $(i)_{\mathcal{R}}$ -derivation. For $X \subseteq K_i$ and $Z \subseteq K_j \times K_k$, with j < k,
 - ► $X^{(i)_{\mathcal{R}}} = \{(a_j, a_k) \in K_j \times K_k \mid \forall a_i \in X, (a_1, a_2, a_3) \in \mathcal{R}\},\$

• • = • • = •

- proposed by Lehmann and Wille
- triadic context: $\mathbb{K} := (K_1, K_2, K_3, \mathcal{R})$ with $\mathcal{R} \subseteq K_1 \times K_2 \times K_3$.
- $K_1 \equiv$ objects, $K_2 \equiv$ attributes and $K_3 \equiv$ conditions
- From \mathbb{K} we get three dyadic contexts: $\mathbb{K}^{(1)} := (K_1, K_2 \times K_3, \mathcal{R}^{(1)_{\mathcal{R}}}), \mathbb{K}^{(2)} := (K_2, K_1 \times K_3, \mathcal{R}^{(2)_{\mathcal{R}}}) \text{ and}$ $\mathbb{K}^{(3)} := (K_3, K_1 \times K_2, \mathcal{R}^{(3)_{\mathcal{R}}}) \text{ s.t. for all } (o, a, c) \in K_1 \times K_2 \times K_3,$

$$o\mathcal{R}^{(1)_{\mathcal{R}}}(\mathsf{a},\mathsf{c}) \Leftrightarrow \mathsf{a}\mathcal{R}^{(2)_{\mathcal{R}}}(\mathsf{o},\mathsf{c}) \Leftrightarrow \mathsf{c}\mathcal{R}^{(3)_{\mathcal{R}}}(\mathsf{o},\mathsf{a}) \Leftrightarrow (\mathsf{o},\mathsf{a},\mathsf{c}) \in \mathcal{R}.$$

• For $i \in \{1, 2, 3\}$, the derivation $\mathbb{K}^{(i)}$ is called $(i)_{\mathcal{R}}$ -derivation. For $X \subseteq K_i$ and $Z \subseteq K_j \times K_k$, with j < k,

$$\blacktriangleright X^{(i)_{\mathcal{R}}} = \{(a_j, a_k) \in K_j \times K_k \mid \forall a_i \in X, (a_1, a_2, a_3) \in \mathcal{R}\},\$$

 $\blacktriangleright Z^{(i)_{\mathcal{R}}} = \{a_i \in K_i \mid \forall (a_j, a_k) \in Z, (a_1, a_2, a_3) \in \mathcal{R}\}.$

• • = • • = •

Contexts in triadic setting (cont')

\mathbb{K}		F	C				F			9	5	
	а	b	с	d	a	b	С	d	а	b	с	d
1	х					х	X			х		х
2	x	х	х		x		х		x		х	х
3		х						х		х		
4				х		х		х	x		х	
5	x		х	х	x		х			х		х

(日)

Contexts in triadic setting (cont')

\mathbb{K}		F	C				F			9	5	
	а	b	с	d	а	b	С	d	а	b	с	d
1	х					х	X			х		х
2	х	х	х		x		х		x		х	х
3		х						Х		х		
4				х		х		х	x		х	
5	x		х	х	x		х			х		х

K	Р	F	S
1	а	bc	bd
2	abc	ac	acd
3	b	d	b
4	d	bd	ас
5	acd	ac	bd

	(
Kwuuda (REHI	
i vvulua i		

(日)

• A triadic concept of \mathbb{K} is a triple (A_1, A_2, A_3) with $A_i \subseteq K_i$ and $A_i = (A_j \times A_k)^{(i)_{\mathcal{R}}}$, $\{i, j, k\} = \{1, 2, 3\}$ with j < k. We call A_1 extent, A_2 intent and A_3 modus.

.

- A triadic concept of \mathbb{K} is a triple (A_1, A_2, A_3) with $A_i \subseteq K_i$ and $A_i = (A_j \times A_k)^{(i)_{\mathcal{R}}}$, $\{i, j, k\} = \{1, 2, 3\}$ with j < k. We call A_1 extent, A_2 intent and A_3 modus.
- In dyadic FCA, concepts are maximal rectangles of *I*. In triadic setting, (tri)concepts are maximal cuboids of *R*. i.e.
 A₁ × A₂ × A₃ ⊆ *R*, maximal with respect to inclusion.

