Tensor product of effect algebras SSAOS 2023

Dominik Lachman

Palacký University Olomouc

September 4, 2023

Definition

An effect algebra is a partial algebra $(E; \oplus, ', 0, 1)$, where \oplus is a partial binary operation, ' is a unary operation and 0, 1 are constants, such that for each $a, b, c \in E$:

(i)
$$a \oplus b = b \oplus a$$
;
(ii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$;
(iii) $a \oplus b = 1$ if and only if $b = a'$;
(iv) $a \oplus 1$ is defined if and only if $a = 0$
Where (i-ii) are Kleene identities.

Definition

An effect algebra is a partial algebra $(E; \oplus, ', 0, 1)$, where \oplus is a partial binary operation, ' is a unary operation and 0, 1 are constants, such that for each $a, b, c \in E$:

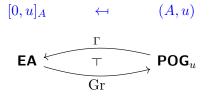
(i)
$$a \oplus b = b \oplus a$$
;
(ii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$;
(iii) $a \oplus b = 1$ if and only if $b = a'$;
(iv) $a \oplus 1$ is defined if and only if $a = 0$.
Where (i–ii) are Kleene identities.

Ordering: $a \leq b$ iff $(\exists c), a \oplus c = b$. **Partial subtraction:** For $a \leq b$, there is a unique $c = b \oplus a$, i.e., \oplus **is cancellative. Examples:** $\mathcal{P}(H), \mathcal{E}(H)$, Boolean algebras (\oplus = disjoint union), orthomodular posets, orthoalgebras, MV-algebras,...

Dominik Lachman

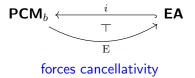
Related categories

 \mathbf{POG}_u = the category of partially ordered Abelian groups with order unit



 \mathbf{PCM}_{b} = the category of partial commutative monoids with a top element

forgets cancellativity



Key concept: Riesz Decomposition Property

Definition

A (partial) commutative monoid M satisfies (RDP), if for all a_1 || || $a_1 \oplus a_2 = b_1 \oplus b_2$ $\begin{pmatrix} c_{1,1} & c_{1,2} \\ c_{2,1} & c_{2,2} \end{pmatrix} = b_1 \\ = b_2$ there exist $(c_{i,j})_{i,j=1,2}$, so that $a_i = c_{1,i} \oplus c_{2,i}, \ b_i = c_{i,1} \oplus c_{i,2}.$

 a_2

Key concept: Riesz Decomposition Property

Definition

A (partial) commutative monoid M satisfies (RDP), if for all	$egin{array}{ccc} a_1 & a_2 & & \ \parallel & \parallel & \parallel & \ \end{array}$
$a_1\oplus a_2=b_1\oplus b_2$	$\begin{pmatrix} c_{1,1} & c_{1,2} \\ c_{2,1} & c_{2,2} \end{pmatrix} = b_1 \\ = b_2$
there exist $(c_{i,j})_{i,j=1,2}$, so that $a_i=c_{1,i}\oplus c_{2,i}$, $b_i=c_{i,1}\oplus c_{i,2}$.	$\begin{pmatrix} c_{2,1} & c_{2,2} \end{pmatrix} = b_2$

commutative monoids	effect algebras	po-groups
refinement property	Riesz Decomposition Property	interpolation

Key concept: Riesz Decomposition Property

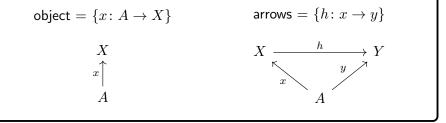
Definition

A (partial) commutative monoid M satisfies (RDP), if for all	$egin{array}{ccc} a_1 & a_2 & & & \ \parallel & \parallel & \parallel & & \ \parallel & & \parallel & \ \parallel & & $
$a_1\oplus a_2=b_1\oplus b_2$	$\begin{pmatrix} c_{1,1} & c_{1,2} \\ c_{2,1} & c_{2,2} \end{pmatrix} = b_1 \\ = b_2$
there exist $(c_{i,j})_{i,j=1,2}$, so that $a_i=c_{1,i}\oplus c_{2,i},\ b_i=c_{i,1}\oplus c_{i,2}.$	$(c_{2,1} c_{2,2}) = b_2$

