On varieties of commutative BCK-algebras Covers of some varieties

Jan Kühr

Joint work with Václav Cenker and Petr Ševčík

Palacký University in Olomouc Czechia

ヘロト ヘロト ヘヨト ヘヨト

- ŁBCK-algebras are
 - the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];

ヘロト ヘロト ヘヨト ヘヨト

- ŁBCK-algebras are
 - the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];
 - algebras $(A,\ominus,0)$ where

$$x \ominus y = (x - y) \lor 0,$$

for some lattice-ordered abelian group $(G,\leq,+,-,0)$ and a convex subset $A\subseteq G^+.$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ŁBCK-algebras are

- the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];
- algebras $(A,\ominus,0)$ where

$$x \ominus y = (x - y) \lor 0,$$

for some lattice-ordered abelian group $(G,\leq,+,-,0)$ and a convex subset $A\subseteq G^+.$

• The varieties of ŁBCK-algebras are

$$\mathcal{S}_0 \subset \mathcal{S}_1 \subset \cdots \subset \mathcal{S}_n \subset \mathcal{S}_{n+1} \subset \cdots \subset \mathcal{L},$$

where $\mathcal{S}_n = V(S_n)$ and $\mathcal{L} = V(\mathbb{Z}^+)$ [Komori 1978].

- ŁBCK-algebras are
 - the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];
 - algebras $(A,\ominus,0)$ where

$$x \ominus y = (x - y) \lor 0,$$

for some lattice-ordered abelian group $(G,\leq,+,-,0)$ and a convex subset $A\subseteq G^+.$

• The varieties of ŁBCK-algebras are

$$\mathcal{S}_0 \subset \mathcal{S}_1 \subset \cdots \subset \mathcal{S}_n \subset \mathcal{S}_{n+1} \subset \cdots \subset \mathcal{L},$$

where $\mathcal{S}_n = V(S_n)$ and $\mathcal{L} = V(\mathbb{Z}^+)$ [Komori 1978].

L is a subvariety of the variety of commutative BCK-algebras,
C. So, what are the covers of the S_n's (and of L) in the subvariety lattice of C?

Commutative BCK-algebras are algebras $(A,\ominus,0)$ of type (2,0) satisfying the equations

$$egin{aligned} &x \ominus 0 = x, \ &x \ominus x = 0, \ &(x \ominus y) \ominus z = (x \ominus z) \ominus y, \ &x \ominus (x \ominus y) = y \ominus (y \ominus x). \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

Commutative BCK-algebras are algebras $(A,\ominus,0)$ of type (2,0) satisfying the equations

$$egin{aligned} & x \ominus 0 = x, \ & x \ominus x = 0, \ & (x \ominus y) \ominus z = (x \ominus z) \ominus y, \ & x \ominus (x \ominus y) = y \ominus (y \ominus x). \end{aligned}$$

The underlying poset defined by $x \leq y$ iff $x \ominus y = 0$ is a meet-semilattice with

$$x \wedge y = x \ominus (x \ominus y).$$

イロト イポト イヨト イヨト 二日

Commutative BCK-algebras are algebras $(A,\ominus,0)$ of type (2,0) satisfying the equations

$$egin{aligned} & x \ominus 0 = x, \ & x \ominus x = 0, \ & (x \ominus y) \ominus z = (x \ominus z) \ominus y, \ & x \ominus (x \ominus y) = y \ominus (y \ominus x). \end{aligned}$$

The underlying poset defined by $x \leq y$ iff $x \ominus y = 0$ is a meet-semilattice with

$$x \wedge y = x \ominus (x \ominus y).$$

Bounded commutative BCK-algebras are term-equivalent to MV-algebras.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

 $\verb+LBCK-algebras are commutative BCK-algebras satisfying$

the equation

$$(x \ominus y) \land (y \ominus x) = 0;$$

the quasi-equation

$$x \wedge y \ge z$$
 & $x \ominus z = y \ominus z$ \Rightarrow $x = y$.