A B A A B A

- A triadic concept of \mathbb{K} is a triple (A_1, A_2, A_3) with $A_i \subseteq K_i$ and $A_i = (A_j \times A_k)^{(i)_{\mathcal{R}}}$, $\{i, j, k\} = \{1, 2, 3\}$ with j < k. We call A_1 extent, A_2 intent and A_3 modus.
- In dyadic FCA, concepts are maximal rectangles of *I*. In triadic setting, (tri)concepts are maximal cuboids of *R*. i.e.
 A₁ × A₂ × A₃ ⊆ *R*, maximal with respect to inclusion.

	\mathbb{K}	Р	F	S
•	1	а	bc	bd
	2	abc	ac	acd
	3	b	d	b
	4	d	bd	ас
	5	acd	ас	bd

- A triadic concept of \mathbb{K} is a triple (A_1, A_2, A_3) with $A_i \subseteq K_i$ and $A_i = (A_j \times A_k)^{(i)_{\mathcal{R}}}$, $\{i, j, k\} = \{1, 2, 3\}$ with j < k. We call A_1 extent, A_2 intent and A_3 modus.
- In dyadic FCA, concepts are maximal rectangles of *I*. In triadic setting, (tri)concepts are maximal cuboids of *R*. i.e.
 A₁ × A₂ × A₃ ⊆ *R*, maximal with respect to inclusion.

•
$$2 \times ac \times PF \subsetneq 25 \times ac \times PF \subseteq \mathcal{R}$$
.

.

- A triadic concept of \mathbb{K} is a triple (A_1, A_2, A_3) with $A_i \subseteq K_i$ and $A_i = (A_j \times A_k)^{(i)_{\mathcal{R}}}$, $\{i, j, k\} = \{1, 2, 3\}$ with j < k. We call A_1 extent, A_2 intent and A_3 modus.
- In dyadic FCA, concepts are maximal rectangles of *I*. In triadic setting, (tri)concepts are maximal cuboids of *R*. i.e.
 A₁ × A₂ × A₃ ⊆ *R*, maximal with respect to inclusion.

\mathbb{K}	Р	F	S
1	а	bc	bd
2	abc	ac	acd
3	b	d	b
4	d	bd	ас
5	acd	ac	bd

• $2 \times ac \times PF \subsetneq 25 \times ac \times PF \subseteq \mathcal{R}$.

• (2, ac, PF) is not a triconcept and (25, ac, PF) is a triconcept.

• • = • • = •

- A triadic concept of \mathbb{K} is a triple (A_1, A_2, A_3) with $A_i \subseteq K_i$ and $A_i = (A_j \times A_k)^{(i)_{\mathcal{R}}}$, $\{i, j, k\} = \{1, 2, 3\}$ with j < k. We call A_1 extent, A_2 intent and A_3 modus.
- In dyadic FCA, concepts are maximal rectangles of *I*. In triadic setting, (tri)concepts are maximal cuboids of *R*. i.e.
 A₁ × A₂ × A₃ ⊆ *R*, maximal with respect to inclusion.

	\mathbb{K}	Р	F	S	
•	1	а	bc	bd	
	2	abc	ас	acd	
	3	b	d	b	
	4	d	bd	ас	
	5	acd	ac	bd	

• $2 \times ac \times PF \subsetneq 25 \times ac \times PF \subseteq \mathcal{R}$.

- (2, *ac*, *PF*) is not a triconcept and (25, *ac*, *PF*) is a triconcept.
- \mathbb{K} has 24 concepts and $\mathbb{K}^{(i)}$ 16, 11, 8 concepts for i = 1, 2, 3 resp.

Kwuida (BFH)

 The set 𝔅(𝔅) of all triconcepts of 𝔅 is quasi-ordered by set inclusion on each component: (𝔅(𝔅), ≤₁, ≤₂, ≤₃) with

 $(A_1, A_2, A_3) \lesssim_i (B_1, B_2, B_3) : \iff A_i \subseteq B_i$

• Set $\sim_i := \leq_i \cap \geq_i$. Then $(A_1, A_2, A_3) \sim_i (B_1, B_2, B_3) \iff A_i = B_i$.