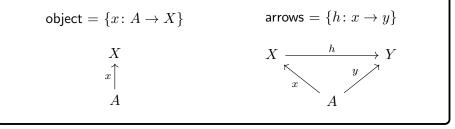
commutative monoids	effect algebras	po-groups
refinement property	Riesz Decomposition Property	interpolation

Theorem: Effect algebras with (RDP) are categorically equivalent to interpolation Abelian po-groups with order unit.

Let A be an object of a category C. A coslice category $A \downarrow C$ is given by the following data:



Let A be an object of a category C. A coslice category $A \downarrow C$ is given by the following data:



Given an adjunction $(L \dashv R) \colon \mathcal{C} \to \mathcal{D}$ and an object $A \in \mathcal{C}$:

$$\mathcal{C} \xleftarrow{L}_{R} \mathcal{D} \qquad \rightsquigarrow \qquad A \downarrow \mathcal{C} \xleftarrow{L'}_{R'} L(A) \downarrow \mathcal{D}$$

Where $L': x \mapsto L(x)$ and $R': y \mapsto R(y) \circ \eta_A$.

Dominik Lachman

(Finally) Tensor product in **EA**

Definition

Let E, F, G be effect algebras. A mapping $\beta \colon E \times F \to G$ is a *bihomomorphism* if (i) $(\forall a \in E), \beta(a, -) \colon F \to G$ preserves orthosums;

(ii) $(\forall b \in F), \beta(-, b) \colon E \to G$ preserves orthosums;

(iii)
$$\beta(1,1) = 1.$$

(Finally) Tensor product in **EA**

Definition

Let E, F, G be effect algebras. A mapping $\beta \colon E \times F \to G$ is a bihomomorphism if (i) $(\forall a \in E), \beta(a, -) \colon F \to G$ preserves orthosums;

(ii) $(\forall b \in F), \beta(-, b) \colon E \to G$ preserves orthosums; (iii) $\beta(1, 1) = 1$.

Definition

A tensor product of effect algebras E, F is a bihomomorphism

$$-\otimes -: E \times F \to E \otimes F$$

such that each bihomomorphism $\beta \colon E \times F \to G$ uniquely splits through $E \otimes F$ as $\beta = f \circ \otimes$.

PCM_b

EA

\mathbf{POG}_u

Dominik Lachman

PCM _b	EA	POG_u
		$(A, A^+, u) \otimes (B, B^+, v)$ $\cong (A \otimes B, A^+ \otimes B^+, u \otimes v)$
		Recall:
		$A \otimes B = \mathcal{F}_{Ab}(A \times B)/I$
		I is generated by
		(a, c) + (b, c) - (a + b, c) (a, c) + (a, d) - (a, c + d)
		$a, b \in A, c, d \in B.$

PCM _b	EA	POG_u
When are two elements of a tensor product $M\otimes N$		$(A, A^+, u) \otimes (B, B^+, v)$ $\cong (A \otimes B, A^+ \otimes B^+, u \otimes v)$
$a_1\otimes b_1\oplus \dots \oplus a_n\otimes b_n$		Recall:
$c_1\otimes d_1\oplus\cdots\oplus c_m\otimes d_m$		$A \otimes B = \mathcal{F}_{Ab}(A \times B)/I$
equal?		I is generated by
The case M and N satisfy (RDP) is (essentially) treated by Wehrung in [4] .		(a, c) + (b, c) - (a + b, c) (a, c) + (a, d) - (a, c + d)
		$a, b \in A, c, d \in B.$

