Multiplication of matrices over lattices

Kamilla Kátai-Urbán, Tamás Waldhauser
University of Szeged
Stará Lesná, September 2023

Matrices over the two-element lattice 2

square matrices over 2

Matrices over the two-element lattice 2

square matrices over $2 \longleftrightarrow$ binary relations

Matrices over the two-element lattice 2

square matrices over $2 \longleftrightarrow$ binary relations \longleftrightarrow directed graphs

Matrices over the two-element lattice 2

square matrices over $\mathbf{2} \longleftrightarrow$ binary relations \longleftrightarrow directed graphs

A	B	$A \cdot B$
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$		
(1) (3)		
(2)		

Matrices over the two-element lattice 2

square matrices over $2 \longleftrightarrow$ binary relations \longleftrightarrow directed graphs

A	B	$A \cdot B$
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$	
(4)		
(3)		

Matrices over the two-element lattice 2

square matrices over $2 \longleftrightarrow$ binary relations \longleftrightarrow directed graphs

A	B	$A \cdot B$
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$
(1)		

Transportation network

Transportation network

- vertices: sites

Transportation network

- vertices: sites
- edges: (possible one-way) roads

Transportation network

- vertices: sites
- edges: (possible one-way) roads
- loops: parking lots

Transportation network

- vertices: sites
- edges: (possible one-way) roads
- loops: parking lots
- walks: routes

Transportation network

- vertices: sites
- edges: (possible one-way) roads
- loops: parking lots
- walks: routes

Transportation network

- vertices: sites
- edges: (possible one-way) roads
- loops: parking lots
- walks: routes
$A^{\ell}=\left(w_{i j}\right)_{n \times n}, \quad w_{i j}=1:$

Transportation network

- vertices: sites
- edges: (possible one-way) roads
- loops: parking lots
- walks: routes
$A^{\ell}=\left(w_{i j}\right)_{n \times n}, \quad w_{i j}=1$: there is a directed route of length ℓ from i to j.

Idempotent matrices over the two-element lattice

Schein (1970)
idempotent matrices over $2 \longleftrightarrow$ pseudo-orders

Idempotent matrices over the two-element lattice

Schein (1970)
idempotent matrices over $2 \longleftrightarrow$ pseudo-orders

Idempotent matrices over the two-element lattice

Schein (1970)

idempotent matrices over $2 \longleftrightarrow$ pseudo-orders

- \lesssim quasi-order: reflexive transitive relation

Idempotent matrices over the two-element lattice

Schein (1970)

idempotent matrices over $2 \longleftrightarrow$ pseudo-orders

- \lesssim quasi-order: reflexive transitive relation
- $\sim:=\lesssim \cap \lesssim^{-1}$ equivalence relation

Idempotent matrices over the two-element lattice

Schein (1970)

idempotent matrices over $2 \longleftrightarrow$ pseudo-orders

- \lesssim quasi-order: reflexive transitive relation
- $\sim:=\lesssim \cap \lesssim^{-1}$ equivalence relation
- ($X / \sim ; \leq)$ partially ordered set (poset)

Idempotent matrices over the two-element lattice

Schein (1970)

idempotent matrices over $2 \longleftrightarrow$ pseudo-orders

- \lesssim quasi-order: reflexive transitive relation
- $\sim:=\lesssim \cap \lesssim^{-1}$ equivalence relation
- ($X / \sim ; \leq)$ partially ordered set (poset)
- pseudo-order: remove some of the loops from a quasi-order in a certain way

Pseudo-order

quasi-order

Kamilla Kátai-Urbán, Tamás Waldhauser

Pseudo-order

quasi-order

pseudo-order

Pseudo-order as a transportation network

Pseudo-order as a transportation network

- you can choose a direct route (transitivity)

Pseudo-order as a transportation network

- you can choose a direct route (transitivity)
- you can plan your route to have a chance to take a rest in a parking lot

Matrices over lattices

Multiplication of matrices over a lattice L is associative $\Longleftrightarrow L$ is a distributive lattice.