(1) $x \leq_i y$ and $x \leq_j y$, imply $x \geq_k y$, (antiordinality) (2) $x \sim_i y$ and $x \sim_j y$, imply x = y. (uniqueness condition)

 The set 𝔅(𝔅) of all triconcepts of 𝔅 is quasi-ordered by set inclusion on each component: (𝔅(𝔅), ≤₁, ≤₂, ≤₃) with

 $(A_1, A_2, A_3) \lesssim_i (B_1, B_2, B_3) : \iff A_i \subseteq B_i$

• Set $\sim_i := \leq_i \cap \geq_i$. Then $(A_1, A_2, A_3) \sim_i (B_1, B_2, B_3) \iff A_i = B_i$.

(1)
$$x \leq_i y$$
 and $x \leq_j y$, imply $x \geq_k y$,(antiordinality)(2) $x \sim_i y$ and $x \sim_j y$, imply $x = y$.(uniqueness condition)

A **triordered set** is a relational structure $(T, \leq_1, \leq_2, \leq_3)$ for which, \leq_i is a quasi-order, $1 \leq i \leq 3$ and (1), (2) are satisfied above.

 The set 𝔅(𝔅) of all triconcepts of 𝔅 is quasi-ordered by set inclusion on each component: (𝔅(𝔅), ≤₁, ≤₂, ≤₃) with

 $(A_1, A_2, A_3) \lesssim_i (B_1, B_2, B_3) : \iff A_i \subseteq B_i$

• Set $\sim_i := \leq_i \cap \geq_i$. Then $(A_1, A_2, A_3) \sim_i (B_1, B_2, B_3) \iff A_i = B_i$.

(1)
$$x \leq_i y$$
 and $x \leq_j y$, imply $x \geq_k y$,(antiordinality)(2) $x \sim_i y$ and $x \sim_j y$, imply $x = y$.(uniqueness condition)

A **triordered set** is a relational structure $(T, \leq_1, \leq_2, \leq_3)$ for which, \leq_i is a quasi-order, $1 \leq i \leq 3$ and (1), (2) are satisfied above.

What about completeness?

Kwuida (BFH)

• For $A_k \subseteq K_k$, set $\mathbb{K}_{A_k}^{ij} := (K_i, K_j, \mathcal{R}_{A_k}^{ij})$, with i < j and define: $x \mathcal{R}_{A_k}^{ij} y$ iff x, y and z are (after reordering) in \mathcal{R} , for all $z \in A_k$.

- For $A_k \subseteq K_k$, set $\mathbb{K}_{A_k}^{ij} := (K_i, K_j, \mathcal{R}_{A_k}^{ij})$, with i < j and define: $x \mathcal{R}_{A_k}^{ij} y$ iff x, y and z are (after reordering) in \mathcal{R} , for all $z \in A_k$.
- Derivation operators in this context are called $(i, j, A_k)_{\mathcal{R}}$ -derivations.

- For $A_k \subseteq K_k$, set $\mathbb{K}_{A_k}^{ij} := (K_i, K_j, \mathcal{R}_{A_k}^{ij})$, with i < j and define: $x \mathcal{R}_{A_k}^{ij} y$ iff x, y and z are (after reordering) in \mathcal{R} , for all $z \in A_k$.
- Derivation operators in this context are called $(i, j, A_k)_{\mathcal{R}}$ -derivations.
- The triadic concept generated by (X_i, X_k) , $X_i \subseteq K_i$ and $X_k \subseteq K_k$, is $b_{ik}(X_i, X_k) := (B_1, B_2, B_3)$, where:

$$B_j = X_i^{(i,j,X_k)_{\mathcal{R}}}, \quad B_i = X_i^{(i,j,X_k)_{\mathcal{R}}(i,j,X_k)_{\mathcal{R}}} \text{ and } B_k = (B_i \times B_j)^{(k)_{\mathcal{R}}}$$

- For $A_k \subseteq K_k$, set $\mathbb{K}_{A_k}^{ij} := (K_i, K_j, \mathcal{R}_{A_k}^{ij})$, with i < j and define: $x \mathcal{R}_{A_k}^{ij} y$ iff x, y and z are (after reordering) in \mathcal{R} , for all $z \in A_k$.
- Derivation operators in this context are called $(i, j, A_k)_{\mathcal{R}}$ -derivations.
- The triadic concept generated by (X_i, X_k) , $X_i \subseteq K_i$ and $X_k \subseteq K_k$, is $b_{ik}(X_i, X_k) := (B_1, B_2, B_3)$, where:

$$B_j = X_i^{(i,j,X_k)_\mathcal{R}}, \quad B_i = X_i^{(i,j,X_k)_\mathcal{R}(i,j,X_k)_\mathcal{R}} ext{ and } B_k = (B_i imes B_j)^{(k)_\mathcal{R}}$$

