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Three talks

Sunday: Operads

Monday: An algebraic view of entropy

Thursday: Entropy modulo a prime



Trajectory of these three talks

I will explain how operads—a cousin of algebraic theories—lead to the notion
of entropy (which might seem to belong to other branches of science).

Then I will show how this story leads to a mysterious construction in number
theory.



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



Entropy in the sciences



But in algebra and topology. . .But in algebra and topology. . .

. . . you can go your whole life without ever using the word ‘entropy’.



The point of this talk

Entropy is notable by its relative absence from algebra and topology.

However, we will see that by considering general algebraic structures such as
operads and categories—and with just a tiny bit of topological input—we
naturally arrive at entropy.

It’s there, whether we like it or not!
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Plan

1. What is entropy?

2. Review of yesterday

3. Categorical algebras for an operad

4. Internal algebras

5. The theorem: how entropy arises

I’ll use a small amount of categorical vocabulary: category, functor, and
(just once) natural transformation.

I’ll also build on some of what I explained yesterday.

But even if you missed yesterday, come along for the ride. . .



1. What is entropy?



The definition of entropy

The simplest kind of entropy is the Shannon entropy of a finite probability
distribution.

Let p = (p1, . . . , pn) be a finite probability distribution: so pi ≥ 0 and∑
pi = 1.

Its (Shannon) entropy is

H(p) = −
n∑

i=1

pi log pi .

• When pi = 0, interpret 0 log 0 as 0.

• Changing the base of the log only affects H(p) up to a constant factor.

Entropy is the most important quantity associated with a probability
distribution.

But what does it mean?



Entropy has a reputation for being mysterious. . .

My greatest concern was what to call it. I thought of calling it
“information”, but the word was overly used, so I decided to call it
“uncertainty”. When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, “You should call it entropy,
for two reasons. In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has a
name. In the second place, and more important, no one knows what
entropy really is, so in a debate you will always have the advantage.”

—Claude Shannon

A lot of mystique surrounds entropy.

But it’s not so mysterious!



Entropy as uniformity

The entropy H(p) = −
∑

pi log pi can be understood as a measure of the
uniformity of p.

For distributions on an n-element set, its maximum value is log n, achieved
when p = (1/n, . . . , 1/n).

Its minimum value is 0, achieved when p = (0, . . . , 0, 1, 0, . . . , 0).

Examples with n = 4, taking logarithms to base 2:
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2. Review of yesterday



The definition of operad

An operad is like an abstract clone, but without the reindexing of variables:
it’s a sequence (Pn)n≥0 of sets together with:

• a composition operator

Pn × Pk1 × · · · × Pkn → Pk1+···+kn

(θ, ϕ1, . . . , ϕn) 7→ θ ◦ (ϕ1, . . . , ϕn)

for each n, k1, . . . , kn ≥ 0

• an identity element id ∈ P1,

θ

ϕ1 ϕ2

id

satisfying associativity and identity axioms.

Examples:

• Terminal operad: Pn = {∗n} for all n.

• For any monoid M, get operad PM with PM
1 = M and PM

n = ∅
otherwise.



The operad of simplices
The operad ∆ of simplices:

∆3∆n = {(p1, . . . , pn) ∈ Rn : pi ≥ 0,
∑

pi = 1}.

Composition is defined by thinking of p = (p1, . . . , pn) as a probability
distribution on {1, . . . , n}. E.g. if

p = = (12 ,
1
2), q1 = = (16 , . . . ,

1
6), q2 = = ( 1

52 , . . . ,
1
52)

then
p ◦ (q1,q2) = ( 1

12 , . . . ,
1
12︸ ︷︷ ︸

6

, 1
104 , . . . ,

1
104︸ ︷︷ ︸

52

) ∈ ∆58.