▲ 御 ▶ ▲ 理 ▶ ▲ 理 ▶ …

э

 $\verb+LBCK-algebras are commutative BCK-algebras satisfying$

the equation

 $(x \ominus y) \land (y \ominus x) = 0;$

2 the quasi-equation

$$x \wedge y \ge z \quad \& \quad x \ominus z = y \ominus z \quad \Rightarrow \quad x = y.$$

The smallest commutative BCK-algebra that is not an ŁBCK-algebra:

・ 同 ト ・ ヨ ト ・ ヨ ト

Forbidden triples/pairs

We say that

• (x, y, z) is a forbidden triple if $x \land y \ge z$, $x \ominus z = y \ominus z$ and $x \ne y$;

< 注 → …

э

-

Forbidden triples/pairs

We say that

- (x, y, z) is a forbidden triple if $x \land y \ge z$, $x \ominus z = y \ominus z$ and $x \ne y$;
- (x, y) is a forbidden pair if $x \ominus y = y \ominus x \neq 0$.

Forbidden triples/pairs

We say that

- (x, y, z) is a forbidden triple if $x \land y \ge z$, $x \ominus z = y \ominus z$ and $x \ne y$;
- (x, y) is a forbidden pair if $x \ominus y = y \ominus x \neq 0$.

< ⊒ >

- ∢ ⊒ →

Lemma

A commutative BCK-algebra is not an &BCK-algebra iff it has a forbidden triple/pair.

Simple construction – splitting a totally ordered ŁBCK-algebra:

< 臣 > < 臣 > .

Simple construction – splitting a totally ordered ŁBCK-algebra:

(세종) 세종) 등

Simple construction – splitting a totally ordered ŁBCK-algebra:

We define $x \ominus y = x \ominus b$ in A_1 and $y \ominus x = y \ominus b$ in A_2 .

→ 御 → → 注 → → 注 注

Simple construction – splitting a totally ordered ŁBCK-algebra:

We may assume that the "branches" are bounded, with (a_1, a_2) being a forbidden pair, in which case $[0, a_1] \cong [0, a_2]$.

Simple construction – splitting a totally ordered ŁBCK-algebra:

We may assume that the "branches" are bounded, with (a_1, a_2) being a forbidden pair, in which case $[0, a_1] \cong [0, a_2]$.

This is a simple algebra.

Splitting $S_{n+1} = \{0, 1, \dots, n+1\}$:

 $a_1 \ominus a_2 = a_1 \ominus n = 1$ and $a_2 \ominus a_1 = a_2 \ominus n = 1$ Notation: $S_{n,2}$ or $M_2(S_n)$

The are uncountably many varieties of commutative BCK-algebras.

The map $K \mapsto V(\{S_{n,2} \mid n \in K\})$ from nonempty subsets of positive integers to subvarieties of \mathscr{C} is one-to-one.

▲御▶ ▲注▶ ▲注≯

The are uncountably many varieties of commutative BCK-algebras.

The map $K \mapsto V(\{S_{n,2} \mid n \in K\})$ from nonempty subsets of positive integers to subvarieties of \mathscr{C} is one-to-one.

We say that A is sectionally of finite length if, for every $a \in A$, [0, a] is of finite length.

Theorem

Suppose that A is sectionally of finite length. Then A is not an &BCK-algebra iff it has a subalgebra isomorphic to some $S_{n,2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

The (strict) covers of \mathcal{S}_n in $\Lambda(\mathscr{C})$ are:

- S_{n+1},
- $\mathcal{S}_{n-1,2}$ if $n \geq 2$, and
- $S_n \vee S_{m,2}$ (for every m < n-1) if $n \ge 3$.

Theorem

The (strict) covers of \mathcal{S}_n in $\Lambda(\mathscr{C})$ are:

- S_{n+1},
- $\mathcal{S}_{n-1,2}$ if $n \geq 2$, and
- $S_n \vee S_{m,2}$ (for every m < n-1) if $n \ge 3$.

(本部) (本語) (本語) (語

Theorem

The (strict) covers of \mathcal{S}_n in $\Lambda(\mathscr{C})$ are:

- S_{n+1},
- $\mathcal{S}_{n-1,2}$ if $n \geq 2$, and
- $S_n \vee S_{m,2}$ (for every m < n-1) if $n \ge 3$.

Theorem

The (strict) covers of \mathcal{S}_n in $\Lambda(\mathscr{C})$ are:

- S_{n+1},
- $\mathcal{S}_{n-1,2}$ if $n \geq 2$, and
- $S_n \vee S_{m,2}$ (for every m < n-1) if $n \ge 3$.

