Tensor product of effect algebras SSAOS 2023

Dominik Lachman
Palacký University Olomouc

September 4, 2023

Let E be an effect algebra...

Definition

An effect algebra is a partial algebra $\left(E ; \oplus,{ }^{\prime}, 0,1\right)$, where \oplus is a partial binary operation, ${ }^{\prime}$ is a unary operation and 0,1 are constants, such that for each $a, b, c \in E$:
(i) $a \oplus b=b \oplus a$;
(ii) $(a \oplus b) \oplus c=a \oplus(b \oplus c)$;
(iii) $a \oplus b=1$ if and only if $b=a^{\prime}$;
(iv) $a \oplus 1$ is defined if and only if $a=0$.

Where (i-ii) are Kleene identities.

Let E be an effect algebra...

Definition

An effect algebra is a partial algebra $\left(E ; \oplus,{ }^{\prime}, 0,1\right)$, where \oplus is a partial binary operation, ${ }^{\prime}$ is a unary operation and 0,1 are constants, such that for each $a, b, c \in E$:
(i) $a \oplus b=b \oplus a$;
(ii) $(a \oplus b) \oplus c=a \oplus(b \oplus c)$;
(iii) $a \oplus b=1$ if and only if $b=a^{\prime}$;
(iv) $a \oplus 1$ is defined if and only if $a=0$.

Where (i-ii) are Kleene identities.

Ordering: $a \leq b$ iff $(\exists c), a \oplus c=b$. Partial subtraction: For $a \leq b$, there is a unique $c=b \ominus a$, i.e., \oplus is cancellative. Examples: $\mathcal{P}(H), \mathcal{E}(H)$, Boolean algebras ($\oplus=$ disjoint union), orthomodular posets, orthoalgebras, MV-algebras,...

Related categories

$\mathbf{P O G}_{u}=$ the category of partially ordered Abelian groups with order unit

$$
[0, u]_{A} \quad \hookleftarrow \quad(A, u)
$$

$\mathbf{P C M}_{b}=$ the category of partial commutative monoids with a top element
forgets cancellativity

Key concept: Riesz Decomposition Property

Definition

A (partial) commutative monoid M satisfies (RDP), if for all

a_{1}	a_{2}		
$\\|$	$\\|$		

$$
a_{1} \oplus a_{2}=b_{1} \oplus b_{2}
$$

there exist $\left(c_{i, j}\right)_{i, j=1,2}$, so that

$$
\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)=b_{1}=b_{2}
$$

$a_{i}=c_{1, i} \oplus c_{2, i}, b_{i}=c_{i, 1} \oplus c_{i, 2}$.

Key concept: Riesz Decomposition Property

Definition

A (partial) commutative monoid M satisfies (RDP), if for all

$$
a_{1} \oplus a_{2}=b_{1} \oplus b_{2}
$$

there exist $\left(c_{i, j}\right)_{i, j=1,2}$, so that
$a_{i}=c_{1, i} \oplus c_{2, i}, b_{i}=c_{i, 1} \oplus c_{i, 2}$.

$$
\begin{aligned}
a_{1} & a_{2} \\
\| & \| \\
\left(\begin{array}{cc}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right) & =b_{1}
\end{aligned}
$$

commutative monoids	effect algebras	po-groups
refinement property	Riesz Decomposition Property	interpolation

Key concept: Riesz Decomposition Property

Definition

A (partial) commutative monoid M satisfies (RDP), if for all

$$
a_{1} \oplus a_{2}=b_{1} \oplus b_{2}
$$

there exist $\left(c_{i, j}\right)_{i, j=1,2}$, so that
$a_{i}=c_{1, i} \oplus c_{2, i}, b_{i}=c_{i, 1} \oplus c_{i, 2}$.

$$
\begin{aligned}
& a_{1} a_{2} \\
& \| \| \\
&\left(\begin{array}{cc}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)=b_{1} \\
& b_{2}
\end{aligned}
$$

commutative monoids	effect algebras	po-groups
refinement property	Riesz Decomposition Property	interpolation

Theorem: Effect algebras with (RDP) are categorically equivalent to interpolation Abelian po-groups with order unit.