Matrices over lattices

Multiplication of matrices over a lattice L is associative $\Longleftrightarrow L$ is a distributive lattice.

Matrices over lattices

Multiplication of matrices over a lattice L is associative $\Longleftrightarrow L$ is a distributive lattice.

L

Matrices over lattices

Multiplication of matrices over a lattice L is associative $\Longleftrightarrow L$ is a distributive lattice.

L

Matrices over lattices

Multiplication of matrices over a lattice L is associative $\Longleftrightarrow L$ is a distributive lattice.

L

- t: trucks
- b: buses 目

Matrices over lattices

Multiplication of matrices over a lattice L is associative $\Longleftrightarrow L$ is a distributive lattice.

L

Cuts

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
\Gamma_{t}(A)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(3)

Cuts

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
\Gamma_{t}(A)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(3)

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
\Gamma_{b}(A)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
\Gamma_{b}(A)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
\Gamma_{c}(A)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(3)

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$$
\Gamma_{c}(A)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(3)

Idempotent matrices over lattices

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

Idempotent matrices over lattices

$$
A=\left(\begin{array}{ccc}
\{t b c\} & \{t b\} & \{b\} \\
\{t\} & \{t b c\} & \{b\} \\
\emptyset & \emptyset & \emptyset
\end{array}\right)
$$

$\Gamma_{t}(A)$	$\Gamma_{b}(A)$	$\Gamma_{c}(A)$
(1)	(2)	(2)
(3) (2)	(3)	

A matrix A over a distributive lattice $L \leq \mathcal{P}(\Omega)$ is idempotent \Longleftrightarrow the binary relation corresponding to the cut matrix $\Gamma_{\omega}(A)$ is a pseudo-order for each $\omega \in \Omega$.

Idempotent matrices over chains

L $\left\{\begin{array}{l}\{1,2,3\} \\ -\{1,2\} \\ \{1\} \\ \varnothing\end{array}\right.$

Idempotent matrices over chains

Idempotent matrices over chains

Idempotent matrices over chains

Theorem

L is the m-element chain. A matrix A over L is idempotent \Longleftrightarrow the binary relations corresponding to the cut matrices
$\Gamma_{k}(A)(k=1, \ldots, m-1)$ form a system of nested pseudo-orders $\alpha_{1} \supseteq \cdots \supseteq \alpha_{m-1}$.

Nilpotent matrices over lattices

Theorem (Give'on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent \Longleftrightarrow every cycle in the directed graph corresponding to A has capacity 0 .

Nilpotent matrices over lattices

Theorem (Give'on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent \Longleftrightarrow every cycle in the directed graph corresponding to A has capacity 0 .

Strictly upper triangular matrix: A has zeros below its main diagonal as well as on the main diagonal, i.e., $a_{i j} \neq 0 \Longrightarrow i<j$.

Nilpotent matrices over lattices

Theorem (Give'on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent \Longleftrightarrow every cycle in the directed graph corresponding to A has capacity 0 .

Strictly upper triangular matrix: A has zeros below its main diagonal as well as on the main diagonal, i.e., $a_{i j} \neq 0 \Longrightarrow i<j$.

Theorem \&o

Let L be a bounded distributive lattice in which 0 is meet-irreducible.

Nilpotent matrices over lattices

Theorem (Give'on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent \Longleftrightarrow every cycle in the directed graph corresponding to A has capacity 0 .

Strictly upper triangular matrix: A has zeros below its main diagonal as well as on the main diagonal, i.e., $a_{i j} \neq 0 \Longrightarrow i<j$.

Theorem \&o

Let L be a bounded distributive lattice in which 0 is meet-irreducible.

Nilpotent matrices over lattices

Theorem (Give'on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent \Longleftrightarrow every cycle in the directed graph corresponding to A has capacity 0 .

