Operads

Tom Leinster University of Edinburgh

Three talks

(△ⁿ) ℝ CATEGORICAL MACHINE Shannon entropy

Sunday: Operads

Monday: An algebraic view of entropy

Thursday: Entropy modulo a prime

Trajectory of these three talks

TODAY I will explain how operads—a cousin of algebraic theories—lead to the notion of entropy (which might seem to belong to other branches of science). Then I will show how this story leads to a mysterious construction in number theory.

THURSDAY

Today: Operads

- 1. What do category theorists care about?
- 2. A perspective on clones
- 3. Operads
- 4. Algebras for operads
- 5. Clones versus operads
- 6. Beyond sets

1. What do category theorists care about?

Two things category theorists care about

- Spotting patterns across mathematics, and connections between different parts of mathematics—especially connections that are unexpected.
- Moving beyond the category of sets.

E.g. given an algebraic theory, we want to consider not only its algebras in **Set**, but also its algebras in other categories where the concept of "algebra" makes sense.

2. A perspective on clones

Clones

An (abstract) clone is a sequence $(C_n)_{n\geq 0}$ of sets together with:

• for each $n, k \ge 0$, an operation

 $\in C_3$

• for each $1 \le i \le n$, a chosen element $\pi_i^n \in C_n$,

$$\{\pi_i^n(x_1,\ldots,x_n)=x_i\}$$

 $\pi_3^4 \ \ \downarrow \ \ \downarrow \ \ \downarrow \ \ \downarrow$

satisfying axioms.

An equivalent definition of clone

A clone is a sequence $(C_n)_{n\geq 0}$ of sets, together with:

• for each $n, k_1, \ldots, k_n \ge 0$, an operation

- a chosen element $\mathsf{id} \in C_1$
- for each function $\mathbf{n} \xrightarrow{f} \mathbf{m}$, a function $C_n \xrightarrow{f_*} C_m$ (where $\mathbf{n} = \{1, \dots, n\}$), $f_*(\theta)(x_1, \dots, x_m) = \theta(x_{f(1)}, \dots, x_{f(n)})$

satisfying axioms.

Example of f_* : If $f : \mathbf{2} \to \mathbf{1}$ and $\theta \in C_2$ is multiplication, then $f_*(\theta) \in C_1$ is squaring.

id

From standard clones to alternative clones

Start with a clone C in the standard sense. Build a clone in the alternative sense like this:

• For $f: \mathbf{n} \to \mathbf{m}$ and $\theta \in C_n$, define $f_*(\theta) \in C_m$ by

$$f_*(\theta) = \theta(\pi_{f(1)}^m, \ldots, \pi_{f(n)}^m).$$

• For $heta \in C_n, \phi_1 \in C_{k_1}, \dots, \phi_n \in C_{k_n}$, take the functions

$$\begin{array}{rccc} f_i \colon & \mathbf{k_i} & \to & \mathbf{k_1} + \dots + \mathbf{k_n} \\ & q & \mapsto & k_1 + \dots + k_{i-1} + q \end{array}$$

and then define

$$\theta \circ (\phi_1, \ldots, \phi_n) = \theta (f_{1*}(\phi_1), \ldots, f_{n*}(\phi_n)).$$

• Put id $= \pi_1^1 \in C_1$.

From alternative clones to standard clones

Start with a clone C in the alternative sense. Build a clone in the standard sense like this.

• For $n, k \ge 0$, take the function $f: \mathbf{nk} \to \mathbf{k}$ given by

$$f(pk+q) = q \qquad (0 \le p \le n-1, \ 1 \le q \le k)$$

and then for $(\theta, \psi_1, \ldots, \psi_n) \in C_n \times C_k^n$, define

$$\theta(\psi_1,\ldots,\psi_n)=f_*(\theta\circ(\psi_1,\ldots,\psi_n)).$$

• For $1 \le i \le n$, take the function $f: \mathbf{1} \to \mathbf{n}$ given by $f(\mathbf{1}) = i$, and then define $\pi_i^n = f_*(id)$.

Conclusion

A clone can equivalently by defined as a sequence (C_n) of sets with:

• for each $n, k_1, \ldots, k_n \ge 0$, a *composition* operation

$$\begin{array}{ccc} C_n \times C_{k_1} \times \cdots \times C_{k_n} & \to & C_{k_1 + \cdots + k_n} \\ (\theta, \phi_1, \dots, \phi_n) & \mapsto & \theta \circ (\phi_1, \dots, \phi_n) \end{array}$$

• an *identity* element $id \in C_1$

• for each $f : \mathbf{n} \to \mathbf{m}$, a *reindexing* function $f_* : C_n \to C_m$, satisfying axioms.

