The combinatorics of weak congruences of lattices

Eszter K. Horváth

Co-Author: Andreja Tepavčević

SSAOS, 2023

Weak congruence

symmetric, transitive, compatible binary relation on an algebra

Weak congruence

symmetric, transitive, compatible binary relation on an algebra
The collection $\mathrm{Cw}(A)$ of weak congruences on an algebra A is an algebraic lattice under inclusion. The sublattices of the weak congruence lattice of A are $\operatorname{Con}(A), \operatorname{Sub}(A)$ and $\operatorname{Con}(B)$, for every subalgebra B. See [3].

Some preliminaries

How to calculate the number of weak congruences?

$$
|\mathrm{Cw}(B, \vee)|=1+\sum_{\substack{B^{*} \in \operatorname{Sub} B \\ B^{*} \neq \emptyset}}\left|\operatorname{Con} B^{*}\right|
$$

First see [4].

Theorem (H., D. Ahmed and Z. Németh)

If (B, \vee) is a semilattice defined by a binary tree B, then

$$
|\operatorname{Cw}(B, \mathrm{v})|=4\left(\left|\operatorname{Cw}\left(B_{1}, \mathrm{~V}\right)\right| \cdot\left|\operatorname{Cw}\left(B_{2}, \mathrm{~V}\right)\right|\right)-\left(\left|\operatorname{Cw}\left(B_{1}, \mathrm{~V}\right)\right|+\left|\operatorname{Cw}\left(B_{2}, \mathrm{~V}\right)\right|\right),
$$

where B_{1}, B_{2} are the left and right maximal subtrees of the tree, respectively.

The calculation

Proof. Both $\mathrm{Cw}\left(B_{1}+_{\text {ord }} 1^{\prime}, \mathrm{V}\right)$ and $\mathrm{Cw}\left(B_{2}+_{\text {ord }} 1^{\prime}, \mathrm{V}\right)$ contain tl only congruence on the singleton $\{1\}$, is
$=\sum_{\substack{B_{i}^{*} \in \operatorname{sub} B_{i}, B_{i}^{\prime} \neq \emptyset}} 4\left|\operatorname{Con}\left(B_{1}^{*}, \mathrm{~V}\right)\right| \cdot\left|\operatorname{Con}\left(B_{2}^{*}, \mathrm{~V}\right)\right|+4\left|\operatorname{Cw}\left(B_{1}, \mathrm{~V}\right)\right|+4\left|\operatorname{Cw}\left(B_{2}, \mathrm{v}\right)\right|$

$$
-\left|\operatorname{Cw}\left(B_{1}, \mathrm{v}\right)\right|-\left|\operatorname{Cw}\left(B_{2}, \mathrm{v}\right)\right|-4 .
$$

Now for B_{i},

$$
\left|\operatorname{Cw}\left(B_{i}, \mathrm{v}\right)\right|=1+\sum_{\substack{B_{i}^{*} \in \operatorname{Sub} B_{i} \\ B_{i}^{*} \neq \emptyset}}\left|\operatorname{Con}\left(B_{i}^{*}, \mathrm{~V}\right)\right|
$$

and let us use

$$
\left|\operatorname{Cw}\left(B_{1}, \mathrm{~V}\right)\right| \cdot\left|\operatorname{Cw}\left(B_{2}, \mathrm{~V}\right)\right|=\left(1+\sum_{\substack{B_{1}^{*} \in \operatorname{Sub} B_{1} \\ B_{1}^{*} \neq \emptyset}}\left|\operatorname{Con}\left(B_{1}^{*}, \vee\right)\right|\right)
$$

$$
\left(1+\sum_{\substack{B_{2}^{*} \in \operatorname{Sub} B_{2} \\ B_{i}^{*} \neq \emptyset}}\left|\operatorname{Con}\left(B_{2}^{*}, \mathrm{~V}\right)\right|\right)
$$

$=\sum_{\substack{B_{i}^{*} \in \operatorname{Suw} B_{i} \\ B_{i} \neq \emptyset}}\left|\operatorname{Con}\left(B_{1}^{*}, \mathrm{~V}\right)\right| \cdot\left|\operatorname{Con}\left(B_{2}^{*}, \mathrm{~V}\right)\right|+\left|\operatorname{Cw}\left(B_{1}, \mathrm{v}\right)\right|+\left|\operatorname{Cw}\left(B_{2}, \mathrm{v}\right)\right|-1$.
Then we arrive at

Theorem (H., D. Ahmed and Z. Németh)

If (B, \vee) is a semilattice defined by a prickly-snake B of height h , then

$$
|\operatorname{Cw}(B, \vee)|=7 \cdot\left|\operatorname{Cw}\left(B_{1}, \vee\right)\right|-2=\frac{5 \cdot 7^{h}+1}{3}
$$

where B_{1} is the left maximal subtree of the tree.

