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Varieties of ŁBCK-algebras

ŁBCK-algebras are
the algebraic model of the implicational fragment of the
Łukasiewicz propositional logic [Komori 1978];

algebras (A,⊖, 0) where

x⊖ y = (x− y) ∨ 0,

for some lattice-ordered abelian group (G,≤,+,−, 0) and
a convex subset A ⊆ G+.

The varieties of ŁBCK-algebras are

S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ Sn+1 ⊂ · · · ⊂ L,

where Sn = V(Sn) and L= V(Z+) [Komori 1978].
L is a subvariety of the variety of commutative BCK-algebras,
C. So, what are the covers of the Sn’s (and of L) in the
subvariety lattice of C?
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Commutative BCK-algebras

Commutative BCK-algebras are algebras (A,⊖, 0) of type (2, 0)
satisfying the equations

x⊖ 0 = x,

x⊖ x = 0,

(x⊖ y)⊖ z = (x⊖ z)⊖ y,

x⊖ (x⊖ y) = y ⊖ (y ⊖ x).

The underlying poset defined by x ≤ y iff x⊖ y = 0 is a
meet-semilattice with

x ∧ y = x⊖ (x⊖ y).

Bounded commutative BCK-algebras are term-equivalent to
MV-algebras.

JK Covers of some subvarieties of C



Commutative BCK-algebras

Commutative BCK-algebras are algebras (A,⊖, 0) of type (2, 0)
satisfying the equations

x⊖ 0 = x,

x⊖ x = 0,

(x⊖ y)⊖ z = (x⊖ z)⊖ y,

x⊖ (x⊖ y) = y ⊖ (y ⊖ x).

The underlying poset defined by x ≤ y iff x⊖ y = 0 is a
meet-semilattice with

x ∧ y = x⊖ (x⊖ y).

Bounded commutative BCK-algebras are term-equivalent to
MV-algebras.

JK Covers of some subvarieties of C



Commutative BCK-algebras

Commutative BCK-algebras are algebras (A,⊖, 0) of type (2, 0)
satisfying the equations

x⊖ 0 = x,

x⊖ x = 0,

(x⊖ y)⊖ z = (x⊖ z)⊖ y,

x⊖ (x⊖ y) = y ⊖ (y ⊖ x).

The underlying poset defined by x ≤ y iff x⊖ y = 0 is a
meet-semilattice with

x ∧ y = x⊖ (x⊖ y).

Bounded commutative BCK-algebras are term-equivalent to
MV-algebras.

JK Covers of some subvarieties of C



ŁBCK-algebras

ŁBCK-algebras are commutative BCK-algebras satisfying
1 the equation

(x⊖ y) ∧ (y ⊖ x) = 0;

2 the quasi-equation

x ∧ y ≥ z & x⊖ z = y ⊖ z ⇒ x = y.

The smallest commutative BCK-algebra that is not an
ŁBCK-algebra:

0

x

z

y
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Forbidden triples/pairs

We say that
(x, y, z) is a forbidden triple
if x ∧ y ≥ z, x⊖ z = y ⊖ z
and x ̸= y;

x y

x⊖ y = y ⊖ x

x ∧ y

0

z
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Forbidden triples/pairs

We say that
(x, y, z) is a forbidden triple
if x ∧ y ≥ z, x⊖ z = y ⊖ z
and x ̸= y;
(x, y) is a forbidden pair if
x⊖ y = y ⊖ x ̸= 0.

x y

x⊖ y = y ⊖ x

x ∧ y

0

z

Lemma
A commutative BCK-algebra is not an ŁBCK-algebra iff it has
a forbidden triple/pair.
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Forbidden subalgebras

Simple construction – splitting a totally ordered ŁBCK-algebra:

0

A
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Forbidden subalgebras

Simple construction – splitting a totally ordered ŁBCK-algebra:

0

b

A2A1
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Forbidden subalgebras

Simple construction – splitting a totally ordered ŁBCK-algebra:

0

b

A2A1
x y

We define x⊖ y = x⊖ b in A1 and y ⊖ x = y ⊖ b in A2.
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Forbidden subalgebras

Simple construction – splitting a totally ordered ŁBCK-algebra:

0

b

a1 a2

We may assume that the “branches” are bounded, with (a1, a2)
being a forbidden pair, in which case [0, a1] ∼= [0, a2].
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Forbidden subalgebras

Simple construction – splitting a totally ordered ŁBCK-algebra:

0

b

a1 a2

We may assume that the “branches” are bounded, with (a1, a2)
being a forbidden pair, in which case [0, a1] ∼= [0, a2].

This is a simple algebra.
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Forbidden subalgebras

Splitting Sn+1 = {0, 1, . . . , n+ 1}:

0

1

a1

n

a2

a1 ⊖ a2 = a1 ⊖ n = 1 and a2 ⊖ a1 = a2 ⊖ n = 1

Notation: Sn,2 or M2(Sn)
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Forbidden subalgebras

Theorem
The are uncountably many varieties of commutative BCK-algebras.

The map K 7→ V({Sn,2 | n ∈ K}) from nonempty subsets of
positive integers to subvarieties of C is one-to-one.

We say that A is sectionally of finite length if, for every a ∈ A,
[0, a] is of finite length.