Question What if we remove the reindexing from the definition?

3. Operads

The definition of operad

To obtain the definition of operad, simply take the alternative definition of clone and remove the reindexing. So:

An operad *P* is a sequence $(P_n)_{n\geq 0}$ of sets, together with:

• for each $n, k_1, \ldots, k_n \ge 0$, a composition operation

$$\begin{array}{rccc} P_n \times P_{k_1} \times \cdots \times P_{k_n} & \to & P_{k_1 + \cdots + k_n} \\ (\theta, \phi_1, \dots, \phi_n) & \mapsto & \theta \circ (\phi_1, \dots, \phi_n) \end{array}$$

• an *identity* element $id \in P_1$,

satisfying axioms.

The axioms are associativity and identity laws.

They guarantee that every tree of operations has a unique composite.

Examples of operads

- The terminal operad: $P_n = \{*_n\}$ for all $n \ge 0$.
- For any monoid M, there is an operad P^M defined by

$$P_n^M = \begin{cases} M & \text{if } n = 1 \\ \varnothing & \text{otherwise.} \end{cases}$$

• Every set X has an endomorphism operad End(X), where

$$\operatorname{End}(X)_n = {\operatorname{functions} X^n \to X}$$

and composition in the operad is by composition of operations.

• Similarly, every vector space X has an endomorphism operad End(X), where

$$\operatorname{End}(X)_n = \{ \text{linear maps } X^{\otimes n} \to X \}.$$

(More generally, the same works in any monoidal category.)

More examples of operads

The operad P of polynomials over a commutative ring R:

$$P_n = R[x_1,\ldots,x_n].$$

 ϕ_1

 Φ

θ

Composition is given by substitution and relabelling of variables: e.g. if

$$\begin{split} \theta &= x_1^2 + x_2^3 \in P_2, \\ \phi_1 &= 2x_1x_3 - x_2 \in P_3, \qquad \phi_2 &= x_1 + x_2x_3x_4 \in P_4, \end{split}$$

then

$$\theta \circ (\phi_1, \phi_2) = (2x_1x_3 - x_2)^2 + (x_4 + x_5x_6x_7)^3 \in P_7.$$

More examples of operads

The operad Δ of simplices:

$$\Delta_n = \{(p_1,\ldots,p_n) \in \mathbb{R}^n : p_i \ge 0, \sum p_i = 1\}.$$

 Δ_3

$$\mathbf{p} = \bigotimes_{j=1}^{\ell} = (\frac{1}{2}, \frac{1}{2}), \ \mathbf{q}_1 = \bigotimes_{j=1}^{\ell} = (\frac{1}{6}, \dots, \frac{1}{6}), \ \mathbf{q}_2 = \bigotimes_{j=1}^{\ell} = (\frac{1}{52}, \dots, \frac{1}{52})$$

then

$$\mathbf{p} \circ (\mathbf{q}_1, \mathbf{q}_2) = (\underbrace{\frac{1}{12}, \ldots, \frac{1}{12}}_{6}, \underbrace{\frac{1}{104}, \ldots, \frac{1}{104}}_{52}) \in \Delta_{58}.$$

Generally, given

$$\mathbf{p} = (p_1, \dots, p_n),$$

 $\mathbf{q}_1 = (q_1^1, \dots, q_1^{k_1}), \ \dots, \ \mathbf{q}_n = (q_n^1, \dots, q_n^{k_n}),$

define

$$\mathbf{p} \circ (\mathbf{q}_1, \ldots, \mathbf{q}_n) = (p_1 q_1^1, \ldots, p_1 q_1^{k_1}, \ldots, p_n q_n^1, \ldots, p_n q_n^{k_n}) \in \Delta_{k_1 + \cdots + k_n}.$$

4. Algebras for operads

The definition of algebra for an operad

Let P be an operad.

