On varieties of commutative BCK-algebras

Covers of some varieties

Jan Kühr
Joint work with Václav Cenker and Petr Ševčík

Palacký University in Olomouc Czechia

Varieties of $Ł B C K$-algebras

- ŁBCK-algebras are
- the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];

Varieties of $Ł B C K$-algebras

- ŁBCK-algebras are
- the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];
- algebras $(A, \ominus, 0)$ where

$$
x \ominus y=(x-y) \vee 0,
$$

for some lattice-ordered abelian group $(G, \leq,+,-, 0)$ and a convex subset $A \subseteq G^{+}$.

Varieties of $Ł B C K$-algebras

- ŁBCK-algebras are
- the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];
- algebras $(A, \ominus, 0)$ where

$$
x \ominus y=(x-y) \vee 0
$$

for some lattice-ordered abelian group $(G, \leq,+,-, 0)$ and a convex subset $A \subseteq G^{+}$.

- The varieties of $Ł B C K$-algebras are

$$
\delta_{0} \subset \delta_{1} \subset \cdots \subset \delta_{n} \subset \delta_{n+1} \subset \cdots \subset \mathscr{L}
$$

where $\mathcal{S}_{n}=\mathrm{V}\left(S_{n}\right)$ and $\mathscr{L}=\mathrm{V}\left(\mathbb{Z}^{+}\right)$[Komori 1978].

Varieties of $Ł B C K$-algebras

- ŁBCK-algebras are
- the algebraic model of the implicational fragment of the Łukasiewicz propositional logic [Komori 1978];
- algebras $(A, \ominus, 0)$ where

$$
x \ominus y=(x-y) \vee 0
$$

for some lattice-ordered abelian group $(G, \leq,+,-, 0)$ and a convex subset $A \subseteq G^{+}$.

- The varieties of $Ł B C K$-algebras are

$$
\delta_{0} \subset \delta_{1} \subset \cdots \subset \delta_{n} \subset \delta_{n+1} \subset \cdots \subset \mathscr{L}
$$

where $\mathcal{S}_{n}=\mathrm{V}\left(S_{n}\right)$ and $\mathscr{L}=\mathrm{V}\left(\mathbb{Z}^{+}\right)$[Komori 1978].

- \mathscr{L} is a subvariety of the variety of commutative BCK-algebras, \mathscr{C}. So, what are the covers of the δ_{n} 's (and of \mathscr{L}) in the subvariety lattice of \mathscr{C} ?

Commutative BCK-algebras

Commutative BCK-algebras are algebras $(A, \ominus, 0)$ of type $(2,0)$ satisfying the equations

$$
\begin{gathered}
x \ominus 0=x, \\
x \ominus x=0, \\
(x \ominus y) \ominus z=(x \ominus z) \ominus y, \\
x \ominus(x \ominus y)=y \ominus(y \ominus x) .
\end{gathered}
$$

Commutative BCK-algebras

Commutative BCK-algebras are algebras $(A, \ominus, 0)$ of type $(2,0)$ satisfying the equations

$$
\begin{gathered}
x \ominus 0=x, \\
x \ominus x=0, \\
(x \ominus y) \ominus z=(x \ominus z) \ominus y, \\
x \ominus(x \ominus y)=y \ominus(y \ominus x) .
\end{gathered}
$$

The underlying poset defined by $x \leq y$ iff $x \ominus y=0$ is a meet-semilattice with

$$
x \wedge y=x \ominus(x \ominus y)
$$

Commutative BCK-algebras

Commutative BCK-algebras are algebras $(A, \ominus, 0)$ of type $(2,0)$ satisfying the equations

$$
\begin{gathered}
x \ominus 0=x, \\
x \ominus x=0, \\
(x \ominus y) \ominus z=(x \ominus z) \ominus y, \\
x \ominus(x \ominus y)=y \ominus(y \ominus x) .
\end{gathered}
$$

The underlying poset defined by $x \leq y$ iff $x \ominus y=0$ is a meet-semilattice with

$$
x \wedge y=x \ominus(x \ominus y)
$$

Bounded commutative BCK-algebras are term-equivalent to MV-algebras.

$Ł B C K$-algebras

$Ł B C K$-algebras are commutative BCK-algebras satisfying
(1) the equation

$$
(x \ominus y) \wedge(y \ominus x)=0
$$

(2) the quasi-equation

$$
x \wedge y \geq z \quad \& \quad x \ominus z=y \ominus z \quad \Rightarrow \quad x=y
$$

ŁBCK-algebras

ŁBCK-algebras are commutative BCK-algebras satisfying
(1) the equation

$$
(x \ominus y) \wedge(y \ominus x)=0
$$

(2) the quasi-equation

$$
x \wedge y \geq z \quad \& \quad x \ominus z=y \ominus z \quad \Rightarrow \quad x=y
$$

The smallest commutative BCK-algebra that is not an ŁBCK-algebra:

We say that

- (x, y, z) is a forbidden triple if $x \wedge y \geq z, x \ominus z=y \ominus z$ and $x \neq y$;

Forbidden triples/pairs

We say that

- (x, y, z) is a forbidden triple if $x \wedge y \geq z, x \ominus z=y \ominus z$ and $x \neq y$;
- (x, y) is a forbidden pair if $x \ominus y=y \ominus x \neq 0$.