JK

イロト イポト イヨト イヨト 二日

For any integers $n\geq 1$ and $p\geq 2,$ the (strict) covers of $\mathcal{S}_{n,p}$ in $\Lambda(\mathcal{L})$ are:

- $\mathcal{S}_{n,p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n,p+1}$, and
- $S_{n,p} \vee S_{m,2}$ (for every m < n) if $n \ge 2$.

▲御▶ ▲臣▶ ▲臣▶

For any integers $n\geq 1$ and $p\geq 2,$ the (strict) covers of $\mathcal{S}_{n,p}$ in $\Lambda(\mathcal{L})$ are:

- $\mathcal{S}_{n,p} \vee \mathcal{S}_{n+2}$,
- $S_{n,p+1}$, and
- $S_{n,p} \vee S_{m,2}$ (for every m < n) if $n \ge 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

For any integers $n\geq 1$ and $p\geq 2,$ the (strict) covers of $\mathcal{S}_{n,p}$ in $\Lambda(\mathcal{L})$ are:

- $\mathcal{S}_{n,p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n,p+1}$, and
- $S_{n,p} \vee S_{m,2}$ (for every m < n) if $n \ge 2$.

For any integers $n\geq 1$ and $p\geq 2,$ the (strict) covers of $\mathcal{S}_{n,p}$ in $\Lambda(\mathcal{L})$ are:

- $\mathcal{S}_{n,p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n,p+1}$, and
- $S_{n,p} \vee S_{m,2}$ (for every m < n) if $n \ge 2$.

JK

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Axiomatization of $S_{n,p}$

For any integer $k \ge 1$, we define

$$x \ominus ky = (\dots ((x \ominus y) \ominus y) \ominus \dots) \ominus y.$$

ヘロト ヘ週ト ヘヨト ヘヨト

For any integer $k \ge 1$, we define

$$x \ominus ky = (\dots ((x \ominus y) \ominus y) \ominus \dots) \ominus y.$$

Lemma (Cornish 1980, Komori 1978)

() A totally ordered commutative BCK-algebra A satisfies

$$(x \ominus ky) \wedge y = 0. \tag{E}_k$$

iff $A \cong S_n$ for some $n \leq k$.

▲御▶ ▲ 国▶ ▲ 国▶

For any integer $k \ge 1$, we define

$$x \ominus ky = (\dots ((x \ominus y) \ominus y) \ominus \dots) \ominus y.$$

Lemma (Cornish 1980, Komori 1978)

 $\begin{tabular}{ll} \label{eq:linear} {\bf 0} & {\bf A} \mbox{ totally ordered commutative BCK-algebra A satisfies } \\ \end{tabular}$

$$(x \ominus ky) \land y = 0. \tag{E}_k$$

iff $A \cong S_n$ for some $n \leq k$.

② A subdirectly irreducible commutative BCK-algebra is a tree with meet-irreducible 0. It satisfies (E_k) iff its length is ≤ k.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let \mathscr{C}_k be the subvariety of \mathscr{C} defined by (E_k) .

The subdirectly irreducible members of \mathscr{C}_k are trees (with meet-irreducible 0) of length $\leq k$.

Note that $\mathscr{C}_k \cap \mathscr{L} = \mathscr{S}_k$.

Let \mathscr{C}_k be the subvariety of \mathscr{C} defined by (E_k) .

The subdirectly irreducible members of \mathscr{C}_k are trees (with meet-irreducible 0) of length $\leq k$.

Note that $\mathscr{C}_k \cap \mathscr{L} = \mathscr{S}_k$.

Theorem

The only (strict) cover of \mathscr{C}_k in $\Lambda(\mathscr{C})$ is $\mathscr{C}_k \vee \mathscr{S}_{k+1}$; it is axiomatized by the equations

$$(x \ominus (k+1)y) \land y = 0 \tag{E}_{k+1}$$

and

$$(x\ominus ky)\wedge y\wedge (u\ominus v)\wedge (v\ominus u)=0.$$

<ロ> <同> <同> <同> <同> <同> < □> <

Lemma

For any integer $n \geq 1$ and any cardinal $\kappa \geq 2$, the algebra $S_{n,\kappa}$ satisfies the equation

$$(x \ominus ky) \land y = 0 \tag{E}_k$$

< ∃→

iff n < k.