Key concept: coslice category

Let A be an object of a category \mathcal{C}. A coslice category $A \downarrow \mathcal{C}$ is given by the following data:

Key concept: coslice category

Let A be an object of a category \mathcal{C}. A coslice category $A \downarrow \mathcal{C}$ is given by the following data:

$$
\begin{aligned}
& \text { object }=\{x: A \rightarrow X\} \quad \text { arrows }=\{h: x \rightarrow y\} \\
& \begin{array}{c}
X \\
x \\
\uparrow \\
A
\end{array}
\end{aligned}
$$

Given an adjunction $(L \dashv R): \mathcal{C} \rightarrow \mathcal{D}$ and an object $A \in \mathcal{C}$:

$$
\mathcal{C} \underset{\underset{R}{\perp}}{\stackrel{L}{\perp}} \mathcal{D} \quad \rightsquigarrow \quad A \downarrow \mathcal{C} \underset{R^{\prime}}{\stackrel{L^{\prime}}{\perp}} L(A) \downarrow \mathcal{D}
$$

Where $L^{\prime}: x \mapsto L(x)$ and $R^{\prime}: y \mapsto R(y) \circ \eta_{A}$.

(Finally) Tensor product in EA

Definition

Let E, F, G be effect algebras. A mapping $\beta: E \times F \rightarrow G$ is a bihomomorphism if
(i) $(\forall a \in E), \beta(a,-): F \rightarrow G$ preserves orthosums;
(ii) $(\forall b \in F), \beta(-, b): E \rightarrow G$ preserves orthosums;
(iii) $\beta(1,1)=1$.

(Finally) Tensor product in EA

Definition

Let E, F, G be effect algebras. A mapping $\beta: E \times F \rightarrow G$ is a bihomomorphism if
(i) $(\forall a \in E), \beta(a,-): F \rightarrow G$ preserves orthosums;
(ii) $(\forall b \in F), \beta(-, b): E \rightarrow G$ preserves orthosums;
(iii) $\beta(1,1)=1$.

Definition

A tensor product of effect algebras E, F is a bihomomorphism

$$
-\otimes-: E \times F \rightarrow E \otimes F
$$

such that each bihomomorphism $\beta: E \times F \rightarrow G$ uniquely splits through $E \otimes F$ as $\beta=f \circ \otimes$.

Tensor product in $\mathbf{P C M}_{b}, \mathbf{E A}$ and $\mathbf{P O G}_{u}$

Tensor product in $\mathbf{P C M}{ }_{b}, \mathbf{E A}$ and $\mathbf{P O G}_{u}$

PCM_{b}

EA
$\mathbf{P O G}_{u}$

$$
\begin{aligned}
& \left(A, A^{+}, u\right) \otimes\left(B, B^{+}, v\right) \\
\cong & \left(A \otimes B, A^{+} \otimes B^{+}, u \otimes v\right)
\end{aligned}
$$

Recall:

$$
A \otimes B=\mathcal{F}_{A b}(A \times B) / I
$$

I is generated by

$$
\begin{aligned}
& (a, c)+(b, c)-(a+b, c) \\
& (a, c)+(a, d)-(a, c+d) \\
& a, b \in A, c, d \in B
\end{aligned}
$$

Tensor product in $\mathbf{P C M}{ }_{b}, \mathbf{E A}$ and $\mathbf{P O G}_{u}$

PCM_{b}

When are two elements of a tensor product $M \otimes N$

$$
\begin{aligned}
& a_{1} \otimes b_{1} \oplus \cdots \oplus a_{n} \otimes b_{n} \\
& c_{1} \otimes d_{1} \oplus \cdots \oplus c_{m} \otimes d_{m}
\end{aligned}
$$

equal?
The case M and N satisfy (RDP) is (essentially) treated by Wehrung in [4] .

$$
\begin{aligned}
& \left(A, A^{+}, u\right) \otimes\left(B, B^{+}, v\right) \\
\cong & \left(A \otimes B, A^{+} \otimes B^{+}, u \otimes v\right)
\end{aligned}
$$

Recall:

$$
A \otimes B=\mathcal{F}_{A b}(A \times B) / I
$$

I is generated by

$$
\begin{aligned}
& (a, c)+(b, c)-(a+b, c) \\
& (a, c)+(a, d)-(a, c+d)
\end{aligned}
$$

$$
a, b \in A, c, d \in B
$$

Tensor product in $\mathbf{P C M}{ }_{b}, \mathbf{E A}$ and $\mathbf{P O G}_{u}$

PCM_{b}
EA
$\mathbf{P O G}_{u}$

When are two elements of a tensor product $M \otimes N$

$$
\begin{aligned}
& a_{1} \otimes b_{1} \oplus \cdots \oplus a_{n} \otimes b_{n} \\
& c_{1} \otimes d_{1} \oplus \cdots \oplus c_{m} \otimes d_{m}
\end{aligned}
$$

equal?
The case M and N satisfy (RDP) is (essentially) treated by Wehrung in [4] .

