Indecomposable involutive 2-permutational solutions of the Yang-Baxter equation

Přemysl Jedlička
with Agata Pilitowska

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in Prague

> Stará Lesná $6^{\text {th }}$ September 2023

Faculty of Engineering

Yang-Baxter equation

Definition

Let V be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a solution of Yang-Baxter equation if it satisfies

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)=\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)
$$

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \rightarrow X \times X$ is called a set-theoretic solution of Yang-Baxter equation if it satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

A solution $r:(x, y) \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)$ is called non-degenerate if σ_{x} and τ_{y} are bijections, for all $x, y \in X$. A solution is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \rightarrow X \times X$ is called a set-theoretic solution of Yang-Baxter equation if it satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

A solution $r:(x, y) \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)$ is called non-degenerate if σ_{x} and τ_{y} are bijections, for all $x, y \in X$. A solution is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Equational variety

Proposition

Involutive solutions form a variety with signature
($X, \sigma, \tau, \sigma^{-1}, \tau^{-1}$) and axioms

$$
\begin{aligned}
\sigma_{x}^{-1} \sigma_{x}(y) & =y & \tau_{x}^{-1} \tau_{x}(y) & =y \\
\sigma_{x} \sigma_{x}^{-1}(y) & =y & \tau_{x} \tau_{x}^{-1}(y) & =y \\
\sigma_{x} \sigma_{y}(z) & =\sigma_{\sigma_{x}(y)} \sigma_{\tau_{y}(x)}(z) & \tau_{y}(x) & =\sigma_{\sigma_{x}(y)}^{-1}(x)
\end{aligned}
$$

Definition

An involutive solution X is called 2-permutational if, for all $x, x^{\prime}, y \in X$,

Equational variety

Proposition

Involutive solutions form a variety with signature
($X, \sigma, \tau, \sigma^{-1}, \tau^{-1}$) and axioms

$$
\begin{aligned}
\sigma_{x}^{-1} \sigma_{x}(y) & =y & \tau_{x}^{-1} \tau_{x}(y) & =y \\
\sigma_{x} \sigma_{x}^{-1}(y) & =y & \tau_{x} \tau_{x}^{-1}(y) & =y \\
\sigma_{x} \sigma_{y}(z) & =\sigma_{\sigma_{x}(y)} \sigma_{\tau_{y}(x)}(z) & \tau_{y}(x) & =\sigma_{\sigma_{x}(y)}^{-1}(x)
\end{aligned}
$$

Definition

An involutive solution X is called 2-permutational if, for all $x, x^{\prime}, y \in X$,

$$
\sigma_{\sigma_{x}(y)}=\sigma_{\sigma_{x^{\prime}}(y)}
$$

Permutation group

Definition

Let (X, σ, τ) be an involutive solution. The group

$$
\mathcal{G}(X)=\left\langle\sigma_{x} \mid x \in X\right\rangle
$$

is called the permutation group of X or the involutive Yang-Baxter group of X.

Definition
We say that an involutive solution is indecomposable if $\mathcal{G}(X)$ acts
transitively on X.

Permutation group

Definition

Let (X, σ, τ) be an involutive solution. The group

$$
\mathcal{G}(X)=\left\langle\sigma_{x} \mid x \in X\right\rangle
$$

is called the permutation group of X or the involutive Yang-Baxter group of X.

Definition

We say that an involutive solution is indecomposable if $\mathcal{G}(X)$ acts transitively on X.

Solutions of size $p q$

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X, σ, τ) be an indecomposable involutive solution of size $p q$, where p, q are primes, such that $\mathcal{G}(X)$ is abelian. Then X is 2-permutational.

Solutions of size $p q$

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X, σ, τ) be an indecomposable involutive solution of size $p q$, where p, q are primes, such that $\mathcal{G}(X)$ is abelian. Then X is 2-permutational.
There is only one such solution, up to isomorphism if $p \neq q$, and there are $p+1$ such solutions if $p=q$.

