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Weak congruence

symmetric, transitive, compatible binary relation on an algebra

The collection Cw(A) of weak congruences on an algebra A is an algebraic
lattice under inclusion. The sublattices of the weak congruence lattice of A
are Con(A), Sub(A) and Con(B), for every subalgebra B. See [3].
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Some preliminaries

How to calculate the number of weak congruences?

|Cw(B,∨)| = 1 +
∑

B∗∈SubB
B∗ ̸=∅

|ConB∗|

First see [4].
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Theorem (H., D. Ahmed and Z. Németh)
If (B,∨) is a semilattice defined by a binary tree B, then

|Cw(B,∨)| = 4(|Cw(B1,∨)| · |Cw(B2,∨)|)− (|Cw(B1,∨)|+ |Cw(B2,∨)|),

where B1, B2 are the left and right maximal subtrees of the tree, respectively.
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The calculation
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Theorem (H., D. Ahmed and Z. Németh)
If (B,∨) is a semilattice defined by a prickly-snake B of height h, then

|Cw(B,∨)| = 7 · |Cw(B1,∨)| − 2 =
5 · 7h + 1

3
,

where B1 is the left maximal subtree of the tree.
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Theorem (H., D. Ahmed and Z. Németh)
If (B,∨) is a semilattice defined by a perfect binary tree B of height h, then

|Cw(B,∨)| = 4 · |Cw(B1,∨)|2 − 2 · |Cw(B1,∨)| ,

where B1 is the left maximal subtree of the tree.
Moreover,

|Cw(B,∨)| =
⌈
1
4 C

2h+1⌉
, C = 2.61803398874989 . . .

where ⌈x⌉ denotes the least integer greater than or equal to x.
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Conjecture

The constant C in this Theorem seems to be equal to 3+
√
5

2 , i.e. the Golden
Ratio plus 1. Our numerical experiments with Mathlab, Mathematica and
Maple affirm this idea; there are differences in the 16th decimal places but
they could be numerical errors. On the other hand, we have been unable to
prove or disprove the conjecture.
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The greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)
IfL is a finite lattice of sizen = |L|, thenL has atmost 3n+1

2 weak congruences.
Furthermore, |CwL| = 3n+1

2 if and only if L is a chain.
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Proof of the greatest case: chain, 3n+1
2

First, we prove that if L is a chain, then |CwL| = 3n+1
2 . An n-element lattice

can have at most 2n subuniverses. Furthermore, by [2], |SubL| = 2n if and
only if it is a chain. By [1], an n-element lattice can have at most 2n−1

congruences; furthermore, |ConL| = 2n−1 if and only if it is a chain. Now

|CwL| = 1 +
∑

L∗∈SubL
L∗ ̸=∅

|ConL∗| = 1 +

n∑
i=1

(
n

i

)
2i−1 =

1 +

∑n
i=1

(
n
i

)
2i

2
= 1 +

−1 +
∑n

i=0

(
n
i

)
2i

2
=

= 1 +
−1 + (1 + 2)n

2
=

3n + 1

2
.
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Proof of the greatest case: chain, 3n+1
2

We have to show that all the n-element lattices have fewer weak congruences
than 3n+1

2 . We denote the elements of L by a1 ≺ · · · ≺ an. If L′ is not a chain,
then it has at least two incomparable elements, say p||q. Of course p ∨ q ∈ L′

and p ∧ q ∈ L′. We denote the remaining elements of L′ by b1, . . . , bn−4

arbitrarily. Now ∣∣CwL′∣∣ = 1 +
∑

L∗∈SubL′

L∗ ̸=∅

|ConL∗|

By [2], the sum |CwL′| has less summands than the sum |CwL| . We make an
injection from the summands of |CwL′| to the summands of |CwL| in such a
way that the image of each summand is not greater than the summand itself.
For this, we define a bijective map φ : L′ → L, (p ∧ q) 7→ a1, p 7→ a2, q 7→ a3,
(p ∨ q) 7→ a4, and if x ̸∈ {p, q, p ∧ q, p ∨ q}, then φ(x) ∈ L \ {a1, a2, a3, a4}
arbitrarily...
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The second greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)
If |L| = n ≥ 4 and L has less than 3n+1

2 weak congruences, then the second
greatest value in weak congruences is 53·3n−4+1

2 . Furthermore, L has 53·3n−4+1
2

weak congruences if and only if L ≃ C1 +glu B4 +glu C2, where C1 and C2 are
chains or the empty set and B4 is the four element Boolean lattice.
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We prove that all the other n-element lattices have less weak congruences.
To show this, first we calculate the above number in a different way. By [2], L
has 13 · nn−4 subuniverses. By [1], this form of an n-element lattice L has 2n−2

congruences. We denote the non-comparable elements of B4 by a and b. Now

|CwL| = 1 +
∑

L∗∈SubL
L∗ ̸=∅

|ConL∗| =

= 1 +
∑

L∗∈SubL
B4⊆L∗

|ConL∗|+
∑

L∗∈SubL
b̸∈L∗

a∈L∗

|ConL∗|+
∑

L∗∈SubL
{a}∩L∗=∅

|ConL∗| = (∗∗)
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Now

1 +
∑

L∗∈SubL
{a}∩L∗=∅

|ConL∗| = |CwCn−1|

so

(∗∗) =
n−4∑
i=0

(
n− 4

i

)
2i+4−2 +

n−2∑
i=0

(
n− 2

i

)
2i+1−1 +

3n−1 + 1

2
=

= 4(1 + 2)n−4 + (1 + 2)n−2 +
3n−1 + 1

2
=

53 · 3n−4 + 1

2
.
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Consider an arbitrary n-element lattice L′ that is neither a chain, nor of form
C1 +glu B4 +glu C2,. Clearly∣∣CwL′∣∣ = 1 +

∑
L∗∈SubL′

L∗ ̸=∅

|ConL∗| .