Theorem (H., D. Ahmed and Z. Németh)

If (B, \vee) is a semilattice defined by a perfect binary tree B of height h, then

$$
|\mathrm{Cw}(B, \vee)|=4 \cdot\left|\operatorname{Cw}\left(B_{1}, \vee\right)\right|^{2}-2 \cdot\left|\mathrm{Cw}\left(B_{1}, \vee\right)\right|,
$$

where B_{1} is the left maximal subtree of the tree.
Moreover,

$$
|\mathrm{Cw}(B, \vee)|=\left\lceil\frac{1}{4} C^{2^{h+1}}\right\rceil, \quad C=2.61803398874989 \ldots
$$

where $\lceil x\rceil$ denotes the least integer greater than or equal to x.

Conjecture

The constant C in this Theorem seems to be equal to $\frac{3+\sqrt{5}}{2}$, i.e. the Golden Ratio plus 1. Our numerical experiments with Mathlab, Mathematica and Maple affirm this idea; there are differences in the 16th decimal places but they could be numerical errors. On the other hand, we have been unable to prove or disprove the conjecture.

The greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)

If L is a finite lattice of size $n=|L|$, then L has at most $\frac{3^{n}+1}{2}$ weak congruences.
Furthermore, $|\mathrm{Cw} L|=\frac{3^{n}+1}{2}$ if and only if L is a chain.

Proof of the greatest case: chain, $\frac{3^{n}+1}{2}$

First, we prove that if L is a chain, then $|\mathrm{Cw} L|=\frac{3^{n}+1}{2}$. An n-element lattice can have at most 2^{n} subuniverses. Furthermore, by [2], $|\operatorname{Sub} L|=2^{n}$ if and only if it is a chain. By [1], an n-element lattice can have at most 2^{n-1} congruences; furthermore, $|\operatorname{Con} L|=2^{n-1}$ if and only if it is a chain. Now

$$
\begin{gathered}
|\operatorname{Cw} L|=1+\sum_{\substack{L^{*} \in \operatorname{Sub} L \\
L^{*} \neq \emptyset}}\left|\operatorname{Con} L^{*}\right|=1+\sum_{i=1}^{n}\binom{n}{i} 2^{i-1}= \\
1+\frac{\sum_{i=1}^{n}\binom{n}{i} 2^{i}}{2}=1+\frac{-1+\sum_{i=0}^{n}\binom{n}{i} 2^{i}}{2}= \\
=1+\frac{-1+(1+2)^{n}}{2}=\frac{3^{n}+1}{2}
\end{gathered}
$$

Proof of the greatest case: chain, $\frac{3^{n}+1}{2}$

We have to show that all the n-element lattices have fewer weak congruences than $\frac{3^{n}+1}{2}$. We denote the elements of L by $a_{1} \prec \cdots \prec a_{n}$. If L^{\prime} is not a chain, then it has at least two incomparable elements, say $p \| q$. Of course $p \vee q \in L^{\prime}$ and $p \wedge q \in L^{\prime}$. We denote the remaining elements of L^{\prime} by b_{1}, \ldots, b_{n-4} arbitrarily. Now

$$
\left|\operatorname{Cw} L^{\prime}\right|=1+\sum_{\substack{L^{*} \in \operatorname{Sub} L^{\prime} \\ L^{*} \neq \emptyset}}\left|\operatorname{Con} L^{*}\right|
$$

By [2], the sum $\left|\mathrm{Cw} L^{\prime}\right|$ has less summands than the sum $|\mathrm{Cw} L|$. We make an injection from the summands of $\left|\mathrm{Cw} L^{\prime}\right|$ to the summands of $\left|\mathrm{Cw}_{\mathrm{w}} L\right|$ in such a way that the image of each summand is not greater than the summand itself. For this, we define a bijective map $\varphi: L^{\prime} \rightarrow L,(p \wedge q) \mapsto a_{1}, p \mapsto a_{2}, q \mapsto a_{3}$, $(p \vee q) \mapsto a_{4}$, and if $x \notin\{p, q, p \wedge q, p \vee q\}$, then $\varphi(x) \in L \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ arbitrarily...