Displacement group

Definition

Let (X, σ, τ) be an involutive solution. Then displacement group or the transvection group of X is the group

$$
\operatorname{Dis}(X)=\left\langle\sigma_{x} \sigma_{y}^{-1} \mid x, y \in X\right\rangle
$$

Theorem (W. Rump)

$\operatorname{Dis}(X)$ is a normal subgroup of $\mathcal{G}(X)$ and $\mathcal{G}(X)=\operatorname{Dis}(X)\left\langle\sigma_{x}\right\rangle$, for any $x \in X$.

Theorem (W. Rump; P. J., A. P.)
Let (X, σ, τ) be an involutive 2-permutational solution. Then
$\operatorname{Dis}(X)$ is abelian.

Displacement group

Definition

Let (X, σ, τ) be an involutive solution. Then displacement group or the transvection group of X is the group

$$
\operatorname{Dis}(X)=\left\langle\sigma_{x} \sigma_{y}^{-1} \mid x, y \in X\right\rangle
$$

Theorem (W. Rump)

$\operatorname{Dis}(X)$ is a normal subgroup of $\mathcal{G}(X)$ and $\mathcal{G}(X)=\operatorname{Dis}(X)\left\langle\sigma_{x}\right\rangle$, for any $x \in X$.

Theorem (W. Rump; P. J., A. P.)
Let (X, σ, τ) be an involutive 2-permutational solution. Then
$\operatorname{Dis}(X)$ is abelian.

Displacement group

Definition

Let (X, σ, τ) be an involutive solution. Then displacement group or the transvection group of X is the group

$$
\operatorname{Dis}(X)=\left\langle\sigma_{x} \sigma_{y}^{-1} \mid x, y \in X\right\rangle
$$

Theorem (W. Rump)

$\operatorname{Dis}(X)$ is a normal subgroup of $\mathcal{G}(X)$ and $\mathcal{G}(X)=\operatorname{Dis}(X)\left\langle\sigma_{x}\right\rangle$, for any $x \in X$.

Theorem (W. Rump; P. J., A. P.)

Let (X, σ, τ) be an involutive 2-permutational solution. Then $\operatorname{Dis}(X)$ is abelian.

Example on groups

Example

Let $X=\{1,2,3,4,5\}$ and let

σ	1	2	3	4	5
1	2	1	5	4	3
2	2	1	3	5	4
3	2	1	4	3	5
4	2	1	4	3	5
5	2	1	4	3	5

Then
$\mathcal{G}(X)=\left\{\operatorname{id}_{X},(1,2)(3,5),(1,2)(4,5),(1,2)(3,4),(3,4,5),(5,4,3)\right\}$
and

$$
\operatorname{Dis}(X)=\left\{\operatorname{id}_{X},(3,4,5),(5,4,3)\right\} .
$$

Indecomp. 2-permut. solutions with abelian group

Proposition (P. J., A. P., A. Zamojska-Dzienio)

Let (X, σ, τ) be an idecomposable 2-permutational involutive solution with $\mathcal{G}(X)$ abelian. Then

- $\operatorname{Dis}(X)$ is cyclic,
- $\mathcal{G}(X)$ has 2 generators,
- o $\left(\sigma_{x}\right)=o\left(\sigma_{y}\right)$, for all $x, y \in X$.

Theorem (P. J., A. P., A. Zamojska-Dzienio)
For finite solutions, there are 3 parameters of isomorphism, namely $n_{1}, n_{2}, r \in \mathbb{Z}$, such that

Indecomp. 2-permut. solutions with abelian group

Proposition (P. J., A. P., A. Zamojska-Dzienio)

Let (X, σ, τ) be an idecomposable 2-permutational involutive solution with $\mathcal{G}(X)$ abelian. Then

- $\operatorname{Dis}(X)$ is cyclic,
- $\mathcal{G}(X)$ has 2 generators,
- o $\left(\sigma_{x}\right)=o\left(\sigma_{y}\right)$, for all $x, y \in X$.

Theorem (P. J., A. P., A. Zamojska-Dzienio)

For finite solutions, there are 3 parameters of isomorphism, namely $n_{1}, n_{2}, r \in \mathbb{Z}$, such that

$$
n_{1}\left|n_{2}, \quad 0 \leqslant r<n_{2} / n_{1}, \quad n_{2}\right| n_{1} r^{2}
$$

Then $|X|=n_{1} \cdot n_{2}$ and $\mathcal{G}(X) \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$.