A *P*-algebra is a set A together with, for each $n \ge 0$ and $\theta \in P_n$, a map

$$\overline{\theta}: A^n \to A,$$

satisfying action-like axioms:

• composition:

$$\overline{\theta \circ (\phi_1, \dots, \phi_n)}(a_1^1, \dots, a_1^{k_1}, \dots, a_n^1, \dots, a_n^{k_n}) \\= \overline{\theta}(\overline{\phi_1}(a_1^1, \dots, a_1^{k_1}), \dots, \overline{\phi_n}(a_n^1, \dots, a_n^{k_n}))$$

whenever $\theta \in P_n$, $\phi_i \in P_{k_i}$, and $a_i^j \in A$

• *identities*: $\overline{id}(a) = a$ whenever $a \in A$.

Equivalently, it's a set A together with a map of operads $P \rightarrow End(A)$.

Examples of algebras for operads

Let P be the terminal operad: P_n = {*_n} for all n ≥ 0.
 Then a P-algebra is a set A together with one map Aⁿ → A for each n ≥ 0, satisfying axioms.

It's exactly a monoid. The map $A^n \rightarrow A$ is *n*-ary multiplication.

• Fix a monoid M, and take the operad P^M :

$$P_n^M = egin{cases} M & ext{if } n=1 \ arnothing & ext{otherwise.} \end{cases}$$

A P^M -algebra is a set A together with a map $\overline{m}: A \to A$ for each $m \in M$, satisfying axioms.

It's exactly a set with a left *M*-action. The map \overline{m} is $a \mapsto m \cdot a$.

More examples of algebras for operads Let Δ be the operad of simplices:

$$egin{aligned} \Delta_n &= \{ \mathbf{p} = (p_1, \dots, p_n) \in \mathbb{R}^n \; : \; p_i \geq 0, \sum p_i = 1 \} \ &= ig\{ ext{probability distributions on } \{1, \dots, n\} ig\}. \end{aligned}$$

Two examples of Δ -algebras:

Any convex subset A ⊆ ℝ^d is a Δ-algebra in a natural way: for p ∈ Δ_n, define

$$\overline{\mathbf{p}}: egin{array}{ccc} A^n & o & A \ (\mathbf{a}_1,\ldots,\mathbf{a}_n) & \mapsto & p_1\mathbf{a}_1+\cdots+p_n\mathbf{a}_n. \end{array}$$

• The power set $\mathcal{P}(\mathbb{R}^d)$ is also a Δ -algebra: define

$$ar{\mathbf{p}}\colon egin{array}{ccc} (\mathcal{P}(\mathbb{R}^d))^n & o & \mathcal{P}(\mathbb{R}^d)\ (S_1,\ldots,S_n) &\mapsto & p_1S_1+\cdots+p_nS_n, \end{array}$$

where

$$p_1S_1+\cdots+p_nS_n=\{p_1s_1+\cdots+p_ns_n : s_1\in S_1,\ldots,s_n\in S_n\}.$$

Which algebraic theories can operads express?

That is, given an algebraic theory T, when can we find an operad P such that the P-algebras are exactly the T-algebras?

Theorem An algebraic theory can be expressed by an operad if and only if the theory can be presented using equations that are strongly regular:

- the same variables appear on each side of the equation,
- without repetition,
- and in the same order.

Examples

- Theory of monoids: (xy)z = x(yz), 1x = x, x1 = x
- Theory of *M*-sets: (mm')x = m(m'x), $1x = x \quad \checkmark$
- Theory of commutative monoids: includes xy = yx **x**
- Theory of rings: includes x(y + z) = xy + xz **x**
- Theory of groups: includes $x^{-1}x = 1$ **x**

There is no operad whose algebras are commutative monoids, or rings, or groups.

5. Clones versus operads

From operads to clones

Start with an operad P. We can build a clone C(P), which can be described in two ways:

• Viewpoint 1: The theory of *P*-algebras is an algebraic theory presentable by strongly regular equations.

In particular, it's an algebraic theory, or equivalently, a clone, C(P).

• Viewpoint 2: Define

$$C(P)_n = \prod_{k\geq 0} P(k) \times \{$$
functions $\mathbf{k} \to \mathbf{n} \}.$

E.g. if $P_n = \{*\}$ for all n (the operad for monoids) then an n-ary operation in C(P) is a number $k \ge 0$ with a function $f : \mathbf{k} \to \mathbf{n}$, which we view as

$$(x_1, x_2, \ldots, x_n) \mapsto x_{f(1)} x_{f(2)} \cdots x_{f(k)}.$$

Fact: The algebras for the operad P are the same as the algebras for the clone C(P).