Tensor products always exist [1], but they are hard to compute.

Elements of $E \otimes F$ are of the form

$$
a_{1} \otimes b_{1} \oplus \cdots \oplus a_{n} \otimes b_{n} .
$$

$$
\left(A, A^{+}, u\right) \otimes\left(B, B^{+}, v\right)
$$

$$
\cong\left(A \otimes B, A^{+} \otimes B^{+}, u \otimes v\right)
$$

Recall:

$$
A \otimes B=\mathcal{F}_{A b}(A \times B) / I
$$

I is generated by

$$
\begin{aligned}
& (a, c)+(b, c)-(a+b, c) \\
& (a, c)+(a, d)-(a, c+d)
\end{aligned}
$$

$$
a, b \in A, c, d \in B
$$

Questions

- Which colimits (in EA) are preserved by tensor product? In POG, dimension groups are characterized as directed colimits of the simplicial ones. Given to such examples

$$
A=\underset{d \in \mathcal{D}}{\operatorname{colim}} S_{d} \quad \text { and } B=\underset{d^{\prime} \in \mathcal{D}}{\operatorname{colim}} S_{d^{\prime}}^{\prime}
$$

we have (because filtered colimits commute with tensor product)

$$
A \otimes B \cong \underset{\left(d, d^{\prime}\right) \in \mathcal{D} \times \mathcal{D}^{\prime}}{\operatorname{colim}} S_{d} \otimes S_{d^{\prime}}^{\prime}
$$

Questions

- Which colimits (in EA) are preserved by tensor product?

In POG, dimension groups are characterized as directed colimits of the simplicial ones. Given to such examples

$$
A=\underset{d \in \mathcal{D}}{\operatorname{colim}} S_{d} \text { and } B=\underset{d^{\prime} \in \mathcal{D}}{\operatorname{colim}} S_{d^{\prime}}^{\prime}
$$

we have (because filtered colimits commute with tensor product)

$$
A \otimes B \cong \underset{\left(d, d^{\prime}\right) \in \mathcal{D} \times \mathcal{D}^{\prime}}{\operatorname{colim}} S_{d} \otimes S_{d^{\prime}}^{\prime}
$$

- Does tensor product in EA preserve (RDP)? In [4], we have following results

$$
\begin{array}{ccc}
\mathbf{P C M}_{b} & \mathrm{EA} & \mathbf{P O G}_{u} \\
\hline \mathrm{YES} & ? & \mathrm{NO}
\end{array}
$$

Questions

- Which colimits (in EA) are preserved by tensor product?

In POG, dimension groups are characterized as directed colimits of the simplicial ones. Given to such examples

$$
A=\underset{d \in \mathcal{D}}{\operatorname{colim}} S_{d} \quad \text { and } B=\underset{d^{\prime} \in \mathcal{D}}{\operatorname{colim}} S_{d^{\prime}}^{\prime}
$$

we have (because filtered colimits commute with tensor product)

$$
A \otimes B \cong \underset{\left(d, d^{\prime}\right) \in \mathcal{D} \times \mathcal{D}^{\prime}}{\operatorname{colim}} S_{d} \otimes S_{d^{\prime}}^{\prime}
$$

- Does tensor product in EA preserve (RDP)? In [4], we have following results

$$
\begin{array}{ccc}
\mathbf{P C M}_{b} & \text { EA } & \mathbf{P O G}_{u} \\
\hline \mathrm{YES} & ? & \mathrm{NO}
\end{array}
$$

- How does the tensor product $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$ look like? It was for a while an open problem whenever it is a lattice-effect algebra.