The second greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)

If $|L|=n \geq 4$ and L has less than $\frac{3^{n}+1}{2}$ weak congruences, then the second greatest value in weak congruences is $\frac{53 \cdot 3^{n-4}+1}{2}$. Furthermore, L has $\frac{53 \cdot 3^{n-4}+1}{2}$ weak congruences if and only if $L \simeq C_{1}+{ }_{g l u} B_{4}+{ }_{g l u} C_{2}$, where C_{1} and C_{2} are chains or the empty set and B_{4} is the four element Boolean lattice.

We prove that all the other n-element lattices have less weak congruences. To show this, first we calculate the above number in a different way. By [2], L has $13 \cdot n^{n-4}$ subuniverses. By [1], this form of an n-element lattice L has 2^{n-2} congruences. We denote the non-comparable elements of B_{4} by a and b. Now

$$
\begin{gathered}
|\operatorname{Cw} L|=1+\sum_{\substack{L^{*} \in \operatorname{Sub} L \\
L^{*} \neq \emptyset}}\left|\operatorname{Con} L^{*}\right|= \\
=1+\sum_{\substack{L^{*} \in \operatorname{Sub} L \\
B_{4} \subseteq L^{*}}}\left|\operatorname{Con} L^{*}\right|+\sum_{\substack{L^{*} \in \operatorname{Sub} L \\
b \notin L^{*} \\
a \in L^{*}}}\left|\operatorname{Con} L^{*}\right|+\sum_{\substack{L^{*} \in \operatorname{Sub} L \\
\{a\} \cap L^{*}=\emptyset}}\left|\operatorname{Con} L^{*}\right|=(* *)
\end{gathered}
$$

Now

$$
1+\sum_{\substack{L^{*} \in \operatorname{Sub} L \\\{a\} \cap L^{*}=\emptyset}}\left|\operatorname{Con} L^{*}\right|=\left|\operatorname{Cw} C_{n-1}\right|
$$

so

$$
\begin{aligned}
(* *) & =\sum_{i=0}^{n-4}\binom{n-4}{i} 2^{i+4-2}+\sum_{i=0}^{n-2}\binom{n-2}{i} 2^{i+1-1}+\frac{3^{n-1}+1}{2}= \\
& =4(1+2)^{n-4}+(1+2)^{n-2}+\frac{3^{n-1}+1}{2}=\frac{53 \cdot 3^{n-4}+1}{2} .
\end{aligned}
$$

Consider an arbitrary n-element lattice L^{\prime} that is neither a chain, nor of form $C_{1}+{ }_{\text {glu }} B_{4}+{ }_{\text {glu }} C_{2}$, . Clearly

$$
\left|\operatorname{Cw} L^{\prime}\right|=1+\sum_{\substack{L^{*} \in \operatorname{Sub} \\ L^{*} \neq \emptyset}}\left|\operatorname{Con} L^{*}\right| .
$$

This sum contains not more summands than that of L by [2].

We show that $\left|\mathrm{Cw} L^{\prime}\right| \leq|\mathrm{Cw} L|$. If L^{\prime} is neither a chain, nor of the form $C_{1}+{ }_{g l u} B_{4}+{ }_{g l u} C_{2}$, then it has antichains, let $a \| b$ one of them. We make an injection from the summands of $\left|\mathrm{Cw} L^{\prime}\right|$ to the summands of $|\mathrm{Cw} L|$ in such a way that the image of each summand is not greater than the summand itself. For this, we define a bijective map $\varphi: L^{\prime} \rightarrow L$. Denote the elements of B_{4} in L by $\{p, q, p \wedge q, p \vee q\}$. Let $a \varphi=p, b \varphi=q,(a \wedge b) \varphi=p \wedge q,(a \vee b) \varphi=p \vee q$; otherwise we define φ arbitrarily but bijectively. The image of any sublattice of L^{\prime} is a sublattice of L because if the considered sublattice contains both a and b, then the image of it is a sublattice of form $C_{1}+{ }_{g l u} B_{4}+{ }_{g l u} C_{2}$. If the considered sublattice contains at most one of a and b, then its image is a chain. Now clearly by [1], the image of each summand is not greater than the summand itself because the image of a sublattice is a chain or of form $C_{1}+{ }_{g l u} B_{4}+{ }_{g l u} C_{2}$, but the latter case happens only when the sublattice is not a chain.