PCM_b	EA	POG_u
When are two elements of a tensor product $M \otimes N$ $a_1 \otimes b_1 \oplus \cdots \oplus a_n \otimes b_n$ $c_1 \otimes d_1 \oplus \cdots \oplus c_m \otimes d_m$	Tensor products always exist [1], but they are hard to compute.	$(A, A^+, u) \otimes (B, B^+, v)$ $\cong (A \otimes B, A^+ \otimes B^+, u \otimes v)$ Recall: $A \otimes B = \mathcal{F}_{Ab}(A \times B)/I$
equal? The case M and N satisfy (RDP) is (essentially) treated by Wehrung in [4].	Elements of $E \otimes F$ are of the form $a_1 \otimes b_1 \oplus \cdots \oplus a_n \otimes b_n.$	<i>I</i> is generated by (a, c) + (b, c) - (a + b, c) (a, c) + (a, d) - (a, c + d)
· · · · · · · · · · · · · · · · · · ·		$a, b \in A, c, d \in B.$

Questions

 Which colimits (in EA) are preserved by tensor product? In POG, dimension groups are characterized as directed colimits of the simplicial ones. Given to such examples

$$A = \underbrace{\operatorname{colim}}_{d \in \mathcal{D}} S_d \text{ and } B = \underbrace{\operatorname{colim}}_{d' \in \mathcal{D}} S'_{d'},$$

we have (because filtered colimits commute with tensor product)

$$A \otimes B \cong \underbrace{\operatorname{colim}}_{(d,d') \in \mathcal{D} \times \mathcal{D}'} S_d \otimes S'_{d'}.$$

Questions

 Which colimits (in EA) are preserved by tensor product? In POG, dimension groups are characterized as directed colimits of the simplicial ones. Given to such examples

$$A = \underbrace{\operatorname{colim}}_{d \in \mathcal{D}} S_d \text{ and } B = \underbrace{\operatorname{colim}}_{d' \in \mathcal{D}} S'_{d'},$$

we have (because filtered colimits commute with tensor product)

$$A \otimes B \cong \operatorname{colim}_{(d,d') \in \mathcal{D} \times \mathcal{D}'} S_d \otimes S'_{d'}.$$

• Does tensor product in EA preserve (RDP)? In [4], we have following results PCM_b EA POG_u

· •···0		• • • • <i>u</i>
YES	?	NO

Questions

 Which colimits (in EA) are preserved by tensor product? In POG, dimension groups are characterized as directed colimits of the simplicial ones. Given to such examples

$$A = \underbrace{\operatorname{colim}}_{d \in \mathcal{D}} S_d \text{ and } B = \underbrace{\operatorname{colim}}_{d' \in \mathcal{D}} S'_{d'},$$

we have (because filtered colimits commute with tensor product)

$$A \otimes B \cong \operatorname{colim}_{(d,d') \in \mathcal{D} \times \mathcal{D}'} S_d \otimes S'_{d'}.$$

• Does tensor product in EA preserve (RDP)? In [4], we have following results

PCM_b	EA	POG_u
YES	?	NO

• How does the tensor product $[0,1]_{\mathbb{R}} \otimes [0,1]_{\mathbb{R}}$ look like? It was for a while an open problem whenever it is a lattice-effect algebra.

Dominik Lachman

Consider tensoring with an effect algebra ${\boldsymbol{E}}$ as a functor

 $E\otimes -: \mathbf{EA} \to \mathbf{EA}$

which sends $F \mapsto E \otimes F$. Is there a right adjoint?

$$\frac{E \otimes F \to G}{F \to [E, G]} \tag{1}$$

Consider tensoring with an effect algebra E as a functor

 $E\otimes -: \mathbf{EA} \to \mathbf{EA}$

which sends $F \mapsto E \otimes F$. Is there a right adjoint?

$$\frac{E \otimes F \to G}{F \to [E, G]} \tag{1}$$

Try set [E, G] to contain all mappings preserving \oplus (may not preserve 1). This is not an effect algebra. Maximal elements are all homomorphisms.

