On discrete properties of monotone mappings

Emília Halušková

Mathematical Institute, Slovak Academy of Sciences, Košice. Slovakia

> SSAOS, Stará Lesná September 3-8, 2023

Outline

- Introduction
- Partial Order
- Stine Linear Order
 - Well Order
 - Numbers

Section 1:

Introduction

 $A \neq \emptyset$, ε partial order on the set A, $h: A \rightarrow A$ h is ε -increasing (resp. ε -decreasing) if for every $a, b \in A$:

$$\begin{array}{l} \text{if } a\neq b \text{ and } (a,b)\in \varepsilon \text{, then} \\ h(a)\neq h(b) \text{ and } (h(a),h(b))\in \varepsilon \text{ (resp. } (h(b),h(a))\in \varepsilon) \end{array}$$

h is ε -monotone if it is ε -increasing or ε -decreasing

$$\Delta = \{(a, a), a \in A\}$$

h is Δ -increasing and Δ -decreasing

Alternative terminology:

increasing strictly isotone, strictly ascending or strictly order-preserving, strictly monotone decreasing strictly antitone, strictly descending or strictly order-reversing

$$P \neq \emptyset$$
, $a, b \in P$, $a \neq b$, $f_{ab}(x) = \begin{cases} b & \text{if } x = a, \\ x & \text{if } x \in P, x \neq a. \end{cases}$

Proposition (Chajda, Länger, 2023)

Let (P, \leq) be a poset. TFAE

- f_{ab} is strictly monotone (i.e. \leq -increasing)
- $a \parallel b, L^*(a) \subseteq L^*(b)$ and $U^*(a) \subseteq U^*(b)$

$$A \neq \emptyset$$
, $h: A \rightarrow A$

Is there any non-trivial

PARTIAL (LINEAR, WELL) order ε such that

h is ε -increasing (ε -decreasing)?

Let $A \neq \emptyset$, $h : A \rightarrow A$. TFAE

- **1** there is a non-trivial partial (linear, well) order ε such that h is ε -increasing (ε -decreasing),
- 2 the monounary algebra (A, h) is such that ...

$$A \neq \emptyset, h: A \rightarrow A$$
 (A, h) monounary algebra

$$a \in A$$

cyclic element cycle connected algebra component source

$$E_h = \{[a, h(a)], a \in A\}$$

(A, E_h) oriented graph, discrete structure of h

Section 2:

Partial Order

Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE

- **1** there exists a partial order $\varepsilon \neq \Delta$ on A such that h is ε -increasing;
- (A, h) is not connected or it contains no cycle.

Proof.

$$(1) \to (2)$$

two comparable elements in a component of (A, h) with a cycle are not possible

$$(2) \rightarrow (1)$$

If
$$(A, h)$$
 has cycles C_1, C_2 , then $\varepsilon := (C_1 \times C_2) \cup \Delta$.

If (A, h) contains a component B without a cycle, $b \in B$, then take ε the chain which copies a ray generated by b in (A, h).

Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE

- there exists a partial order $\varepsilon \neq \Delta$ on A such that h is ε -decreasing;
- ② (A, h) contains a cycle of even length or a component without a cycle.

Proof. (2) \rightarrow (1)

If $C = \{0, 1, ..., 2n - 1\}, n \in \mathbb{N}$ is a cycle of (A, h),

 $h(i) = i + 1 \pmod{2n}$ for $i \in C$, C_1 are odd and C_2 even numbers of C, then $\varepsilon := (C_1 \times C_2) \cup \Delta$.

Let B be a component of (A, h) without a cycle.

Corollary

Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE

- **1** there is no non-trivial partial order ε on A such that h is ε -monotone;
- (A, h) is connected with a cycle of odd length.

Section 3:

Linear Order

Oldřich Kopeček

- Equation f(p(x)) = q(f(x)) for given real mappings p, q, Czech. Math. J., 62(137)(2012), 1011–1032.
- On solvability of f(p(x)) = q(f(x)) for given real functions p,q, Aequat. Math. 90 (2016), 471 494.
- The solvability of f(p(x)) = q(f(x)) for given strictly monotonous continuous real functions p,q, Aequat. Math. 96 (2022), 901–925.

Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE

- **1** there exists a linear order ε on A such that h is ε -increasing;
- algebra (A, h) has at most

these 3 types of components:

Let $A \neq \emptyset$, $h : A \rightarrow A$. TFAE

- **1** there exists a linear order ε on A such that h is ε -decreasing;
- algebra (A, h)
 has at most

has at most these 4 types of components:

Ó

while

occurs at most once.

Corollary Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE 1 there is a linear order ε on A such that h is ε -monotone; 2 algebra (A, h)has at most these 4 types of components:

and if it has

occurs at most once.

Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE

- **1** there exists a well order ε on A such that h is ε -increasing;
- 2 every component of (A, h) is •••• or

Proposition

Let $A \neq \emptyset$, $h : A \rightarrow A$. Denote

 κ the number of components of the algebra (A, h),

 μ the number of cycles of (A, h).

Suppose that h is ε -increasing for some linear order ε . Then the number of linear orders δ such that h is δ -increasing is

- at least $2^{\kappa-\mu} \cdot \kappa!$ if κ is finite;
- $2^{\|A\|}$ else.

Proposition

Let $A \neq \emptyset$, $h: A \rightarrow A$. Denote

 κ the number of components of the algebra (A,h),

 μ the number of cycles of (A, h).

Suppose that h is ε -decreasing for some linear order ε . Then the number of linear orders δ such that h is δ -decreasing is

- at least $2^{\kappa-\mu} \cdot \kappa!$ if κ is finite and h has no fixed point;
- at least $2^{2\kappa-\mu-1} \cdot (\kappa-1)!$ if κ is finite and h has a fixed point;
- $2^{\|A\|}$ else.

Thank you very much for your attention!