• Let α and β be sets of concepts of a triadic context \mathbb{K} . We set $X_i = \bigcup \{A_i : (A_1, A_2, A_3) \in \alpha\}$ and $X_k = \bigcup \{A_k : (A_1, A_2, A_3) \in \beta\}$. The *ik*-join of (α, β) is the triadic concept $\nabla_{ik}(\alpha, \beta) := b_{ik}(X_i, X_k)$.

- For $A_k \subseteq K_k$, set $\mathbb{K}_{A_k}^{ij} := (K_i, K_j, \mathcal{R}_{A_k}^{ij})$, with i < j and define: $x \mathcal{R}_{A_k}^{ij} y$ iff x, y and z are (after reordering) in \mathcal{R} , for all $z \in A_k$.
- Derivation operators in this context are called $(i, j, A_k)_{\mathcal{R}}$ -derivations.
- The triadic concept generated by (X_i, X_k) , $X_i \subseteq K_i$ and $X_k \subseteq K_k$, is $b_{ik}(X_i, X_k) := (B_1, B_2, B_3)$, where:

$$B_j = X_i^{(i,j,X_k)_\mathcal{R}}, \quad B_i = X_i^{(i,j,X_k)_\mathcal{R}(i,j,X_k)_\mathcal{R}} ext{ and } B_k = (B_i imes B_j)^{(k)_\mathcal{R}}$$

- Let α and β be sets of concepts of a triadic context \mathbb{K} . We set $X_i = \bigcup \{A_i : (A_1, A_2, A_3) \in \alpha\}$ and $X_k = \bigcup \{A_k : (A_1, A_2, A_3) \in \beta\}$. The *ik*-join of (α, β) is the triadic concept $\nabla_{ik}(\alpha, \beta) := b_{ik}(X_i, X_k)$.
- Quite complicated structure: Biedermann

Trilattices

A trilattice is a structure $(T, \nabla_{12}, \nabla_{21}, \nabla_{13}, \nabla_{31}, \nabla_{23}, \nabla_{32})$ where T is a non-empty set and ∇_{ik} are six (2,2)-ary operators which satisfying **Idempotent laws :** $x \nabla_{ik} x = x$ (T1) 1st comp. comm. laws : $x_1 x_2 \nabla_{ik} \bar{y} = x_2 x_1 \nabla_{ik} \bar{y}$ (T2) **Bound laws :** $x_1(x_1x_2\nabla_{ik}\bar{y})\nabla_{ik'}\bar{z} = (x_1x_2\nabla_{ik}\bar{y})\nabla_{ik'}\bar{z}$ (T3) **Limit laws** : $(\bar{x}\nabla_{ik}\bar{y})(\bar{y}\nabla_{ki}\bar{x})\nabla_{ik}(\bar{x}\nabla_{ik}\bar{y}) = \bar{x}\nabla_{ik}\bar{y}$ (T4)Antiordinal laws : $(x_1 \nabla_{ik} \bar{y})(x_1 x_2 \nabla_{ik} \bar{y}) \nabla_{ik}(x_1 \nabla_{ik} \bar{y}) = x_1 \nabla_{ik} \bar{y}$ (T5) **Commutative laws** : $\bar{x}\nabla_{ik}\bar{y} = \bar{y}\nabla_{ki}(\bar{y}\nabla_{ki}\bar{x})$ (T6)**Separation laws** : $x_1 x_2 \nabla_{ik} \bar{y} = (x_1 \nabla_{ik} \bar{y}) (x_2 \nabla_{ik} \bar{y}) \nabla_{ik} \bar{y}$ (T7) **Absobtion laws :** $\bar{x}\nabla_{ik}\bar{y} = (\bar{x}\nabla_{ik}\bar{y})\nabla_{ik}\bar{y}$ (T8) Assoc laws : $(x_1 x_2 \nabla_{ik} \bar{y})(x_3 \nabla_{ik} \bar{y}) \nabla_{ik} \bar{y} = (x_1 \nabla_{ik} \bar{y})(x_2 x_3 \nabla_{ik} \bar{y}) \nabla_{ik} \bar{y}$ (T9)

$$\{i, j, k\} = \{1, 2, 3\}$$
 and $k' \neq i$.
 $x_1, x_2, x_3, y_1, y_2, z_1, z_2 \in T$,
 $\bar{x} = x_1 x_2, \ \bar{y} = y_1 y_2$ and $\bar{z} = z_1 z_2$.