Consider tensoring with an effect algebra E as a functor

 $E\otimes -: \mathbf{EA} \to \mathbf{EA}$

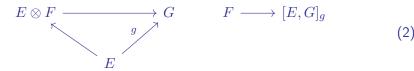
which sends $F \mapsto E \otimes F$. Is there a right adjoint?

$$\frac{E \otimes F \to G}{F \to [E, G]} \tag{1}$$

Try set [E, G] to contain all mappings preserving \oplus (may not preserve 1). This is not an effect algebra. Maximal elements are all homomorphisms. Consider

 $E \otimes -: \mathbf{EA} \to E \downarrow \mathbf{EA},$

which sends F to $f: E \to E \otimes F$ $(f: a \mapsto a \otimes 1)$.



Theorem

Let \mathcal{D} be a small category and $E \in \mathbf{EA}$. The functor

$$E\otimes -: \mathbf{EA} \to \mathbf{EA}$$

preserves colimits over \mathcal{D} whenever \mathcal{D} is connected (= the underlying graph is connected).

Theorem

Let \mathcal{D} be a small category and $E \in \mathbf{EA}$. The functor

$$E\otimes -: \mathbf{EA} \to \mathbf{EA}$$

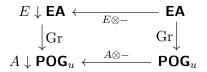
preserves colimits over \mathcal{D} whenever \mathcal{D} is connected (= the underlying graph is connected).

Proof: The functor $E \otimes -: \mathbf{EA} \to \mathbf{EA}$ splits as:

$$\mathsf{E}\mathsf{A} \longrightarrow E \downarrow \mathsf{E}\mathsf{A} \longrightarrow \mathsf{E}\mathsf{A} \tag{3}$$

The first part preserves all colimits. The second part preserves all connected colimits.

For $E \in \mathbf{EA}$ and $A = \operatorname{Gr}(E)$, consider a square:

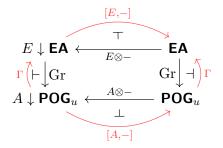


Commutativity (up to iso) would give us an isomorphism

$$\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$$
 (4)

EA and \mathbf{POG}_u

For $E \in \mathbf{EA}$ and $A = \operatorname{Gr}(E)$, consider a square:



Commutativity (up to iso) would give us an isomorphism

$$\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$$
 (4)

We switch to the right adjoints: For $h: A \to B$ an object of $A \downarrow \mathsf{POG}_u$

$$[E, \Gamma(B, v)]_{\bar{h}} \cong \Gamma([A, B], h).$$
(5)

Dominik Lachman

11 / 17

Theorem

For a pair of effect algebras E, F, we have

 $\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$

Theorem

For a pair of effect algebras E, F, we have

 $\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$

Corollary

In **EA**, tensor product does not preserve (RDP).

Theorem

For a pair of effect algebras E, F, we have

 $\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$

Corollary

In **EA**, tensor product does not preserve (RDP).

Proof:

• Let $A, B \in \mathbf{POG}_u$ satisfy (RDP), but $A \otimes B$ not (example in [4]).

Theorem

For a pair of effect algebras ${\cal E},{\cal F},$ we have

 $\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$

Corollary

In **EA**, tensor product does not preserve (RDP).

Proof:

- Let $A, B \in \mathbf{POG}_u$ satisfy (RDP), but $A \otimes B$ not (example in [4]).
- There is $A \cong Gr(E)$ and $B \cong Gr(F)$ for some $E, F \in \mathbf{EA}$ with (RDP).

Theorem

For a pair of effect algebras ${\cal E},{\cal F},$ we have

$$\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F).$$

Corollary

In **EA**, tensor product does not preserve (RDP).

Proof:

- Let $A, B \in \mathbf{POG}_u$ satisfy (RDP), but $A \otimes B$ not (example in [4]).
- There is $A \cong Gr(E)$ and $B \cong Gr(F)$ for some $E, F \in \mathbf{EA}$ with (RDP).
- If $E \otimes F$ had (RDP), then $\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F) \cong A \otimes B$ would satisfy (RDP) as well.