Question I: Colimits

Consider tensoring with an effect algebra E as a functor

$$
E \otimes-: \mathbf{E A} \rightarrow \mathbf{E A}
$$

which sends $F \mapsto E \otimes F$. Is there a right adjoint?

$$
\begin{equation*}
\frac{E \otimes F \rightarrow G}{F \rightarrow[E, G]} \tag{1}
\end{equation*}
$$

Question I: Colimits

Consider tensoring with an effect algebra E as a functor

$$
E \otimes-: \mathbf{E A} \rightarrow \mathbf{E A}
$$

which sends $F \mapsto E \otimes F$. Is there a right adjoint?

$$
\begin{equation*}
\frac{E \otimes F \rightarrow G}{F \rightarrow[E, G]} \tag{1}
\end{equation*}
$$

Try set $[E, G]$ to contain all mappings preserving \oplus (may not preserve 1). This is not an effect algebra. Maximal elements are all homomorphisms.

Question I: Colimits

Consider tensoring with an effect algebra E as a functor

$$
E \otimes-: \mathbf{E A} \rightarrow \mathbf{E A}
$$

which sends $F \mapsto E \otimes F$. Is there a right adjoint?

$$
\begin{equation*}
\frac{E \otimes F \rightarrow G}{F \rightarrow[E, G]} \tag{1}
\end{equation*}
$$

Try set $[E, G]$ to contain all mappings preserving \oplus (may not preserve 1). This is not an effect algebra. Maximal elements are all homomorphisms.

Consider

$$
E \otimes-: \mathbf{E A} \rightarrow E \downarrow \mathbf{E A}
$$

which sends F to $f: E \rightarrow E \otimes F(f: a \mapsto a \otimes 1)$.

$$
\begin{equation*}
F \longrightarrow[E, G]_{g} \tag{2}
\end{equation*}
$$

Question I: Colimits

Theorem
Let \mathcal{D} be a small category and $E \in \mathbf{E A}$. The functor

$$
E \otimes-: \mathbf{E A} \rightarrow \mathbf{E A}
$$

preserves colimits over \mathcal{D} whenever \mathcal{D} is connected ($=$ the underlying graph is connected).

Question I: Colimits

Theorem
Let \mathcal{D} be a small category and $E \in \mathbf{E A}$. The functor

$$
E \otimes-: \mathbf{E A} \rightarrow \mathbf{E A}
$$

preserves colimits over \mathcal{D} whenever \mathcal{D} is connected ($=$ the underlying graph is connected).

Proof: The functor $E \otimes-: \mathbf{E A} \rightarrow \mathbf{E A}$ splits as:

$$
\begin{equation*}
\mathbf{E A} \longrightarrow E \downarrow \mathbf{E A} \longrightarrow \mathbf{E A} \tag{3}
\end{equation*}
$$

The first part preserves all colimits. The second part preserves all connected colimits.

$\mathbf{E A}$ and $\mathbf{P O G}_{u}$

For $E \in \mathbf{E A}$ and $A=\operatorname{Gr}(E)$, consider a square:

Commutativity (up to iso) would give us an isomorphism

$$
\begin{equation*}
\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F) \tag{4}
\end{equation*}
$$

$\mathbf{E A}$ and $\mathbf{P O G}_{u}$

For $E \in \mathbf{E A}$ and $A=\operatorname{Gr}(E)$, consider a square:

Commutativity (up to iso) would give us an isomorphism

$$
\begin{equation*}
\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F) \tag{4}
\end{equation*}
$$

We switch to the right adjoints: For $h: A \rightarrow B$ an object of $A \downarrow \mathbf{P O G}_{u}$

$$
\begin{equation*}
[E, \Gamma(B, v)]_{\bar{h}} \cong \Gamma([A, B], h) \tag{5}
\end{equation*}
$$

Question II: Riesz Decomposition Property

Theorem
For a pair of effect algebras E, F, we have

$$
\operatorname{Gr}(E \otimes F) \cong \mathrm{Gr}(E) \otimes \mathrm{Gr}(F)
$$

Question II: Riesz Decomposition Property

Theorem

For a pair of effect algebras E, F, we have

$$
\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F)
$$

Corollary

In EA, tensor product does not preserve (RDP).

Question II: Riesz Decomposition Property

Theorem

For a pair of effect algebras E, F, we have

$$
\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F)
$$

Corollary

In EA, tensor product does not preserve (RDP).