Strictly upper triangular matrix: A has zeros below its main diagonal as well as on the main diagonal, i.e., $a_{i j} \neq 0 \Longrightarrow i<j$.

Theorem \&o

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then a matrix A over L is nilpotent \Longleftrightarrow it is conjugate to a strictly upper triangular matrix,

Nilpotent matrices over lattices

Theorem (Give'on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent \Longleftrightarrow every cycle in the directed graph corresponding to A has capacity 0 .

Strictly upper triangular matrix: A has zeros below its main diagonal as well as on the main diagonal, i.e., $a_{i j} \neq 0 \Longrightarrow i<j$.

Theorem 60

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then a matrix A over L is nilpotent \Longleftrightarrow it is conjugate to a strictly upper triangular matrix, i.e., there exists a strictly upper triangular matrix U and an invertible matrix C such that $A=C^{-1} U C$.

Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then the only invertible matrices over L are the permutation matrices.

Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then the only invertible matrices over L are the permutation matrices.

Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then the only invertible matrices over L are the permutation matrices.

L

Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then the only invertible matrices over L are the permutation matrices.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right): A^{2}=0 \Longrightarrow A \text { is } \\
& \text { nilpotent, }
\end{aligned}
$$

Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then the only invertible matrices over L are the permutation matrices.

$A=\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right): A^{2}=0 \Longrightarrow A$ is
nilpotent, but A is not conjugate to a strictly upper triangular matrix.

Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then the only invertible matrices over L are the permutation matrices.

L

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right): A^{2}=0 \Longrightarrow A \text { is } \\
& \text { nilpotent, but } A \text { is not } \\
& \text { conjugate to a strictly upper } \\
& \text { triangular matrix. }
\end{aligned}
$$

Theorem does not necessarily remain true without the assumption on the irreducibility of 0 .

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network

If $\lim _{k \rightarrow \infty}\left(A^{k} 1\right)=\left(z_{1}, \ldots, z_{n}\right)$,

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network
If $\lim _{k \rightarrow \infty}\left(A^{k} \mathbf{1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, then z_{i} is the set of vehicles that can start arbitrarily long trips at i, i.e., z_{i} is the set of vehicles that can reach a directed cycle from i.

Fixed point iteration

The greatest solution of $\mathrm{x} A=\mathrm{x}$ - Transportation network

If $\lim _{k \rightarrow \infty}\left(A^{k} \mathbf{1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, then z_{i} is the set of vehicles that can start arbitrarily long trips at i, i.e., z_{i} is the set of vehicles that can reach a directed cycle from i.

Corollary

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then the following are equivalent for any matrix A over L:

Fixed point iteration

The greatest solution of $\mathrm{x} A=\mathrm{x}$ - Transportation network

If $\lim _{k \rightarrow \infty}\left(A^{k} \mathbf{1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, then z_{i} is the set of vehicles that can start arbitrarily long trips at i, i.e., z_{i} is the set of vehicles that can reach a directed cycle from i.

Corollary

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then the following are equivalent for any matrix A over L:

- the only solution of the fixed-point equation $\mathrm{x} A=\mathrm{x}$ is $\mathrm{x}=\mathbf{0}$;

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network

If $\lim _{k \rightarrow \infty}\left(A^{k} \mathbf{1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, then z_{i} is the set of vehicles that can start arbitrarily long trips at i, i.e., z_{i} is the set of vehicles that can reach a directed cycle from i.

Corollary

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then the following are equivalent for any matrix A over L:

- the only solution of the fixed-point equation $\mathrm{x} A=\mathrm{x}$ is $\mathrm{x}=\mathbf{0}$;
- $\lim _{k \rightarrow \infty}\left(\mathbf{1} A^{k}\right)=\mathbf{0}$;

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network

If $\lim _{k \rightarrow \infty}\left(A^{k} \mathbf{1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, then z_{i} is the set of vehicles that can start arbitrarily long trips at i, i.e., z_{i} is the set of vehicles that can reach a directed cycle from i.