AP ► < E ►

Lemma

For any integer $n \ge 1$ and any cardinal $\kappa \ge 2$, the algebra $S_{n,\kappa}$ satisfies the equation

$$(x \ominus ky) \land y = 0 \tag{E}_k$$

伺下 イヨト イヨト

iff n < k.

Thus, also $S_{m,\kappa}$ with m < n satisfy (E_k), but they are not in $S_{n,\kappa}$ because $S_{n,\kappa}$ is a simple algebra and its subalgebras are

•
$$S_m$$
 for $m \le n+1$ and

•
$$S_{n,\lambda}$$
 for $\lambda \leq \kappa$.

Proposition

For any integer $n\geq 1$ and any cardinal $\kappa\geq 2,$ the algebra $S_{n,\kappa}$ satisfies the equation

$$egin{aligned} &(x\ominus y)\wedge(y\ominus x)\leq\ &\leq x\ominus kig((x\ominus y)\wedge(y\ominus x)ig) \quad ig(\mathsf{F}_k) \end{aligned}$$

iff $n \geq k$.

Every cBCK-algebra satisfies (F_1).

伺下 イヨト イヨト

Digression – $S_{1,2}^{\infty}$

$$S_1^{\infty} = [(0,0), (1,0)] \text{ in } (\mathbb{Z} \times \mathbb{Z})^+ = (\{0\} \times \mathbb{Z}^+) \cup (\{1\} \times \mathbb{Z}^-)$$

Proposition

The algebra $S^{\infty}_{1,2}$ satisfies the equation

$$(x \ominus y) \land (y \ominus x) \le$$

 $\le x \ominus k ((x \ominus y) \land (y \ominus x)) \quad (\mathsf{F}_k)$

for each k. Consequently, the variety $\mathcal{S}^\infty_{1,2}=\mathrm{V}(S^\infty_{1,2})$ is not generated by its finite members.

<ロ> (四) (四) (三) (三) (三) (三)

The variety $\mathcal{S}_{n,\kappa}$ with κ infinite is axiomatized, relative to C, by the equations

$$(x \ominus (n+1)y) \land y = 0 \tag{E}_{n+1}$$

and

$$(x \ominus y) \land (y \ominus x) \le x \ominus n ((x \ominus y) \land (y \ominus x)).$$
 (F_n)

イロト イヨト イヨト

э

Lemma

For any integers $n, p \ge 1$, the algebra $S_{n,p}$ satisfies the equation

$$\bigwedge_{0 \le i \ne j \le k} (x_i \ominus x_j) \land (x_j \ominus x_i) = 0 \qquad (\mathsf{G}_k)$$

 $\text{iff } p \leq k.$

Note that (G_1) defines \mathcal{L} relative to \mathscr{C} .

For any integers $n,p\geq 1,$ the variety $\mathbb{S}_{n,p}$ is axiomatized, relative to C, by the equations

$$(x \ominus (n+1)y) \wedge y = 0, \qquad (\mathsf{E}_{n+1})$$
$$(x \ominus y) \wedge (y \ominus x) \leq x \ominus n((x \ominus y) \wedge (y \ominus x)), \qquad (\mathsf{F}_n)$$
$$\bigwedge_{0 \leq i \neq j \leq p} (x_i \ominus x_j) \wedge (x_j \ominus x_i) = 0. \qquad (\mathsf{G}_p)$$

Note that $\mathcal{S}_{n,1} = \mathcal{S}_{n+1} = \mathcal{C}_{n+1} \cap \mathcal{L}$.

▲御▶ ▲理▶ ▲理▶

$\mathcal{S}_{1,2}^{\infty}$ and $\mathcal{L} \vee \mathcal{S}_{n,2}$ (for each $n \geq 1$) are covers of \mathcal{L} in $\Lambda(\mathcal{C})$.

イロン イロン イヨン イヨン

$\mathcal{S}_{1,2}^{\infty}$ and $\mathcal{L} \vee \mathcal{S}_{n,2}$ (for each $n \geq 1$) are covers of \mathcal{L} in $\Lambda(\mathcal{C})$.

イロン イロン イヨン イヨン

Thank you!

<ロ> <四> <ヨ> <ヨ>

æ