Forbidden triples/pairs

We say that

- (x, y, z) is a forbidden triple if $x \wedge y \geq z, x \ominus z=y \ominus z$ and $x \neq y$;
- (x, y) is a forbidden pair if $x \ominus y=y \ominus x \neq 0$.

Lemma

A commutative BCK-algebra is not an $Ł B C K$-algebra iff it has a forbidden triple/pair.

Forbidden subalgebras

Simple construction - splitting a totally ordered $Ł$ BCK-algebra:

Forbidden subalgebras

Simple construction - splitting a totally ordered $Ł$ BCK-algebra:

Forbidden subalgebras

Simple construction - splitting a totally ordered $Ł B C K$-algebra:

We define $x \ominus y=x \ominus b$ in A_{1} and $y \ominus x=y \ominus b$ in A_{2}.

Forbidden subalgebras

Simple construction - splitting a totally ordered $Ł$ BCK-algebra:

We may assume that the "branches" are bounded, with $\left(a_{1}, a_{2}\right)$ being a forbidden pair, in which case $\left[0, a_{1}\right] \cong\left[0, a_{2}\right]$.

Forbidden subalgebras

Simple construction - splitting a totally ordered $Ł$ BCK-algebra:

We may assume that the "branches" are bounded, with $\left(a_{1}, a_{2}\right)$ being a forbidden pair, in which case $\left[0, a_{1}\right] \cong\left[0, a_{2}\right]$.

This is a simple algebra.

Forbidden subalgebras

Splitting $S_{n+1}=\{0,1, \ldots, n+1\}$:

$a_{1} \ominus a_{2}=a_{1} \ominus n=1$ and $a_{2} \ominus a_{1}=a_{2} \ominus n=1$
Notation: $S_{n, 2}$ or $M_{2}\left(S_{n}\right)$

Forbidden subalgebras

Theorem

The are uncountably many varieties of commutative BCK-algebras.
The map $K \mapsto \mathrm{~V}\left(\left\{S_{n, 2} \mid n \in K\right\}\right)$ from nonempty subsets of positive integers to subvarieties of \mathscr{C} is one-to-one.

Forbidden subalgebras

Theorem

The are uncountably many varieties of commutative BCK-algebras.
The map $K \mapsto \mathrm{~V}\left(\left\{S_{n, 2} \mid n \in K\right\}\right)$ from nonempty subsets of positive integers to subvarieties of \mathscr{C} is one-to-one.

We say that A is sectionally of finite length if, for every $a \in A$, $[0, a]$ is of finite length.

Theorem

Suppose that A is sectionally of finite length. Then A is not an ŁBCK-algebra iff it has a subalgebra isomorphic to some $S_{n, 2}$.

Covers of S_{n}

Theorem

The (strict) covers of δ_{n} in $\Lambda(\mathscr{C})$ are:

- δ_{n+1},
- $\mathcal{S}_{n-1,2}$ if $n \geq 2$, and
- $\mathcal{S}_{n} \vee \mathcal{S}_{m, 2}$ (for every $m<n-1$) if $n \geq 3$.

Covers of δ_{n}

Theorem

The (strict) covers of δ_{n} in $\Lambda(\mathscr{C})$ are:

- δ_{n+1},
- $\delta_{n-1,2}$ if $n \geq 2$, and
- $\delta_{n} \vee \mathcal{S}_{m, 2}$ (for every $m<n-1$) if $n \geq 3$.

δ_{n+1}

Covers of δ_{n}

Theorem

The (strict) covers of δ_{n} in $\Lambda(\mathscr{C})$ are:

- δ_{n+1},
- $\delta_{n-1,2}$ if $n \geq 2$, and
- $\delta_{n} \vee \delta_{m, 2}$ (for every $m<n-1$) if $n \geq 3$.

Covers of δ_{n}

Theorem

The (strict) covers of δ_{n} in $\Lambda(\mathscr{C})$ are:

- δ_{n+1},
- $\delta_{n-1,2}$ if $n \geq 2$, and
- $\delta_{n} \vee \delta_{m, 2}$ (for every $m<n-1$) if $n \geq 3$.

