Entropy modulo a prime

Tom Leinster University of Edinburgh

Three talks

(△ⁿ) ℝ CATEGORICAL MACHINE Shannon entropy

Sunday: Operads

Monday: An algebraic view of entropy

Thursday: Entropy modulo a prime

Trajectory of these three talks

Confession

- This talk doesn't have much to do with universal algebra, or lattice theory, or indeed category theory.
- It's not clear *where* it fits into the mathematical landscape. No one knows! It's a mystery.
- But this talk *does* follow on from the algebraic, axiomatic approach to entropy described in my last talk.
- It channels the spirit of the previous talks, rather than the details.

Recap of Monday (just the bits we need) Shannon entropy takes as input a finite probability distribution

$$\mathbf{p}=(p_1,\ldots,p_n) \qquad (p_i\geq 0,\sum p_i=1)$$

and produces as output a real number,

$$H(\mathbf{p}) = -\sum_{i=1}^{n} p_i \log p_i \qquad \text{(where } 0 \log 0 = 0\text{)}.$$

It satisfies a recursivity rule:

$$H(\mathbf{p} \circ (\mathbf{q}_1,\ldots,\mathbf{q}_n)) = H(\mathbf{p}) + \sum_{i=1}^n p_i H(\mathbf{q}_i),$$

where $\mathbf{p} \circ (\mathbf{q}_1, \dots, \mathbf{q}_n)$ is the composite distribution

$$(p_1q_1^1,\ldots,p_1q_1^{k_1},\ldots,p_nq_n^1,\ldots,p_nq_n^{k_n}).$$

H is the *only* continuous functional obeying this rule, up to a scalar factor.

Today's idea

 ${\mathbb R}$ appears twice in the definition of Shannon entropy:

- the probabilities p_i are in $\mathbb R$
- the entropy $H(\mathbf{p})$ is in \mathbb{R} .

Thinking algebraically: let's try to replace ${\mathbb R}$ by another field.

To make this generalization, how should we look at real entropy?

- As uniformity, or disorder, or genericity, or diversity, \ldots ? No x
- As defined by the formula $-\sum p_i \log p_i$? Maybe helpful?
- As characterized by the recursivity rule? Yes \checkmark

We won't do general fields: just $\mathbb{Z}/p\mathbb{Z}$ for primes p.

What we'll do

Fix a prime p.

For each $n \ge 1$, write

$$\Pi_n = \{ \boldsymbol{\pi} = (\pi_1, \dots, \pi_n) \in (\mathbb{Z}/p\mathbb{Z})^n : \sum \pi_i = 1 \}$$

(the mod p analogue of the simplex Δ_n).

We'll define an "entropy mod p" functional

$$H_p: \Pi_n \to \mathbb{Z}/p\mathbb{Z}.$$

We'll see that it satisfies the recursivity rule, and that up to a scalar multiple, this characterizes it uniquely. So it's the right definition! Then we'll start exploring...

Plan

- 1. Logarithms and derivations mod p
- 2. The definition of entropy mod p
- 3. The characterization theorem (or: why is this the right definition?)
- 4. Residues (or: what is the residue mod 7 of log $\sqrt{8}$?)
- 5. Entropy as a polynomial (or: looking over the horizon)

1. Logarithms and derivations mod p

Logarithms mod p

We can try to take the real function $-\sum \pi_i \log \pi_i$ and imitate it mod p. But what is the analogue of "log"?

Problem The real logarithm is a group homomorphism $(\mathbb{R}_{>0}, \cdot) \to (\mathbb{R}, +)$. But there is no nontrivial homomorphism $((\mathbb{Z}/p\mathbb{Z})^{\times}, \cdot) \to (\mathbb{Z}/p\mathbb{Z}, +)$.

Solution There is a next best thing: a homomorphism

$$q_p$$
: $((\mathbb{Z}/p^2\mathbb{Z})^{\times}, \cdot) \to (\mathbb{Z}/p\mathbb{Z}, +),$

namely, the Fermat quotient

$$q_p(a)=\frac{a^{p-1}-1}{p}.$$

Up to a constant factor, it is the only such homomorphism.

How derivations come into it

It turns out that the function $x \mapsto -x \log x$ is just as important as the logarithm function.

If we define $\partial_{\mathbb{R}} : [0, \infty) \to \mathbb{R}$ by $\partial_{\mathbb{R}}(x) = \begin{cases} -x \log x & \text{if } x > 0 \\ 0 & \text{if } x = 0, \end{cases}$

then real entropy $H_{\mathbb{R}}$ is given by

$$\mathcal{H}_{\mathbb{R}}(\pi) = \sum_{i=1}^n \partial_{\mathbb{R}}(\pi_i) \qquad (\pi \in \Delta_n).$$

And $\partial_{\mathbb{R}}$ behaves like differentation!

$$\partial_{\mathbb{R}}(xy) = x \partial_{\mathbb{R}}(y) + \partial_{\mathbb{R}}(x)y, \qquad \partial_{\mathbb{R}}(1) = 0.$$

Except... it's not additive.