From clones to operads

Start with a clone C. We can build an operad P(C), which can be described in two ways:

- Viewpoint 1: Keep all the operations of the algebraic theory C, but forget all the equations that are *not* strongly regular. This gives an operad P(C).
- Viewpoint 2: Recall that a clone is an operad together with a reindexing function $f_*: C_n \to C_m$ for each $f: \mathbf{n} \to \mathbf{m}$.

To get P(C), just forget the reindexing!

The algebras for the clone C are *not* the same as the algebras for the operad P(C), since we've thrown away some equations.

Example of clone algebras versus operad algebras

Let C be the clone for the theory of convex combinations: informally, the algebraic structure possessed by any convex set in \mathbb{R}^d .

This theory contains operations like $(x, y) \mapsto cx + (1 - c)y$ for all $c \in [0, 1]$, and equations including

$$\frac{1}{2}x + \frac{1}{2}x = x.$$

Then P(C) is the operad Δ of simplices.

But in an algebra for the operad $P(C) = \Delta$, the equation

$$\overline{\left(\frac{1}{2},\frac{1}{2}\right)}(x,x) = x$$

(which is not strongly regular) need not hold.

For example, in the Δ -algebra $\mathcal{P}(\mathbb{R})$, take $S = \{0,1\} \in \mathcal{P}(\mathbb{R})$. Then

$$\frac{1}{2}S + \frac{1}{2}S = \{0, \frac{1}{2}, 1\} \neq \{0, 1\} = S.$$

Conclusion: You can pass back and forth between clones and operads, but they're not equivalent notions.

6. Beyond sets

Or: Algebras in categories other than Set

Monoidal categories

Roughly, a monoidal category is a category equipped with a product \otimes and a unit object \emph{I} satisfying

 $(A \otimes B) \otimes C \cong A \otimes (B \otimes C), \qquad A \otimes I \cong A \cong I \otimes A$

for all objects A, B, C.

Examples

- Set (the category of sets), with $\otimes = \times$ and $I = \{*\}$.
- Top (topological spaces), with $\otimes = \times$ and $I = \{*\}$.
- Cat (categories), with ⊗ = × and *I* = the category with one object and only the identity morphism.

These examples all have the special feature that there are canonical maps

$$egin{array}{ccccccc} X &
ightarrow & X \otimes X & X &
ightarrow & I \ x & \mapsto & (x,x) & x & \mapsto & *, \end{array}$$

which means we can *duplicate* and *delete* variables.

More examples of monoidal categories

Not all monoidal categories have this special feature.

Examples

• Vect_k (the category of vector spaces over a field k), with $\otimes = \otimes_k$ and l = k.

There is no canonical map $X \to X \otimes X$ or $X \to k$.

- Vect_k^{op} (the opposite/dual of Vect_k), with $\otimes = \otimes_k$ and I = k. There is no canonical map $X \otimes X \to X$ or $k \to X$.
- **Vect** $_{k}^{\mathbb{Z}}$ (\mathbb{Z} -graded vector spaces), with graded \otimes .
- **ChCx**_k (chain complexes), with usual \otimes .

Algebras in a monoidal category

Let $\boldsymbol{\mathcal{M}}$ be a monoidal category.

Typically, you can't talk about algebras in $\mathcal M$ for an arbitrary algebraic theory. For example, what would a "group in $\mathcal M$ " be?

But you can talk about algebras in $\mathcal M$ for an $\mathit{operad}.$

Let P be an operad.

A *P*-algebra in \mathcal{M} is an object A of \mathcal{M} together with, for each $n \ge 0$ and $\theta \in P_n$, a map

 $\overline{\theta}: A^{\otimes n} \to A,$

satisfying action-like axioms.

Examples of operad algebras in a monoidal category

Let *P* be the terminal operad: $P_n = \{*_n\}$ for all $n \ge 0$.

A P-algebra...

- in Set is a monoid (as we've already seen)
- in **Top** is a topological monoid
- in **Cat** is a strict monoidal category (\otimes is *strictly* associative and unital)
- in **Vect**_k is an algebra over the field k
- in $\mathbf{Vect}_k^{\mathrm{op}}$ is a coalgebra over k
- in $\mathbf{Vect}_k^{\mathbb{Z}}$ is a \mathbb{Z} -graded algebra over k
- in **ChCx**_k is a differential graded algebra over k.

Preview of tomorrow

Tomorrow, I'll explain how if we keep pursuing these ideas, we arrive at the concept of entropy.