Covers of $\delta_{n, p}$

Theorem

For any integers $n \geq 1$ and $p \geq 2$, the (strict) covers of $\mathcal{S}_{n, p}$ in $\Lambda(\mathscr{L})$ are:

- $\mathcal{S}_{n, p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n, p+1}$, and
- $\delta_{n, p} \vee \delta_{m, 2}$ (for every $m<n$) if $n \geq 2$.

Covers of $\delta_{n, p}$

Theorem

For any integers $n \geq 1$ and $p \geq 2$, the (strict) covers of $\mathcal{S}_{n, p}$ in $\Lambda(\mathscr{L})$ are:

- $\mathcal{S}_{n, p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n, p+1}$, and
- $\delta_{n, p} \vee \delta_{m, 2}$ (for every $m<n$) if $n \geq 2$.

Covers of $\delta_{n, p}$

Theorem

For any integers $n \geq 1$ and $p \geq 2$, the (strict) covers of $\delta_{n, p}$ in $\Lambda(\mathscr{L})$ are:

- $\mathcal{S}_{n, p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n, p+1}$, and
- $\delta_{n, p} \vee \delta_{m, 2}$ (for every $m<n$) if $n \geq 2$.

Covers of $\delta_{n, p}$

Theorem

For any integers $n \geq 1$ and $p \geq 2$, the (strict) covers of $\delta_{n, p}$ in $\Lambda(\mathscr{L})$ are:

- $\mathcal{S}_{n, p} \vee \mathcal{S}_{n+2}$,
- $\mathcal{S}_{n, p+1}$, and
- $\delta_{n, p} \vee \delta_{m, 2}$ (for every $m<n$) if $n \geq 2$.

Axiomatization of $\mathcal{S}_{n, p}$

For any integer $k \geq 1$, we define

$$
x \ominus k y=(\ldots((x \ominus y) \ominus y) \ominus \ldots) \ominus y .
$$

Axiomatization of $\mathcal{S}_{n, p}$

For any integer $k \geq 1$, we define

$$
x \ominus k y=(\ldots((x \ominus y) \ominus y) \ominus \ldots) \ominus y .
$$

Lemma (Cornish 1980, Komori 1978)

(1) A totally ordered commutative BCK-algebra A satisfies

$$
\begin{equation*}
(x \ominus k y) \wedge y=0 \tag{k}
\end{equation*}
$$

iff $A \cong S_{n}$ for some $n \leq k$.

Axiomatization of $\mathcal{S}_{n, p}$

For any integer $k \geq 1$, we define

$$
x \ominus k y=(\ldots((x \ominus y) \ominus y) \ominus \ldots) \ominus y .
$$

Lemma (Cornish 1980, Komori 1978)

(1) A totally ordered commutative BCK-algebra A satisfies

$$
\begin{equation*}
(x \ominus k y) \wedge y=0 \tag{k}
\end{equation*}
$$

iff $A \cong S_{n}$ for some $n \leq k$.
(2) A subdirectly irreducible commutative BCK-algebra is a tree with meet-irreducible 0 . It satisfies $\left(\mathrm{E}_{k}\right)$ iff its length is $\leq k$.

Digression $-\mathscr{E}_{k}$

Let \mathscr{E}_{k} be the subvariety of \mathscr{C} defined by $\left(\mathrm{E}_{k}\right)$.
The subdirectly irreducible members of \mathscr{E}_{k} are trees (with meet-irreducible 0) of length $\leq k$.

Note that $\mathscr{E}_{k} \cap \mathscr{L}=\mathcal{S}_{k}$.

Digression $-\mathscr{E}_{k}$

Let \mathscr{E}_{k} be the subvariety of \mathscr{C} defined by $\left(\mathrm{E}_{k}\right)$.
The subdirectly irreducible members of \mathscr{E}_{k} are trees (with meet-irreducible 0) of length $\leq k$.

Note that $\mathscr{E}_{k} \cap \mathscr{L}=\mathcal{S}_{k}$.

Theorem

The only (strict) cover of \mathscr{E}_{k} in $\Lambda(\mathscr{C})$ is $\mathscr{E}_{k} \vee \delta_{k+1}$; it is axiomatized by the equations

$$
\begin{equation*}
(x \ominus(k+1) y) \wedge y=0 \tag{k+1}
\end{equation*}
$$

and

$$
(x \ominus k y) \wedge y \wedge(u \ominus v) \wedge(v \ominus u)=0
$$

Axiomatization of $\mathcal{S}_{n, p}$

Lemma

For any integer $n \geq 1$ and any cardinal $\kappa \geq 2$, the algebra $S_{n, \kappa}$ satisfies the equation

$$
\begin{equation*}
(x \ominus k y) \wedge y=0 \tag{k}
\end{equation*}
$$

iff $n<k$.