The "'third" greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)
If $|L|=n \geq 4$ and $L \simeq C_{1}+{ }_{\text {glu }} N_{5}+{ }_{\text {glu }} C_{2}$, where C_{1} and C_{2} are chains or the empty set, then the number of weak congruences of finite lattices is $\frac{125 \cdot 3^{n-5}+1}{2}$.

The "'third" greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)

If $|L|=n \geq 4$ and $L \simeq C_{1}+{ }_{\text {glu }} N_{5}+{ }_{g l u} C_{2}$, where C_{1} and C_{2} are chains or the empty set, then the number of weak congruences of finite lattices is $\frac{125 \cdot 3^{n-5}+1}{2}$.

Conjecture (H., A. Tepavčević)
We conjecture that $\frac{125 \cdot 3^{n-5}+1}{2}$ is the third greatest number of weak congruences of finite lattices, and the corresponding lattice is $L \simeq C_{1}+{ }_{g l u} N_{5}+{ }_{g l u} C_{2}$, where C_{1} and C_{2} are chains or the empty set.

Lantern: the n-element lattice M_{n-2}

We use the notation M_{1} for the 3-element chain and M_{2} for the 4-element Boolean lattice. For $n \geq 3, M_{n-2}$ consists of $n-2$ atoms, which are also coatoms, and of 0 and 1 . So, the lattice M_{n-2} has $n-2$ atoms and n elements. We call the lattice M_{n-2} a lantern.

Theorem (H., A. Tepavčević)

For $n \geq 3$, the lantern M_{n-2} has $2^{n-1}+n^{2}+2 n-5$ weak congruences.

The number of weak congruences of ordinal sum of lattices
Lemma (H., A. Tepavčević)
Given finite lattices L_{1} and L_{2}, let $L=L_{1}+_{\text {ord }} L_{2}$. Then

$$
|\operatorname{Sub} L|=\left|\operatorname{Sub} L_{1}\right|\left|\operatorname{Sub} L_{2}\right| .
$$

Lemma (H., A. Tepavčević)

Given finite lattices L_{1} and L_{2}, let $L=L_{1}+{ }_{g l u} L_{2}$. Then
$|\operatorname{Con} L|=\left|\operatorname{Con} L_{1}\right|\left|\operatorname{Con} L_{2}\right|$.

Lemma (H., A. Tepavčević)
Given finite lattices L_{1} and L_{2}, Let $L=L_{1}+_{\text {ord }} L_{2}$. Then

$$
|\mathrm{Cw} L|=2 \cdot\left(\left|\mathrm{Cw} L_{1}\right|-1\right)\left(\left|\mathrm{Cw} L_{2}\right|-1\right)+\left|\mathrm{Cw} L_{1}\right|+\left|\mathrm{Cw} L_{2}\right|-1 .
$$

Lantern on a chain

Lemma (H., A. Tepavčević)

If $L \simeq C_{1}+_{\text {ord }} M_{k-2}+_{\text {ord }} C_{2}$, where C_{1} and C_{2} are chains or the empty set, and $\left|C_{1}\right|+\left|C_{2}\right|=l$, then

$$
|\mathrm{Cw} L|=\frac{\left(2^{k}+2 k^{2}+4 k-11\right) \cdot 3^{l}+1}{2}
$$

By using this, we also obtain the result $\frac{53 \cdot 3^{n-4}+1}{2}$.

Chandelier

Let $N_{m_{1}, m_{2}, \ldots, m_{n}}$ be a lattice of width n , containing n chains with m_{1}, m_{2}, \ldots, m_{n} elements. They have intersection $\{0,1\}$, any other element of it belongs exactly to one chain.
The index i in m_{i} denote the i-th chain. We call the lattice $N_{m_{1}, m_{2}, \ldots, m_{n}}$ a chandelier.