Proof:

- Let $A, B \in \mathbf{P O G}_{u}$ satisfy (RDP), but $A \otimes B$ not (example in [4]).

Question II: Riesz Decomposition Property

Theorem

For a pair of effect algebras E, F, we have

$$
\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F)
$$

Corollary

In EA, tensor product does not preserve (RDP).

Proof:

- Let $A, B \in \mathbf{P O G}_{u}$ satisfy (RDP), but $A \otimes B$ not (example in [4]).
- There is $A \cong \operatorname{Gr}(E)$ and $B \cong \operatorname{Gr}(F)$ for some $E, F \in \mathbf{E A}$ with (RDP).

Question II: Riesz Decomposition Property

Theorem

For a pair of effect algebras E, F, we have

$$
\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F)
$$

Corollary

In EA, tensor product does not preserve (RDP).

Proof:

- Let $A, B \in \mathbf{P O G}_{u}$ satisfy (RDP), but $A \otimes B$ not (example in [4]).
- There is $A \cong \operatorname{Gr}(E)$ and $B \cong \operatorname{Gr}(F)$ for some $E, F \in$ EA with (RDP).
- If $E \otimes F$ had (RDP), then $\operatorname{Gr}(E \otimes F) \cong \operatorname{Gr}(E) \otimes \operatorname{Gr}(F) \cong A \otimes B$ would satisfy (RDP) as well.

Question II: Riesz Decomposition Property.

Theorem

Recall the functor $\mathrm{E}: \mathbf{P O G}{ }_{b} \rightarrow \mathbf{E A}$. Let $M, N \in \mathbf{P} \mathbf{O G}_{b}$. Then

$$
\mathrm{E}(M \otimes N) \cong \mathrm{E}(M) \otimes \mathrm{E}(N)
$$

Corallary

The functor $\mathrm{E}: \mathbf{P O G}_{b} \rightarrow \mathbf{E A}$ does not preserve (RDP).

Question III: $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$

Theorem (see [3]): $\Gamma(\mathbb{R}, 1) \otimes \Gamma(\mathbb{R}, 1) \cong \Gamma(\mathbb{R} \otimes \mathbb{R}, 1 \otimes 1)$ satisfies (RDP) but it is not a lattice. What about PCM_{b} ?

Question III: $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$

In $\mathbf{P C M}_{b}$, one can represent and element

$$
a_{1} \otimes b_{1} \oplus a_{2} \otimes b_{2} \oplus \cdots \oplus a_{n} \otimes b_{n}
$$

of $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$ as an orthogonal polygon living inside a unit square:

Question III: $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$

Two elements of $[0,1] \otimes \mathbf{P C M}_{b}[0,1]$ are equal iff the corresponding orthogonal polygons are related by an orthogonal dissection.

Question III: $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$

Two elements of $[0,1] \otimes \mathbf{P C M}_{b}[0,1]$ are equal iff the corresponding orthogonal polygons are related by an orthogonal dissection.

Question III: $[0,1]_{\mathbb{R}} \otimes[0,1]_{\mathbb{R}}$

Does the equivalence induced by orthogonal dissection preserve complements?

Dehn invariant

This combinatorial problem was recently solved in [2] by establishing a full (Dehn) invariant:

$$
D:\{\text { orthogonal polygons }\} \rightarrow \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}\left(\cong \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}\right)
$$

Theorem

If we identify EA with a subcategory of $\mathbf{P C M}_{b}$, then we have

$$
[0,1] \otimes \mathbf{E A}[0,1] \cong[0,1] \otimes \mathbf{P C M}_{b}[0,1] .
$$

Bibliography

[1] A. Dvurečenskij. Tensor product of difference posets and effect algebras. Int J Theor Phys, 34:1337-1348, 1995. doi: https://doi.org/10.1007/BF00676246.
[2] D. Eppstein. Orthogonal dissection into few rectangles. 2022. doi: https://doi.org/10.48550/arXiv.2206.10675.
[3] A. Jenčová and S. Pulmannová. Tensor product of dimension effect algebras. Order, 38:377-389, 2021. doi: https://doi.org/10.1007/s11083-020-09546-z.
[4] F. Wehrung. Tensor products of structures with interpolation. Pacific Journal of Mathematics, 176:267-285, 1996.

THANK YOU FOR YOUR ATTENTION