In fact, entropy measures the failure of $\partial_{\mathbb{R}}$ to be additive:

$$\mathcal{H}_{\mathbb{R}}(oldsymbol{\pi}) = \sum \partial_{\mathbb{R}}(\pi_i) - \partial_{\mathbb{R}}\Big(\sum \pi_i\Big).$$

Derivations mod p

We've already seen that the closest mod p analogue of log is the Fermat quotient

$$q_p \colon (\mathbb{Z}/p^2\mathbb{Z})^{ imes} o \mathbb{Z}/p\mathbb{Z}$$

 $a \mapsto rac{a^{p-1}-1}{p}.$

The mod p analogue of $\partial_{\mathbb{R}}$ is

$$\begin{array}{rcl} \partial_p \colon & \mathbb{Z}/p^2\mathbb{Z} & \to & \mathbb{Z}/p\mathbb{Z} \\ & a & \mapsto & \frac{a-a^p}{p}. \end{array}$$

This function ∂_p also behaves like differentiation:

$$\partial_{\rho}(ab) = a\partial_{\rho}(b) + \partial_{\rho}(a)b, \qquad \partial_{\rho}(1) = 0$$

for all $a, b \in \mathbb{Z}/p^2\mathbb{Z}$.

Except it's also not additive...

2. The definition of entropy mod p

The definition

Idea Real entropy satisfies

$$H_{\mathbb{R}}(\pi) = \sum \partial_{\mathbb{R}}(\pi_i) - \partial_{\mathbb{R}}\left(\sum \pi_i\right) \qquad (\pi \in \Delta_n).$$

To get the mod p analogue, where $\pi_i \in \mathbb{Z}/p\mathbb{Z}$, we can't just replace $\partial_{\mathbb{R}}$ by ∂_p : the domain of ∂_p is $\mathbb{Z}/p^2\mathbb{Z}$, whereas π_i is only defined mod p.

But we can do this instead:

Definition Let $\pi = (\pi_1, \ldots, \pi_n) \in (\mathbb{Z}/p\mathbb{Z})^n$ with $\sum \pi_i = 1$. Its entropy mod p is

$$H_p(\pi) = \sum_{i=1}^n \partial_p(a_i) - \partial_p\left(\sum_{i=1}^n a_i\right) \in \mathbb{Z}/p\mathbb{Z},$$

where $a_i \in \mathbb{Z}$ is a representative of $\pi_i \in \mathbb{Z}/p\mathbb{Z}$.

One can show that $H_p(\pi)$ is independent of the choice of representatives a_i : it depends only on π .

The definition, more explicitly

Substituting the definition of ∂_p into the definition of H_p gives a direct formula:

$$H_{
ho}(\pi) = rac{1}{
ho} ig(1 - \sum a_i^{
ho} ig) \quad \in \mathbb{Z}/
ho\mathbb{Z} \qquad (\pi \in \Pi_n)$$

where again, $a_i \in \mathbb{Z}$ represents $\pi_i \in \mathbb{Z}/p\mathbb{Z}$.

Examples

• Let
$$p = 7$$
. Then $(2, 2, 4) \in \Pi_3$, and
 $H_7(2, 2, 4) = \frac{1}{7} (1 - [2^7 + 2^7 + 4^7]) \equiv 3 \pmod{7}.$

- Take any prime p and integer n with $p \nmid n$. Then $(1/n, \ldots, 1/n) \in \prod_n$. We have $H_p(1/n, \ldots, 1/n) = q_p(n)$, just like $H_{\mathbb{R}}(1/n, \ldots, 1/n) = \log n$.
- The case *n* = 2: one can show that

$$H_{\rho}(\pi, 1-\pi) = \sum_{0 < r < n} \frac{\pi'}{r}$$

for all $\pi \in \mathbb{Z}/p\mathbb{Z}$ (assuming $p \neq 2$). There are no representatives a_i in this formula!

3. The characterization theorem

Or: Why is this the right definition?