Generally, given

p = (p1, . . . , pn),

q1 = (q11 , . . . , q
k1
1 ), . . . , qn = (q1n, . . . , q

kn
n ),

define

p ◦ (q1, . . . ,qn) = (p1q
1
1 , . . . , p1q

k1
1 , . . . , pnq

1
n, . . . , pnq

kn
n ) ∈ ∆k1+···+kn .



Algebras for an operad

Let P be an operad.

A P-algebra is a set A together with a map

θ : An → A

for each n ≥ 0 and θ ∈ Pn, satisfying action-like axioms:

(i) composition, (ii) identity.

Examples:

• When P is the terminal operad, a P-algebra is exactly a monoid.

• An PM -algebra is exactly a set with an M-action.

• Let A ⊆ Rd be a convex set. Then A becomes a ∆-algebra as follows:
given p ∈ ∆n, define

p : An → A
(a1, . . . , an) 7−→

∑
i piai .



Algebras in categories other than Set

Let M be a category with some kind of product ⊗ and unit object I : it
could be (Set,×, {∗}), or something else.

Let P be an operad.

A P-algebra in M is an object A of M together with a map

θ : A⊗n → A

for each n ≥ 0 and θ ∈ Pn, satisfying action-like axioms:

(i) composition, (ii) identity.

Today, we’ll think about the case where M is Cat, the category of categories
and functors.



3. Categorical algebras for operads



The definition of categorical algebra for an operad

Let P be an operad.

A categorical P-algebra is a P-algebra in Cat.

Explicitly: it’s a category A together with a functor

θ : An → A

for each n ≥ 0 and θ ∈ Pn, satisfying action-like axioms:

(i) composition, (ii) identity.

For θ to be a functor An → A means:

• for all objects a1, . . . , an of A, we get an object θ(a1, . . . , an) of A

• for all maps
a1

f1↓
b1

, . . . ,
an

fn↓
bn

in A, we get a map
θ(a1,...,an)

θ(f1,...,fn)↓
θ(b1,...,bn)

in A,

and that some axioms are satisfied.



Examples of categorical algebras

• Let P be the terminal operad: Pn = {∗n} for all n ≥ 0.

By definition, a categorical P-algebra is a category A with a functor
An → A for each n ≥ 0, satisfying axioms.

It’s exactly a strict monoidal category: a category equipped with a
strictly associative and unital product ⊗. The functor ∗n : An → A is

(a1, . . . , an) 7→ a1 ⊗ · · · ⊗ an.

• Let M be a monoid and P = PM (so PM
1 = M and PM

n = ∅ otherwise).

A categorical PM -algebra is a category A with a functor m · − : A → A
for each m ∈ M, satisfying axioms.

It’s exactly a category with an M-action.



More examples of categorical algebras

Take the operad ∆ of simplices:

∆n = {(p1, . . . , pn) ∈ Rn : pi ≥ 0,
∑

pi = 1}.

We’ve already seen that the set R is a ∆-algebra: for p ∈ ∆n, define

p : Rn → R
(a1, . . . , an) 7→ p1a1 + · · ·+ pnan.

Crucial point A one-object category is the same thing as a monoid. The
morphisms are the elements of the monoid, and composition is multiplication.

So, we can also view R as a category with only one object, with ◦ = +.

Each operation p preserves addition. So p is a functor Rn → R.

It follows that R, as a one-object category, is a categorical ∆-algebra.



Maps between categorical algebras for an operad

Fix an operad P and categorical P-algebras B and A.

A lax map B → A is a functor G : B → A together with a natural
transformation

Bn Gn
//

θ
��

⇐γθ

An

θ
��

B
G
// A

for each n ≥ 0 and θ ∈ Pn, satisfying axioms.

Explicitly: it’s a functor G together with a map

γθ,b1,...,bn : θ
(
Gb1, . . . ,Gbn

)
→ G

(
θ(b1, . . . , bn)

)
for each θ ∈ Pn and b1, . . . , bn ∈ B, satisfying naturality and axioms on:

(i) composition, (ii) identity.



