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Yang–Baxter equation

Definition
Let V be a vector space. A homomorphism R : V ⊗ V → V ⊗ V is
called a solution of Yang–Baxter equation if it satisfies

(R ⊗ idV)(idV ⊗ R)(R ⊗ idV) = (idV ⊗ R)(R ⊗ idV)(idV ⊗ R).
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Set-theoretic solutions

Definition
Let X be a set. A mapping r : X × X → X × X is called a
set-theoretic solution of Yang–Baxter equation if it satisfies

(r × idX)(idX × r)(r × idX) = (idX × r)(r × idX)(idX × r).

A solution r : (x, y) 7→ (σx(y), τy(x)) is called non-degenerate if σx
and τy are bijections, for all x, y ∈ X. A solution is called
involutive if r2 = idX2 .

Observation

If r is involutive then τy(x) = σ−1
σx(y)(x).
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Equational variety

Proposition

Involutive solutions form a variety with signature
(X,σ, τ,σ−1, τ−1) and axioms

σ−1
x σx(y) = y τ−1

x τx(y) = y

σxσ
−1
x (y) = y τxτ

−1
x (y) = y

σxσy(z) = σσx(y)στy(x)(z) τy(x) = σ−1
σx(y)(x)

Definition
An involutive solution X is called 2-permutational if, for all
x, x ′, y ∈ X,

σσx(y) = σσx ′(y).
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Permutation group

Definition
Let (X,σ, τ) be an involutive solution. The group

G(X) = ⟨σx | x ∈ X⟩

is called the permutation group of X or the involutive Yang-Baxter
group of X.

Definition
We say that an involutive solution is indecomposable if G(X) acts
transitively on X.



Indecomposable involutive 2-permutational solutions of the Yang–Baxter equation 5 / 13
Ivolutive solutions of Yang–Baxter equation

Permutation group

Definition
Let (X,σ, τ) be an involutive solution. The group

G(X) = ⟨σx | x ∈ X⟩

is called the permutation group of X or the involutive Yang-Baxter
group of X.

Definition
We say that an involutive solution is indecomposable if G(X) acts
transitively on X.



Indecomposable involutive 2-permutational solutions of the Yang–Baxter equation 6 / 13
Abelian permutation group

Solutions of size pq

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X,σ, τ) be an indecomposable involutive solution of size pq,
where p, q are primes, such that G(X) is abelian. Then X is
2-permutational.
There is only one such solution, up to isomorphism if p ̸= q, and
there are p + 1 such solutions if p = q.
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Displacement group

Definition
Let (X,σ, τ) be an involutive solution. Then displacement group
or the transvection group of X is the group

Dis(X) = ⟨σxσ
−1
y | x, y ∈ X⟩.

Theorem (W. Rump)

Dis(X) is a normal subgroup of G(X) and G(X) = Dis(X)⟨σx⟩, for
any x ∈ X.

Theorem (W. Rump; P. J., A. P.)

Let (X,σ, τ) be an involutive 2-permutational solution. Then
Dis(X) is abelian.
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Example on groups

Example

Let X = {1, 2, 3, 4, 5} and let

σ 1 2 3 4 5
1 2 1 5 4 3
2 2 1 3 5 4
3 2 1 4 3 5
4 2 1 4 3 5
5 2 1 4 3 5

Then

G(X) = {idX , (1, 2)(3, 5), (1, 2)(4, 5), (1, 2)(3, 4), (3, 4, 5), (5, 4, 3)}

and
Dis(X) = {idX , (3, 4, 5), (5, 4, 3)}.
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Indecomp. 2-permut. solutions with abelian group

Proposition (P. J., A. P., A. Zamojska-Dzienio)

Let (X,σ, τ) be an idecomposable 2-permutational involutive
solution with G(X) abelian. Then

Dis(X) is cyclic,

G(X) has 2 generators,

o(σx) = o(σy), for all x, y ∈ X.

Theorem (P. J., A. P., A. Zamojska-Dzienio)

For finite solutions, there are 3 parameters of isomorphism,
namely n1, n2, r ∈ Z, such that

n1 | n2, 0 ⩽ r < n2/n1, n2 | n1r2.
Then |X | = n1 · n2 and G(X) ∼= Zn1 × Zn2 .
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Generators of the displacement group

Proposition (P. J., A. P.)

Let (X,σ, τ) be an indecomposable involutive 2-permutational
solution. Choose e ∈ X and let d = σe(e). Then o(σe) = o(σd) and

G(X) = ⟨σe,σd⟩ and Dis(X) =
〈
σ−i

e σdσ
i−1
e | i ∈ Z

〉
.
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Indecomposable solutions with non-abelian
permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically
maps onto any indecomposable involutive 2-permutational
solution.

Idea of the proof.

Z . . . free cyclic group⊕
Z Z . . . free abelian group with ω generators

(
⊕

Z Z)⋊ Z maps onto G(X) = Dis(X)⟨σx⟩
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Constructing all the indecom. inv. 2-perm. solut.

Theorem (P. J., A. P.)

A complete set of invariants for a finite indecomposable involutive
2-permutational solution are

m, n ∈ N;

an abelian group A of size n with less than m generators;

an element r ∈ A;

H, a subgroup of Zm−1, such that Zm−1/H ∼= A.

The solution then constructed has m · n elements and its
displacement group is isomorphic to A.

Corollary

Let s ∈ N. Then there are at least 2k/2 − 1 indecomposable
solutions of size k = 2s.
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Numbers of indecomposable involutive solutions

n 1 2 3 4 5 6 7 8
solutions 1 2 5 23 88 595 3456 34530
2-perm. 1 2 5 19 70 359 2095 16332

indecom. 1 1 1 5 1 10 1 100
ind. 2-perm. 1 1 1 3 1 10 1 19

ind. 2-perm. abel. G 1 1 1 3 1 1 1 3
ind. 2-perm. cycl. G 1 1 1 2 1 1 1 2

n 9 10 11 12 13 14 15 16
sol. 321931 4895272
ind. 16 36 1 1

i. 2-p. 13 36 1 136 1 134 151 403
i. 2-p. a. 4 1 1 3 1 1 1 7
i. 2-p. c. 3 1 1 2 1 1 1 4
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