Lemma (H., A. Tepavčević)

The chandelier $N_{m, k}$ has

$$
\frac{3^{m}-1}{2} \frac{3^{k}-1}{2}+3 \cdot\left(2^{m}-1\right)\left(2^{k}-1\right)+\frac{3^{m+2}+3^{k+2}}{2}-4
$$

weak congruences.

Chandelier

Let $N_{m_{1}, m_{2}, \ldots, m_{n}}$ be a chandelier of width n , containing n chains with m_{1}, m_{2}, \ldots, m_{n} elements. Let $w^{(k)}\left(m_{l_{1}}, \ldots, m_{l_{k}}\right)$ be the number of special weak congruences on $N_{m_{1}, m_{2}, \ldots, m_{n}}$, which are weak congruences of sublattices of $N_{m_{1}, m_{2}, \ldots, m_{n}}$ of width k where $\left\{m_{l_{1}}, \ldots m_{l_{k}}\right\}$ is a fixed subset of the set $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ containing k different elements.

Chandelier

Let $N_{m_{1}, m_{2}, \ldots, m_{n}}$ be a chandelier of width n , containing n chains with m_{1}, m_{2}, \ldots, m_{n} elements. Let $w^{(k)}\left(m_{l_{1}}, \ldots, m_{l_{k}}\right)$ be the number of special weak congruences on $N_{m_{1}, m_{2}, \ldots, m_{n}}$, which are weak congruences of sublattices of $N_{m_{1}, m_{2}, \ldots, m_{n}}$ of width k where $\left\{m_{l_{1}}, \ldots m_{l_{k}}\right\}$ is a fixed subset of the set $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ containing k different elements.

Lemma (H., A. Tepavčević)

Let $k \geq 3$. Then,

$$
w^{(k)}\left(m_{1}, \ldots m_{n}\right)=\prod_{1}^{k} \frac{3^{m_{i}}-1}{2}+\left(2^{m_{1}}-1\right) \cdot\left(2^{m_{2}}-1\right) \cdot \ldots\left(2^{m_{k}}-1\right)
$$

It is easy to see that

$$
\left|\mathrm{Cw} N_{m, k}\right|=w^{(1)}(m)+w^{(1)}(k)+w^{(2)}(m, k)-3 .
$$

Further, $\left|\mathrm{Cw} N_{m, k, l}\right|=$
$w^{(1)}(m)+w^{(1)}(k)+w^{(1)}(l)+w^{(2)}(m, k)+w^{(2)}(m, l)+w^{(2)}(k, l)+w^{(3)}(m, k, l)-7$.

It is easy to see that

$$
\left|\mathrm{Cw} N_{m, k}\right|=w^{(1)}(m)+w^{(1)}(k)+w^{(2)}(m, k)-3 .
$$

Further, $\left|\mathrm{Cw} N_{m, k, l}\right|=$

$$
w^{(1)}(m)+w^{(1)}(k)+w^{(1)}(l)+w^{(2)}(m, k)+w^{(2)}(m, l)+w^{(2)}(k, l)+w^{(3)}(m, k, l)-7 .
$$

Theorem (H., A. Tepavčević)

The number of weak congruences of a chandelier of width n is

$$
\left|\mathrm{Cw} N_{m_{1}, m_{2}, \ldots, m_{n}}\right|=\sum_{i=1}^{n} \sum_{A \in \mathcal{P}^{i}\left(\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}\right)} w^{(i)} A-4 n+5,
$$

where $\mathcal{P}^{i}\left(\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}\right)$ is the set of all subsets of $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ with i elements.

5. References I

E Gábor Czédli. A note on finite lattices with many congruences.
Acta Universitatis Matthiae Belii, Series Mathematics Online, pages 22-28, 2018.
(ivábor Czédli and Eszter K. Horváth.
A note on lattices with many sublattices.
Miskolc Mathematical Notes, 20(2):839-848, 2019.
國 Branimir Šešelja and Andreja Tepavčević. Weak Congruences in Universal Algebra. Institute of Mathematics Novi Sad, 2001.

5. References II

(R. Dhmed Z. Németh and E. K. Horváth.

The number of subuniverses, congruences, weak congruences of semilattices defined by trees.
Order, 40:33500-348, 2022.

Thank you for your attention!