Generators of the displacement group

Proposition (P. J., A. P.)

Let (X, σ, τ) be an indecomposable involutive 2-permutational solution. Choose $e \in X$ and let $d=\sigma_{e}(e)$. Then $o\left(\sigma_{e}\right)=o\left(\sigma_{d}\right)$ and

$$
\mathcal{G}(X)=\left\langle\sigma_{e}, \sigma_{d}\right\rangle \quad \text { and } \quad \operatorname{Dis}(X)=\left\langle\sigma_{e}^{-i} \sigma_{d} \sigma_{e}^{i-1} \mid i \in \mathbb{Z}\right\rangle .
$$

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive 2-permutational solution.

Idea of the proof:

free cyclic group

free abelian group with ω generators
\square
\square

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive 2-permutational solution.

Idea of the proof.
$\mathbb{Z} \quad$... free cyclic group
free abelian group with ω generators $\left(\bigoplus_{\mathbb{Z}} \mathbb{Z}\right) \rtimes \mathbb{Z}$ maps onto $\mathcal{G}(X)=\operatorname{Dis}(X)\left\langle\sigma_{x}\right\rangle$

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive 2-permutational solution.

Idea of the proof.
$\mathbb{Z} \quad$... free cyclic group
$\bigoplus_{\mathbb{Z}} \mathbb{Z} \quad \ldots$ free abelian group with ω generators

Indecomposable solutions with non-abelian permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically maps onto any indecomposable involutive 2-permutational solution.

Idea of the proof.
$\mathbb{Z} \quad$... free cyclic group
$\bigoplus_{\mathbb{Z}} \mathbb{Z} \quad \ldots$ free abelian group with ω generators
$\left(\bigoplus_{\mathbb{Z}} \mathbb{Z}\right) \rtimes \mathbb{Z}$ maps onto $\mathcal{G}(X)=\operatorname{Dis}(X)\left\langle\sigma_{x}\right\rangle$

Constructing all the indecom. inv. 2-perm. solut.

Theorem (P. J., A. P.)

A complete set of invariants for a finite indecomposable involutive 2-permutational solution are

- $m, n \in \mathbb{N}$;
- an abelian group A of size n with less than m generators;
- an element $r \in A$;
- H, a subgroup of \mathbb{Z}^{m-1}, such that $\mathbb{Z}^{m-1} / H \cong A$.

The solution then constructed has $m \cdot n$ elements and its displacement group is isomorphic to A.

Constructing all the indecom. inv. 2-perm. solut.

Theorem (P. J., A. P.)

A complete set of invariants for a finite indecomposable involutive 2-permutational solution are

- $m, n \in \mathbb{N}$;
- an abelian group A of size n with less than m generators;
- an element $r \in A$;
- H, a subgroup of \mathbb{Z}^{m-1}, such that $\mathbb{Z}^{m-1} / H \cong A$.

The solution then constructed has $m \cdot n$ elements and its displacement group is isomorphic to A.

Corollary

Let $s \in \mathbb{N}$. Then there are at least $2^{k / 2}-1$ indecomposable solutions of size $k=2^{s}$.

Numbers of indecomposable involutive solutions

n	1	2	3	4	5	6	7	8
solutions	1	2	5	23	88	595	3456	34530
2-perm.	1	2	5	19	70	359	2095	16332
indecom.	1	1	1	5	1	10	1	100
ind. 2-perm.	1	1	1	3	1	10	1	19
ind. 2-perm. abel. \mathcal{G}	1	1	1	3	1	1	1	3
ind. 2-perm. cycl. \mathcal{G}	1	1	1	2	1	1	1	2

n	9	10	11	12	13	14	15	16
sol.	321931	4895272						
ind.	16	36	1		1			
i. 2-p.	13	36	1	136	1	134	151	403
i. 2-p. a.	4	1	1	3	1	1	1	7
i. 2-p. c.	3	1	1	2	1	1	1	4