Line Diagrams

 \mathbb{O}_3 with $K_1 = K_2 = K_3 = \{1, 2, 3\}$ and $(i, j, k) \in \mathcal{R}$ iff $i \le j \le k$.

イロト イ団ト イヨト イヨト 二日

Line Diagrams

 \mathbb{O}_3 with $K_1 = K_2 = K_3 = \{1, 2, 3\}$ and $(i, j, k) \in \mathcal{R}$ iff $i \le j \le k$.

9 concepts: (123, 3, 3); (12, 23, 3); (1, 12, 23); (12, 2, 23); (1, 1, 123); $(1, 123, 3); (123, 123; \emptyset); (123, \emptyset, 123); (\emptyset, 123, 123).$ ▶ ▲ 臣 ▶ ▲ Kwuida (BFH)

Towards TCA

Line diagrams (cont')

	P		F		
	а	b	а	b	
1		х	x		
2	x			х	

< □ > < □ > < □ > < □ > < □ >

Line diagrams (cont')

- concepts: $O_1 := (\emptyset, ab, PF), O_2 := (12, \emptyset, PF), O_3 := (12, ab, \emptyset), \alpha := (2, a, P), \beta := (2, b, F), \lambda := (1, b, P) and \gamma := (1, a, F).$
- $\alpha \sim_1 \beta$, $\beta \sim_2 \lambda$ and $\lambda \sim_3 \alpha$, a form a cycle, (α, β, λ) .
- In addition, γ verifies $\gamma \sim_1 \lambda$, $\gamma \sim_3 \beta$ and $\gamma \sim_2 \alpha$.
- Once α, β, and λ are represented, it is possible to represent γ, since there is no common point to the three dotted lines.

Line diagram: an alternative

Kwuida (BFH)

■ ト イ ヨ ト ヨ ク へ (~ SSAOS 2023 15 / 20

< □ > < 同 > < 回 > < Ξ > < Ξ

Line diagram (cont')

Kwuida (BFH)

SSAOS 2023 16 / 20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• An implication between attributes in M is a pair (B_1, B_2) of subsets of M, and is usually denoted by $B_1 \rightarrow B_2$.

.

- An implication between attributes in M is a pair (B_1, B_2) of subsets of M, and is usually denoted by $B_1 \rightarrow B_2$.
- An implication B₁ → B₂ holds in a context K := (G, M, I) if every object having all the attributes in B₁ also has all the attributes in B₂.

.

- An implication between attributes in M is a pair (B_1, B_2) of subsets of M, and is usually denoted by $B_1 \rightarrow B_2$.
- An implication B₁ → B₂ holds in a context K := (G, M, I) if every object having all the attributes in B₁ also has all the attributes in B₂.
- Notation: $\mathbb{K} \models B_1 \rightarrow B_2$

.

- An implication between attributes in M is a pair (B_1, B_2) of subsets of M, and is usually denoted by $B_1 \rightarrow B_2$.
- An implication B₁ → B₂ holds in a context K := (G, M, I) if every object having all the attributes in B₁ also has all the attributes in B₂.
- Notation: $\mathbb{K} \models B_1 \rightarrow B_2$

$$\mathbb{K} \models B_1 \to B_2 \iff \forall g \in G, g \in B'_1 \implies g \in B'_2$$
$$\iff B_2 \subseteq B''_1$$
$$\iff \bigwedge \{\mu a \mid a \in B_1\} \le \mu m \text{ for all } m \in B_2$$

Thus, implications can be read from line diagrams

	Shirt	Jacket	Hiking Boots	Ski Pants	Shoes	Outerwear	Clothes	Footwear
100	×						×	
200		×	×			×	×	×
300			×	×		×	×	×
400					×			×
500					×			×
600		Х				×	×	

Image: A matching of the second se

	Shirt	Jacket	Hiking Boots	Ski Pants	Shoes	Outerwear	Clothes	Footwear
100	×						×	
200		×	×			×	×	×
300			×	×		×	×	×
400					×			×
500					×			×
600		×				×	×	

• • • • • • • • • • • •

H 5

	Shirt	Jacket	Hiking Boots	Ski Pants	Shoes	Outerwear	Clothes	Footwear
100	×						×	
200		×	×			×	×	×
300			×	×		×	×	×
400					×			×
500					×			×
600		×				×	×	

Any transaction with clothes and footwear has hiking boots.