Theorem
Suppose that A is sectionally of finite length. Then A is not an
ŁBCK-algebra iff it has a subalgebra isomorphic to some Sn,2.
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Covers of Sn

Theorem
The (strict) covers of Sn in Λ(C) are:

Sn+1,
Sn−1,2 if n ≥ 2, and
Sn ∨ Sm,2 (for every m < n− 1) if n ≥ 3.

0

n − 1

n

n + 1

Sn+1

0

a1

n − 1

a2

Sn−1,2 (n ≥ 2)

0

n − 1

n

0

a1

m

a2

Sn ∨ Sm,2 (n ≥ 3)
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Covers of Sn,p

Theorem
For any integers n ≥ 1 and p ≥ 2, the (strict) covers of Sn,p in
Λ(L) are:

Sn,p ∨ Sn+2,
Sn,p+1, and
Sn,p ∨ Sm,2 (for every m < n) if n ≥ 2.

0

a1

n

ap

0

n

n + 1

n + 2

Sn,p ∨ Sn+2 Sn,p+1 Sn,p ∨ Sm,2 (n ≥ 2)
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Axiomatization of Sn,p

For any integer k ≥ 1, we define

x⊖ ky =
(
. . . ((x⊖ y)⊖ y)⊖ . . .

)
⊖ y.

Lemma (Cornish 1980, Komori 1978)
1 A totally ordered commutative BCK-algebra A satisfies

(x⊖ ky) ∧ y = 0. (Ek)

iff A ∼= Sn for some n ≤ k.
2 A subdirectly irreducible commutative BCK-algebra is a tree

with meet-irreducible 0. It satisfies (Ek) iff its length is ≤ k.
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Digression – Ek

Let Ek be the subvariety of C defined by (Ek).

The subdirectly irreducible members of Ek are trees (with
meet-irreducible 0) of length ≤ k.

Note that Ek ∩L= Sk.

Theorem
The only (strict) cover of Ek in Λ(C) is Ek ∨ Sk+1; it is
axiomatized by the equations

(x⊖ (k + 1)y) ∧ y = 0 (Ek+1)

and
(x⊖ ky) ∧ y ∧ (u⊖ v) ∧ (v ⊖ u) = 0.
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Axiomatization of Sn,p

Lemma
For any integer n ≥ 1 and any cardinal κ ≥ 2,
the algebra Sn,κ satisfies the equation

(x⊖ ky) ∧ y = 0 (Ek)

iff n < k.
0

1

n

Thus, also Sm,κ with m < n satisfy (Ek), but they are not in Sn,κ
because Sn,κ is a simple algebra and its subalgebras are

Sm for m ≤ n+ 1 and
Sn,λ for λ ≤ κ.
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Axiomatization of Sn,p

Proposition
For any integer n ≥ 1 and any cardinal κ ≥ 2,
the algebra Sn,κ satisfies the equation

(x⊖ y) ∧ (y ⊖ x) ≤
≤ x⊖ k

(
(x⊖ y) ∧ (y ⊖ x)

)
(Fk)

iff n ≥ k.

0

1

n

Every cBCK-algebra satisfies (F1).
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Digression – S∞
1,2

S∞
1 = [(0, 0), (1, 0)] in (Z ×⃗ Z)+ = ({0} × Z+) ∪ ({1} × Z−)

(0, 0)

(0, 1)

(1,−1)

(1, 0)

S∞
1,2
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Digression – S∞
1,2

S∞
1 = [(0, 0), (1, 0)] in (Z ×⃗ Z)+ = ({0} × Z+) ∪ ({1} × Z−)

Proposition
The algebra S∞

1,2 satisfies the equation

(x⊖ y) ∧ (y ⊖ x) ≤
≤ x⊖ k

(
(x⊖ y) ∧ (y ⊖ x)

)
(Fk)

for each k. Consequently, the variety
S∞
1,2 = V(S∞

1,2) is not generated by its finite
members.

(0, 0)

(0, 1)

(1,−1)

(1, 0)

S∞
1,2
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Axiomatization of Sn,p

Theorem
The variety Sn,κ with κ infinite is axiomatized, relative to C, by the
equations

(x⊖ (n+ 1)y) ∧ y = 0 (En+1)

and
(x⊖ y) ∧ (y ⊖ x) ≤ x⊖ n

(
(x⊖ y) ∧ (y ⊖ x)

)
. (Fn)
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Axiomatization of Sn,p

Lemma
For any integers n, p ≥ 1, the algebra Sn,p

satisfies the equation∧
0≤i ̸=j≤k

(xi ⊖ xj) ∧ (xj ⊖ xi) = 0 (Gk)

iff p ≤ k.

0

1

n

Note that (G1) defines L relative to C.
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Axiomatization of Sn,p

Theorem
For any integers n, p ≥ 1, the variety Sn,p is axiomatized, relative
to C, by the equations

(x⊖ (n+ 1)y) ∧ y = 0, (En+1)
(x⊖ y) ∧ (y ⊖ x) ≤ x⊖ n

(
(x⊖ y) ∧ (y ⊖ x)

)
, (Fn)∧

0≤i ̸=j≤p

(xi ⊖ xj) ∧ (xj ⊖ xi) = 0. (Gp)

Note that Sn,1 = Sn+1 = En+1 ∩L.
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Covers of L

Theorem
S∞
1,2 and L∨ Sn,2 (for each n ≥ 1) are covers of L in Λ(C).

(0, 0)

(0, 1)

(1,−1)

(1, 0)

S∞
1,2

0

1

2

0

1

n

L∨ Sn,2

?
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1
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1
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Thank you!
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