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Matrices over the two-element lattice 2

square matrices over 2

←→ binary relations ←→ directed graphs

A B A · B1 0 1
0 1 1
0 1 0



1 1 0
0 0 1
1 0 1

 1 1 1
1 0 1
0 0 1
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Transportation network

vertices: sites

edges: (possible one-way)
roads

loops: parking lots

walks: routes

A` = (wij)n×n, wij = 1: there is a directed route of length ` from
i to j .
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Idempotent matrices over the two-element lattice

Schein (1970)

idempotent matrices over 2 ←→ pseudo-orders

. quasi-order: reflexive transitive relation

∼:=. ∩ .−1 equivalence relation

(X/∼;≤) partially ordered set (poset)

pseudo-order: remove some of the loops from a quasi-order in
a certain way �
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Pseudo-order

quasi-order

pseudo-order
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Pseudo-order as a transportation network

you can choose a direct
route (transitivity)

you can plan your route to
have a chance to take a
rest in a parking lot
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Matrices over lattices

Multiplication of matrices over a lattice L is associative ⇐⇒ L is a
distributive lattice.

L

t: trucks 4

b: buses f

c: cars )
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Cuts

A =

{t b c} {t b} {b}
{t} {t b c} {b}
∅ ∅ ∅



Γt(A) =

1 1 0
1 1 0
0 0 0
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Idempotent matrices over lattices

A =

{t b c} {t b} {b}
{t} {t b c} {b}
∅ ∅ ∅



Γt(A) Γb(A) Γc(A)

A matrix A over a distributive lattice L ≤ P(Ω) is idempotent ⇐⇒
the binary relation corresponding to the cut matrix Γω(A) is a
pseudo-order for each ω ∈ Ω.
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Idempotent matrices over chains

L

α1 ⊇ α2 ⊇ α3

Theorem

L is the m-element chain. A matrix A over L is idempotent ⇐⇒
the binary relations corresponding to the cut matrices
Γk(A) (k = 1, . . . ,m − 1) form a system of nested pseudo-orders
α1 ⊇ · · · ⊇ αm−1.
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Nilpotent matrices over lattices

Theorem (Give’on (1964), Zhang (2001), Tan (2005))

A matrix A over a bounded distributive lattice L is nilpotent ⇐⇒
every cycle in the directed graph corresponding to A has capacity 0.

Strictly upper triangular matrix: A has zeros below its main
diagonal as well as on the main diagonal, i.e., aij 6= 0 =⇒ i < j .

Theorem 4

Let L be a bounded distributive lattice in which 0 is
meet-irreducible.

Then a matrix A over L is nilpotent ⇐⇒ it is
conjugate to a strictly upper triangular matrix, i.e., there exists a
strictly upper triangular matrix U and an invertible matrix C such
that A = C−1UC .
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Nilpotent matrices

Theorem

If 1 is join-irreducible in a lattice L (or 0 is meet-irreducible), then
the only invertible matrices over L are the permutation matrices.

L A =

(
0 a
b 0

)
: A2 = 0 =⇒ A is

nilpotent, but A is not
conjugate to a strictly upper
triangular matrix.

Theorem 4 does not necessarily remain true without the
assumption on the irreducibility of 0.
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Fixed point iteration

The greatest solution of xA = x – Transportation network

If limk→∞(Ak1) = (z1, . . . , zn), then zi is the set of vehicles that
can start arbitrarily long trips at i , i.e., zi is the set of vehicles that
can reach a directed cycle from i .

Corollary

Let L be a bounded distributive lattice in which 0 is
meet-irreducible. Then the following are equivalent for any matrix
A over L:

the only solution of the fixed-point equation xA = x is x = 0;

limk→∞(1Ak) = 0;

A is nilpotent;

there exists a permutation π ∈ Sn such that P−1
π APπ is

strictly upper triangular.
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Fixed point iteration

The greatest solution of xA = x – Transportation network

If limk→∞(Ak1) = (z1, . . . , zn), then zi is the set of vehicles that
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Associative spectrum

The number of possibilities of inserting brackets into a product
x1 · . . . · xn is given by the Catalan number Cn−1 = 1

n

(2n−2
n−1

)
.

The associative spectrum of a binary operation is the sequence
{sn}∞n=1 that counts the number of different term functions
induced by bracketings of the product x1 · . . . · xn.

If the associative spectrum is the sequence of Catalan numbers,
then the multiplication is said to be antiassociative.
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Associative spectrum

Proposition

If a binary operation has an identity element, then it is either
associative (i.e., the associative spectrum is constant 1) or it is
antiassociative (i.e., the associative spectrum consists of the
Catalan numbers).

Corollary

If the lattice L is not distributive, then the multiplication of
matrices over L is antiassociative.
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