# Minimal closed monoids for the Galois connection End - Con

#### Danica Jakubíková-Studenovská

#### (P. J. Šafárik University, Košice, Slovakia) coathors Reinhard Pöschel Sándor Radeleczki

Summer School on Algebra and Ordered Sets Stará Lesná, Slovakia September 2-8, 2023

# Introduction

This talk is a small contribution to the topic concerning the lattice of congruence lattices of algebras on a given set.

Let A be a fixed finite set.

- algebra (A, F)
- system of all congruences of an algebra (A, F) ordered by inclusion forms a lattice Con(A, F)
- system of all Con(A, F) of all algebras (A, F) ordered by inclusion forms a lattice  $\mathcal{E}_A$

Each congruence lattice is a complete sublattice of Eq(A). Due to the Galois connection End - Con, the endomorphism monoids M = End Con(A, F) of such congruence lattices also form a lattice

$$\mathcal{M}_A := \{ \operatorname{End} \operatorname{Con}(A, F) \mid F \subseteq A^A \},\$$

which is dual to  $\mathcal{E}_A$ .

### **Basic notions**

To fix the notions and notation, recall that a binary relation  $\theta \subseteq A \times A$  is *compatible* with (or *invariant* for) a function  $f \in A^A$ , we also say f preserves  $\rho$ , denoted by  $f \triangleright \rho$ , if

$$\forall x, y \in A : (x, y) \in \theta \implies (fx, fy) \in \theta.$$

Equivalently this expresses the fact that f is an *endomorphism* of  $\theta$  $(f \in \operatorname{End} \theta)$  and – provided that  $\theta$  is an equivalence relation – that  $\theta$  is a *congruence* of the algebra (A, f) ( $\theta \in \operatorname{Con}(A, f)$ ). The relation  $\triangleright$  induces a Galois connection, namely  $\operatorname{End} - \operatorname{Con}$ , between unary mappings and equivalence relations, defined by

$$\operatorname{End} Q := \{ f \in A^A \mid \forall \rho \in Q : f \triangleright \rho \} \quad \text{for } Q \subseteq \operatorname{Eq}(A)$$
$$\operatorname{Con}(A, F) := \operatorname{Con} F := \{ \theta \in \operatorname{Eq}(A) \mid \forall f \in F : f \triangleright \rho \} \quad \text{for } F \subseteq A^A.$$

## **Basic notions**

The least monoid  $T \in \mathcal{M}_A$  consists of all unary functions that preserve *all* equivalence relations on A, that is, we have  $T = \operatorname{End} \operatorname{Eq}(A)$ . Therefore, the monoid T and the functions in it are called *trivial*.

If  $3 \leq |A|$ , then  $T := {id_A} \cup C_A$ , where  $id_A$  is the identity mapping and  $C_A$  denotes the set of all unary constant functions on A.

The central role for describing the minimal endormorphism monoids of congruence lattices: functions of type I, II and III.

## Coatoms

#### Theorem

The coatoms of  $\mathcal{E}_A$  are exactly the congruence lattices of the form Con(A, f) where  $f \in A^A$  satisfies:

(1) 
$$f$$
 is nontrivial and  $f^2 = f$ , or

(II) 
$$f$$
 is nontrivial,  $f^2$  is a constant, say  $u$ , and  $|\{x \in A \mid fx = u\}| \ge 3$ , or

(III)  $f^p = id_A$  for some prime p, such that the permutation f has at least two cycles of length p.

#### Theorem

The same functions also determine the coatoms Quord(A, f) in the lattice  $\mathcal{L}_A$  of quasiorder lattices of algebras on the base set A.

## Notation

For a function f of type I with exactly one nontrivial component (whose fixed point is denoted by z) let  $\hat{f}$  be defined as follows:

$$\widehat{f}x := \begin{cases} z & \text{if } fx = x, \\ x & \text{otherwise.} \end{cases}$$
(1)

For a function f with a 2-element image  ${\rm Im}(f)=\{z,u\},$  let f' be defined as follows:

$$f'x := \begin{cases} u & \text{if } fx = z, \\ z & \text{if } fx = u. \end{cases}$$
(2)



# Result

The other side of the Galois connection  $\operatorname{End} - \operatorname{Con}$ , i.e., determine  $\operatorname{End} \operatorname{Con}(A, f)$  for all coatoms  $\operatorname{Con}(A, f)$ , i.e., the minimal nontrivial endomorphism monoids in the lattice  $\mathcal{M}_A$ .

#### Theorem

Let  $3 \leq |A| < \infty$ .

- (A) The following table describes the Galois closure End Con(A, f) for all functions f of type I, II or III. The number s indicates the number of nontrivial functions in the closure.
- (B) The Galois closures End Quord(A, f) for the functions of type I and II are always {f} ∪ T and for functions of type III we have End Quord(A, f) = End Con(A, f) = {f, f<sup>2</sup>, ..., f<sup>p-1</sup>} ∪ T.

|   |     | type of $f$ | $ \operatorname{Im}(f) $ | number of<br>nontrivial<br>components<br>K of $f$ | other<br>conditions | Galois closure $End Con(A, f)$                  | 8     |
|---|-----|-------------|--------------------------|---------------------------------------------------|---------------------|-------------------------------------------------|-------|
|   | (1) | Ι           | $\geq 3$                 | $\geq 2$                                          |                     | $\{f\} \cup T$                                  | 1     |
|   | (2) | I ·         | $\geq 3$                 | 1                                                 | $ K  \ge 3$         | $\{f,\widehat{f}\}\cup T$                       | 2     |
|   | (3) | Ι           | $\geq 3$                 | 1                                                 | K  = 2              | $\{f, \widehat{f}, (\widehat{f})'\} \cup T$     | 3     |
|   | (4) | Ι           | 2                        | 2                                                 |                     | $\{f, f'\} \cup T$                              | 2     |
|   | (5) | Ι           | 2                        | 1                                                 | A  > 3              | $\{f, f', \widehat{f}\} \cup T$                 | 3     |
|   | (6) | I           | 2                        | 1                                                 | A  = 3              | $\{f, f', \widehat{f}, (\widehat{f})'\} \cup T$ | 4     |
|   | (7) | II          | $\geq 3$                 |                                                   |                     | $\{f\} \cup T$                                  | 1     |
|   | (8) | II          | 2                        |                                                   |                     | $\{f, f'\} \cup T$                              | 2     |
| - | (9) | III         |                          |                                                   | cycle length $p$    | $\{f, f^2, \dots, f^{p-1}\} \cup T$             | p - 1 |

## Thank you for your attention.