{Clothes, Footwear } \implies { Outerwear, Hiking Boots}.

Kwuuda I	REH
i vvulua i	

• The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.

- The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.
- Finding a minimal set of valid implications from which we can **infer** all implications valid in ℝ.

- The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.
- Finding a minimal set of valid implications from which we can infer all implications valid in $\mathbb{K}.$
- A subset $T \subseteq M$ respects $B_1 \rightarrow B_2$ if $B_1 \nsubseteq T$ or $B_2 \subseteq T$

- The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.
- Finding a minimal set of valid implications from which we can infer all implications valid in \mathbb{K} .
- A subset $T \subseteq M$ respects $B_1 \to B_2$ if $B_1 \nsubseteq T$ or $B_2 \subseteq T$
- B₁ → B₂ follows from L, (notation: L ⊢ B₁ → B₂), if each subset of M respecting L also respects B₁ → B₂.

(日) (四) (日) (日) (日)

- The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.
- Finding a minimal set of valid implications from which we can infer all implications valid in \mathbb{K} .
- A subset $T \subseteq M$ respects $B_1 \to B_2$ if $B_1 \nsubseteq T$ or $B_2 \subseteq T$
- B₁ → B₂ follows from L, (notation: L ⊢ B₁ → B₂), if each subset of M respecting L also respects B₁ → B₂.
- \mathcal{L} is **closed** if every implication following from \mathcal{L} is in \mathcal{L} , and non redundant if no implication in \mathcal{L} follows from other implications of \mathcal{L} .

< □ > < 同 > < 回 > < 回 > < 回 >

- The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.
- Finding a minimal set of valid implications from which we can infer all implications valid in \mathbb{K} .
- A subset $T \subseteq M$ respects $B_1 \to B_2$ if $B_1 \nsubseteq T$ or $B_2 \subseteq T$
- B₁ → B₂ follows from L, (notation: L ⊢ B₁ → B₂), if each subset of M respecting L also respects B₁ → B₂.
- \mathcal{L} is **closed** if every implication following from \mathcal{L} is in \mathcal{L} , and non redundant if no implication in \mathcal{L} follows from other implications of \mathcal{L} .
- A set *L* of implications of K is complete if any implication that holds in K follows from *L*, and sound if every implication of *L* holds in K.

イロト イポト イヨト イヨト

- The set of all possible implications in $\mathbb{K} := (G, M, I)$ is $2^M \times 2^M$.
- Finding a minimal set of valid implications from which we can infer all implications valid in \mathbb{K} .
- A subset $T \subseteq M$ respects $B_1 \to B_2$ if $B_1 \nsubseteq T$ or $B_2 \subseteq T$
- B₁ → B₂ follows from L, (notation: L ⊢ B₁ → B₂), if each subset of M respecting L also respects B₁ → B₂.
- \mathcal{L} is **closed** if every implication following from \mathcal{L} is in \mathcal{L} , and non redundant if no implication in \mathcal{L} follows from other implications of \mathcal{L} .
- A set *L* of implications of K is complete if any implication that holds in K follows from *L*, and sound if every implication of *L* holds in K.
- \bullet An implication basis of $\mathbb K$ is a set $\mathcal L$ that is sound, complete and non redundant.

Kwuida (BFH)

イロト イヨト イヨト イヨト

Triadic implications

Biedermann

An implication is a relation of the form $(E \to F)_G$ valid in the context with $E, F \subseteq K_j$ and $G \subseteq K_k$ with $\{j, k\} = \{2, 3\}$.

- (1) conditional attribute implications: $(A_1 \rightarrow A_2)_C$
- (2) attributional condition implications: $(C_1 \rightarrow C_2)_A$

 $A_1, A_2, A \subseteq K_2$ and $C_1, C_2, C \subseteq K_3$.

.