4. Internal algebras



Internal algebras in a categorical algebra for an operad
Fix an operad P and a categorical P-algebra A.

Write 1 for the categorical P-algebra with one object and only the identity
morphism. (This category is a categorical P-algebra in a unique way.)

Definition: An internal algebra in A is a lax map 1 → A.

Explicitly: it’s an object a ∈ A together with a map

γθ : θ(a, . . . , a) → a

for each n ≥ 0 and θ ∈ Pn, satisfying axioms on

(i) composition, (ii) identity.

Examples:

• Let P be the terminal operad. Let A be a strict monoidal category.
An internal P-algebra in A is just a monoid in A.

• Let P = PM . Let A be a category with an M-action.
An internal PM -algebra in A is an object a ∈ A with a map
γm : m · a → a for each m ∈ M, satisfying action-like axioms.



Internal algebras in a one-object categorical algebra

Fix an operad P and a categorical P-algebra A.

We just saw: an internal P-algebra in A is an object a ∈ A with a map

γθ : θ(a, . . . , a) → a

for each n ≥ 0 and θ ∈ Pn, satisfying axioms.

What if A has only one object?

That is, what if A is a monoid A?

An internal algebra in the one-object category corresponding to A is a
sequence of functions (

γ : Pn → A
)
n≥0

,

satisfying axioms on

(i) composition, (ii) identity.



Topologizing everything

Everything so far can be done in the world of topological spaces instead of
sets.

(Jargon: we work internally to the category Top instead of Set.)

Explicitly, this means that throughout, we add a condition

(iii) continuity

to the conditions (i) and (ii) that appear repeatedly.



5. The theorem: how entropy
arises
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The theorem
Recall We have:

• the (topological) operad ∆ = (∆n)n≥0 of simplices

• the one-object (topological) category R: morphisms are real numbers,
◦ = +

• the one-object (topological) categorical ∆-algebra R.

Recall For an operad P, an internal algebra in a one-object categorical
P-algebra A is a sequence of functions (Pn → A)n≥0, satisfying axioms.

So, an internal algebra in the categorical ∆-algebra R is a sequence of
functions (∆n → R)n≥0, satisfying axioms.

One famous sequence of functions (∆n → R)n≥0 is Shannon entropy:

H : p 7→ −
∑

pi log pi .

Theorem
The internal algebras in the categorical ∆-algebra R are precisely the scalar
multiples of Shannon entropy.



The theorem

Theorem
The internal algebras in the categorical ∆-algebra R are precisely the scalar
multiples of Shannon entropy.

Explicit version of the theorem (no categorical jargon)
Take a sequence of functions

(
γ : ∆n → R

)
n≥0

.
Then γ = cH for some c ∈ R if and only if γ satisfies:

(i) composition: γ
(
p ◦ (q1, . . . ,qn)

)
= γ(p) +

∑
i piγ(qi )

(ii) identity: γ
(
(1)

)
= 0

(iii) continuity: each function γ is continuous.

Proof: This explicit form is almost equivalent to a 1956 theorem of Faddeev,
except that he imposed a symmetry axiom that turns out to be redundant. □



Summary
We have met various very general concepts:

• operads (a cousin of clones/algebraic theories)
• algebras for an operad: both set-based and categorical algebras
• internal algebras in a categorical algebra for an operad.

The simplest example:

• for the terminal operad (Pn = {∗n} for all n),
a categorical algebra is a strict monoidal category M,
and the internal algebras in M are the monoids in M.

Another fundamental example:

• for the operad of simplices (∆n)n≥0,
one categorical algebra is the one-object category (R,+),
and the internal algebras in it are the multiples of Shannon entropy.

In short:

Entropy is inevitable.



Preview of Thursday



On Thursday. . .

We will follow this algebraic, axiomatic approach to entropy and use it to do
something new, involving:

• “probabilities” that are not real numbers but integers modulo a prime

• an answer to the question: why is it reasonable to say that

log
√
8 ≡ 3 (mod 7)?