Axiomatization of $\mathcal{S}_{n, p}$

Lemma

For any integer $n \geq 1$ and any cardinal $\kappa \geq 2$, the algebra $S_{n, \kappa}$ satisfies the equation

$$
\begin{equation*}
(x \ominus k y) \wedge y=0 \tag{k}
\end{equation*}
$$

iff $n<k$.
Thus, also $S_{m, \kappa}$ with $m<n$ satisfy (E_{k}), but they are not in $\delta_{n, \kappa}$ because $S_{n, \kappa}$ is a simple algebra and its subalgebras are

- S_{m} for $m \leq n+1$ and
- $S_{n, \lambda}$ for $\lambda \leq \kappa$.

Axiomatization of $\mathcal{S}_{n, p}$

Proposition

For any integer $n \geq 1$ and any cardinal $\kappa \geq 2$, the algebra $S_{n, \kappa}$ satisfies the equation

$$
\begin{aligned}
(x \ominus y) \wedge & (y \ominus x) \leq \\
& \leq x \ominus k((x \ominus y) \wedge(y \ominus x)) \quad\left(\mathrm{F}_{k}\right)
\end{aligned}
$$

iff $n \geq k$.

Every cBCK-algebra satisfies $\left(F_{1}\right)$.

Digression $-\mathcal{S}_{1,2}^{\infty}$

$$
S_{1}^{\infty}=[(0,0),(1,0)] \text { in }(\mathbb{Z} \overrightarrow{\times} \mathbb{Z})^{+}=\left(\{0\} \times \mathbb{Z}^{+}\right) \cup\left(\{1\} \times \mathbb{Z}^{-}\right)
$$

Digression - $\delta_{1,2}^{\infty}$

$$
S_{1}^{\infty}=[(0,0),(1,0)] \text { in }(\mathbb{Z} \overrightarrow{\times} \mathbb{Z})^{+}=\left(\{0\} \times \mathbb{Z}^{+}\right) \cup\left(\{1\} \times \mathbb{Z}^{-}\right)
$$

Proposition

The algebra $S_{1,2}^{\infty}$ satisfies the equation

$$
\begin{align*}
& (x \ominus y) \wedge(y \ominus x) \leq \\
& \quad \leq x \ominus k((x \ominus y) \wedge(y \ominus x)) \tag{k}
\end{align*}
$$

for each k. Consequently, the variety $(1,-1)$
\vdots
\vdots
$(0,1)$
$(0,0)$ $\delta_{1,2}^{\infty}=\mathrm{V}\left(S_{1,2}^{\infty}\right)$ is not generated by its finite members.

Axiomatization of $\mathcal{S}_{n, p}$

Theorem

The variety $\delta_{n, \kappa}$ with κ infinite is axiomatized, relative to \mathscr{C}, by the equations

$$
\begin{equation*}
(x \ominus(n+1) y) \wedge y=0 \tag{n+1}
\end{equation*}
$$

and

$$
\begin{equation*}
(x \ominus y) \wedge(y \ominus x) \leq x \ominus n((x \ominus y) \wedge(y \ominus x)) \tag{n}
\end{equation*}
$$

Axiomatization of $\delta_{n, p}$

Lemma

For any integers $n, p \geq 1$, the algebra $S_{n, p}$ satisfies the equation

$$
\begin{equation*}
\bigwedge_{0 \leq i \neq j \leq k}\left(x_{i} \ominus x_{j}\right) \wedge\left(x_{j} \ominus x_{i}\right)=0 \tag{k}
\end{equation*}
$$

iff $p \leq k$.
Note that $\left(\mathrm{G}_{1}\right)$ defines \mathscr{L} relative to \mathscr{C}.

Axiomatization of $\mathcal{S}_{n, p}$

Theorem

For any integers $n, p \geq 1$, the variety $\delta_{n, p}$ is axiomatized, relative to \mathscr{C}, by the equations

$$
\begin{gathered}
(x \ominus(n+1) y) \wedge y=0 \\
(x \ominus y) \wedge(y \ominus x) \leq x \ominus n((x \ominus y) \wedge(y \ominus x)), \\
\bigwedge_{0 \leq i \neq j \leq p}\left(x_{i} \ominus x_{j}\right) \wedge\left(x_{j} \ominus x_{i}\right)=0 .
\end{gathered}
$$

Note that $\delta_{n, 1}=\delta_{n+1}=\mathscr{E}_{n+1} \cap \mathscr{L}$.

Covers of \mathscr{L}

Theorem

$\mathcal{S}_{1,2}^{\infty}$ and $\mathscr{L} \vee \mathcal{S}_{n, 2}$ (for each $n \geq 1$) are covers of \mathscr{L} in $\Lambda(\mathscr{C})$.

Covers of \mathscr{L}

Theorem

$\mathcal{S}_{1,2}^{\infty}$ and $\mathscr{L} \vee \mathcal{S}_{n, 2}$ (for each $n \geq 1$) are covers of \mathscr{L} in $\Lambda(\mathscr{C})$.

?

Thank you!