Theorem

Recall the functor $E: \mathbf{POG}_b \to \mathbf{EA}$. Let $M, N \in \mathbf{POG}_b$. Then

$\mathcal{E}(M\otimes N)\cong \mathcal{E}(M)\otimes \mathcal{E}(N).$

Corallary

The functor $E: \mathbf{POG}_b \to \mathbf{EA}$ does not preserve (RDP).

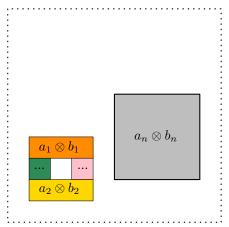
Theorem (see [3]): $\Gamma(\mathbb{R}, 1) \otimes \Gamma(\mathbb{R}, 1) \cong \Gamma(\mathbb{R} \otimes \mathbb{R}, 1 \otimes 1)$ satisfies (RDP) but it is not a lattice. What about **PCM**_b?

Question III: $[0,1]_{\mathbb{R}} \otimes [0,1]_{\mathbb{R}}$

In \mathbf{PCM}_b , one can represent and element

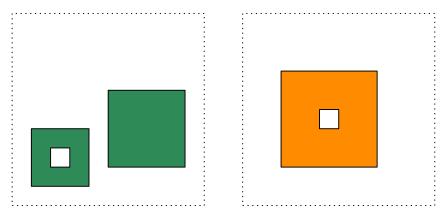
 $a_1 \otimes b_1 \oplus a_2 \otimes b_2 \oplus \cdots \oplus a_n \otimes b_n$

of $[0,1]_{\mathbb{R}}\otimes [0,1]_{\mathbb{R}}$ as an orthogonal polygon living inside a unit square:

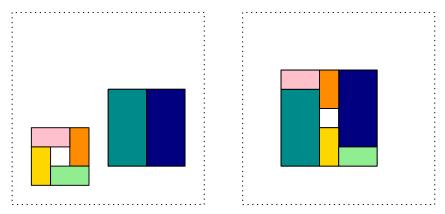


Question III: $[0,1]_{\mathbb{R}} \otimes [0,1]_{\mathbb{R}}$

Two elements of $[0,1] \otimes_{\mathsf{PCM}_b} [0,1]$ are equal iff the corresponding orthogonal polygons are related by an orthogonal dissection.

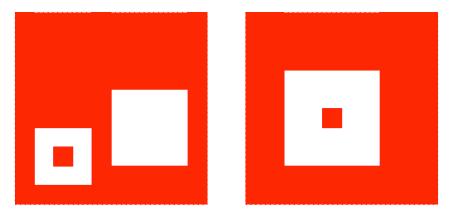


Two elements of $[0,1] \otimes_{\mathsf{PCM}_b} [0,1]$ are equal iff the corresponding orthogonal polygons are related by an orthogonal dissection.



Question III: $[0,1]_{\mathbb{R}} \otimes [0,1]_{\mathbb{R}}$

Does the equivalence induced by orthogonal dissection preserve complements?



This combinatorial problem was recently solved in [2] by establishing a full (Dehn) invariant:

 $D\colon \{\text{orthogonal polygons}\} \to \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R} \ (\cong \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}).$

Theorem

If we identify **EA** with a subcategory of PCM_b , then we have

 $[0,1] \otimes_{\mathsf{EA}} [0,1] \cong [0,1] \otimes_{\mathsf{PCM}_b} [0,1].$

- [1] A. Dvurečenskij. Tensor product of difference posets and effect algebras. Int J Theor Phys, 34:1337–1348, 1995. doi: https://doi.org/10.1007/BF00676246.
- [2] D. Eppstein. Orthogonal dissection into few rectangles. 2022. doi: https://doi.org/10.48550/arXiv.2206.10675.
- [3] A. Jenčová and S. Pulmannová. Tensor product of dimension effect algebras. Order, 38:377–389, 2021. doi: https://doi.org/10.1007/s11083-020-09546-z.
- [4] F. Wehrung. Tensor products of structures with interpolation. *Pacific Journal of Mathematics*, 176:267–285, 1996.

THANK YOU FOR YOUR ATTENTION