The characterization thoerem

"Probability distributions" mod p can be composed like real ones: given

$$\pi \in \Pi_n, \quad \gamma_1 \in \Pi_{k_1}, \ldots, \gamma_n \in \Pi_{k_n},$$

we get a composite

$$\boldsymbol{\pi} \circ (\boldsymbol{\gamma}_1, \ldots, \boldsymbol{\gamma}_n) = (\pi_1 \gamma_1^1, \ldots, \pi_1 \gamma_1^{k_1}, \ldots, \pi_n \gamma_n^1, \ldots, \pi_n \gamma_n^{k_n}) \in \Pi_{k_1 + \cdots + k_n}.$$

Entropy mod *p* obeys the same recursivity rule as real entropy:

$$H_p(\pi \circ (\gamma_1, \ldots, \gamma_n)) = H_p(\pi) + \sum_i \pi_i H_p(\gamma_i).$$

Theorem H_p is the only sequence of functions $(\Pi_n \to \mathbb{Z}/p\mathbb{Z})_{n\geq 0}$ obeying this recursivity rule, up to a constant factor.

This is exactly like the characterization theorem for real entropy, except without continuity. *So, we've got the right definition!*

4. Residues

Or: What is the residue mod 7 of $\log \sqrt{8}$?

Where this all started

- The idea of "entropy mod p" was proposed by Maxim Kontsevich in 1995 in a $2\frac{1}{2}$ -page unpublished note.
- This talk elaborates on his ideas.
- Kontsevich wrote:

If we have a random variable ξ which takes finitely many values with all probabilities in \mathbb{Q} then we can define not only the transcendental number $H(\xi)$ but also its "residues modulo p" for almost all primes p!

What did he have in mind? Maybe the following...

Kontsevich's residue proposal

Take a probability distribution with rational probabilities:

$$\mathbf{r} = \left(\frac{s_1}{t}, \dots, \frac{s_n}{t}\right).$$

- On the one hand, **r** has a real entropy $H_{\mathbb{R}}(\mathbf{r})$, typically transcendental.
- On the other, for all primes p except the factors of t, we can interpret r as a "probability distribution" with probabilities in Z/pZ, so it has an entropy H_p(r) ∈ Z/pZ.
- Kontsevich says: view H_p(**r**) ∈ Z/pZ as the residue class mod p of H_R(**r**) ∈ ℝ!

Does this proposal make sense?

Kontsevich's suggestion only makes sense if

$$H_{\mathbb{R}}(\mathbf{q}) = H_{\mathbb{R}}(\mathbf{r}) \Rightarrow H_{
ho}(\mathbf{q}) = H_{
ho}(\mathbf{r})$$

whenever \mathbf{q}, \mathbf{r} are rational probability distributions with denominators not divisible by p.

Theorem This is true.

So, there's a well-defined residue map $x \mapsto [x]$ from

{real numbers arising as the entropy of a rational distribution with denominators not divisible by p}

to $\mathbb{Z}/p\mathbb{Z}$.

Moreover, it's additive: [x + y] = [x] + [y], as a "residue" should be.

Example

Take the rational distribution $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$.

It has real entropy

$$-\left(\tfrac{1}{4}\log\tfrac{1}{4} + \tfrac{1}{4}\log\tfrac{1}{4} + \tfrac{1}{2}\log\tfrac{1}{2}\right) = \log\sqrt{8}.$$

For any $p \neq 2$, we can calculate $H_p(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}) \in \mathbb{Z}/p\mathbb{Z}$, and this is the residue mod p of log $\sqrt{8}$.

Example Let p = 7. Then $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}) = (2, 2, 4)$, and $H_7(2, 2, 4) = 3$ (calculated earlier).

So, the residue mod 7 of log $\sqrt{8}$ is 3.

5. Entropy as a polynomial

Or: Looking over the horizon

Entropy as a polynomial

Our "direct" definition of entropy mod p wasn't so direct...

$$H_p(\pi) = rac{1}{p} ig(1 - \sum a_i^p ig)$$

... as we had to choose integers a_i representing π_i .

But an equivalent definition expresses $H_p(\pi)$ as a (ferocious) polynomial in π_1, \ldots, π_n themselves:

$$H_p(\boldsymbol{\pi}) = -\sum_{\substack{0 \leq j_1, \dots, j_n$$

Write $h(\pi_1, \ldots, \pi_n)$ for the polynomial on the right-hand side. Then *h* satisfies a 2-cocycle condition:

$$h(x, y) - h(x, y + z) + h(x + y, z) - h(y, z) = 0.$$

This leads into deep waters, such as "information cohomology"...

Open questions

Open questions

- We've seen how to define entropy over ℝ and also over Z/pZ. What about other fields, such as Q_p? Is there a single unified theory?
- What does entropy mod *p* "mean"? Can we develop any intuition for it? Are there any applications?
- Do other entropic quantities—such as relative entropy, conditional entropy, mutual information, or Rényi entropies—have analogues mod p?

Three talks

(△ⁿ) ℝ CATEGORICAL MACHINE Shannon entropy

Sunday: Operads

Monday: An algebraic view of entropy

Thursday: Entropy modulo a prime

Main reference for all three talks

. and citations therein.

Thank you very much for listening