This sum contains not more summands than that of L by [2].
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We show that |CwL′| ≤ |CwL| . If L′ is neither a chain, nor of the form
C1 +glu B4 +glu C2, then it has antichains, let a||b one of them. We make an
injection from the summands of |CwL′| to the summands of |CwL| in such a
way that the image of each summand is not greater than the summand itself.
For this, we define a bijective map φ : L′ → L. Denote the elements of B4 in L
by {p, q, p ∧ q, p ∨ q}. Let aφ = p, bφ = q, (a ∧ b)φ = p ∧ q, (a ∨ b)φ = p ∨ q;
otherwise we define φ arbitrarily but bijectively. The image of any sublattice
of L′ is a sublattice of L because if the considered sublattice contains both a
and b, then the image of it is a sublattice of form C1 +glu B4 +glu C2. If the
considered sublattice contains at most one of a and b, then its image is a
chain. Now clearly by [1], the image of each summand is not greater than the
summand itself because the image of a sublattice is a chain or of form
C1 +glu B4 +glu C2, but the latter case happens only when the sublattice is not
a chain.
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The "‘third" greatest number of weak congruences of finite lattices

Theorem (H., A. Tepavčević)
If |L| = n ≥ 4 and L ≃ C1 +glu N5 +glu C2, where C1 and C2 are chains or the
empty set, then the number of weak congruences of finite lattices is 125·3n−5+1

2 .

Conjecture (H., A. Tepavčević)
Weconjecture that 125·3n−5+1

2 is the third greatest number ofweak congruences
of finite lattices, and the corresponding lattice is L ≃ C1+gluN5+gluC2,where
C1 and C2 are chains or the empty set.
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Lantern: the n-element lattice Mn−2

We use the notation M1 for the 3-element chain and M2 for the 4-element
Boolean lattice. For n ≥ 3, Mn−2 consists of n− 2 atoms, which are also
coatoms, and of 0 and 1. So, the lattice Mn−2 has n− 2 atoms and n
elements. We call the lattice Mn−2 a lantern.

Theorem (H., A. Tepavčević)
For n ≥ 3, the lantern Mn−2 has 2n−1 + n2 + 2n− 5 weak congruences.
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The number of weak congruences of ordinal sum of lattices

Lemma (H., A. Tepavčević)
Given finite lattices L1 and L2, let L = L1 +ord L2. Then

| SubL| = |SubL1||SubL2|.

Lemma (H., A. Tepavčević)
Given finite lattices L1 and L2, let L = L1 +glu L2. Then

|ConL| = |ConL1||ConL2|.

Lemma (H., A. Tepavčević)
Given finite lattices L1 and L2, Let L = L1 +ord L2. Then

|CwL| = 2 · (|CwL1| − 1)(|CwL2| − 1) + |CwL1|+ |CwL2| − 1.
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Lantern on a chain

Lemma (H., A. Tepavčević)
If L ≃ C1+ordMk−2+ordC2,where C1 and C2 are chains or the empty set, and
|C1|+ |C2| = l, then

|CwL| = (2k + 2k2 + 4k − 11) · 3l + 1

2

By using this, we also obtain the result 53·3n−4+1
2 .
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Chandelier
Let Nm1,m2,...,mn be a lattice of width n, containing n chains with m1,
m2,...,mn elements. They have intersection {0, 1}, any other element of it
belongs exactly to one chain.
The index i in mi denote the i-th chain. We call the lattice Nm1,m2,...,mn a
chandelier.

Lemma (H., A. Tepavčević)
The chandelier Nm,k has

3m − 1

2

3k − 1

2
+ 3 · (2m − 1)(2k − 1) +

3m+2 + 3k+2

2
− 4

weak congruences.
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Chandelier
Let Nm1,m2,...,mn be a chandelier of width n, containing n chains with m1,
m2,...,mn elements. Let w(k)(ml1 , . . . ,mlk) be the number of special weak
congruences on Nm1,m2,...,mn , which are weak congruences of sublattices of
Nm1,m2,...,mn of width k where {ml1 , . . .mlk} is a fixed subset of the set
{m1,m2, ...,mn} containing k different elements.

Lemma (H., A. Tepavčević)
Let k ≥ 3. Then,

w(k)(m1, . . .mn) =

k∏
i=1

3mi − 1

2
+ (2m1 − 1) · (2m2 − 1) · . . . (2mk − 1)
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It is easy to see that

|CwNm,k| = w(1)(m) + w(1)(k) + w(2)(m, k)− 3.

Further, |CwNm,k,l| =
w(1)(m)+w(1)(k)+w(1)(l)+w(2)(m, k)+w(2)(m, l)+w(2)(k, l)+w(3)(m, k, l)−7.

Theorem (H., A. Tepavčević)
The number of weak congruences of a chandelier of width n is

|CwNm1,m2,...,mn | =
n∑

i=1

∑
A∈Pi({m1,m2,...,mn})

w(i)A− 4n+ 5,

where P i({m1,m2, ...,mn}) is the set of all subsets of {m1,m2, ...,mn} with i
elements.
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Thank you for your attention!
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