Corollary

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then the following are equivalent for any matrix A over L:

- the only solution of the fixed-point equation $\mathrm{x} A=\mathrm{x}$ is $\mathrm{x}=\mathbf{0}$;
- $\lim _{k \rightarrow \infty}\left(\mathbf{1} A^{k}\right)=\mathbf{0}$;
- A is nilpotent;

Fixed point iteration

The greatest solution of $x A=x-$ Transportation network

If $\lim _{k \rightarrow \infty}\left(A^{k} \mathbf{1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, then z_{i} is the set of vehicles that can start arbitrarily long trips at i, i.e., z_{i} is the set of vehicles that can reach a directed cycle from i.

Corollary

Let L be a bounded distributive lattice in which 0 is meet-irreducible. Then the following are equivalent for any matrix A over L:

- the only solution of the fixed-point equation $\mathrm{x} A=\mathrm{x}$ is $\mathrm{x}=\mathbf{0}$;
- $\lim _{k \rightarrow \infty}\left(\mathbf{1} A^{k}\right)=\mathbf{0}$;
- A is nilpotent;
- there exists a permutation $\pi \in S_{n}$ such that $P_{\pi}^{-1} A P_{\pi}$ is strictly upper triangular.

Associative spectrum

The number of possibilities of inserting brackets into a product $x_{1} \cdot \ldots \cdot x_{n}$ is given by the Catalan number $C_{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}$.

Associative spectrum

The number of possibilities of inserting brackets into a product $x_{1} \cdot \ldots \cdot x_{n}$ is given by the Catalan number $C_{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}$.

The associative spectrum of a binary operation is the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ that counts the number of different term functions induced by bracketings of the product $x_{1} \cdot \ldots \cdot x_{n}$.

Associative spectrum

The number of possibilities of inserting brackets into a product $x_{1} \cdot \ldots \cdot x_{n}$ is given by the Catalan number $C_{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}$.

The associative spectrum of a binary operation is the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ that counts the number of different term functions induced by bracketings of the product $x_{1} \cdot \ldots \cdot x_{n}$.

If the associative spectrum is the sequence of Catalan numbers, then the multiplication is said to be antiassociative.

Associative spectrum

Proposition

If a binary operation has an identity element, then it is either associative (i.e., the associative spectrum is constant 1) or it is antiassociative (i.e., the associative spectrum consists of the Catalan numbers).

Associative spectrum

Proposition

If a binary operation has an identity element, then it is either associative (i.e., the associative spectrum is constant 1) or it is antiassociative (i.e., the associative spectrum consists of the Catalan numbers).

Corollary

If the lattice L is not distributive, then the multiplication of matrices over L is antiassociative.
K. Kátai-Urbán, T. Waldhauser. Multiplication of matrices over lattices, J. Mult.-Valued Logic Soft Comput. 39 111-134 (2022)
K. Kátai-Urbán, T. Waldhauser. Multiplication of matrices over lattices, J. Mult.-Valued Logic Soft Comput. 39 111-134 (2022)

More topics from our paper

K. Kátai-Urbán, T. Waldhauser. Multiplication of matrices over lattices, J. Mult.-Valued Logic Soft Comput. 39 111-134 (2022)

More topics from our paper

- Green's relations
K. Kátai-Urbán, T. Waldhauser. Multiplication of matrices over lattices, J. Mult.-Valued Logic Soft Comput. 39 111-134 (2022)

More topics from our paper

- Green's relations
- Maximal subgroups
K. Kátai-Urbán, T. Waldhauser. Multiplication of matrices over lattices, J. Mult.-Valued Logic Soft Comput. 39 111-134 (2022)

More topics from our paper

- Green's relations
- Maximal subgroups
- Invertible matrices

