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Introduction

A
A # (), € partial order on the set A, h: A — A

h is e-increasing (resp. e-decreasing) if for every a, b € A:

if a# band (a,b) € ¢, then
h(a) # h(b) and (h(a), h(b)) € € (resp. (h(b), h(a)) € ¢)

h is e-monotone if it is e-increasing or e-decreasing
v

A ={(a,a),a€ A} ) h is A-increasing and A-decreasing

Alternative terminology:

|nCreaS|ng ...... strictly isotone, strictly ascending or strictly order-preserving, strictly monotone

decreasing ...... strictly antitone, strictly descending or strictly order-reversing
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Introduction

b if x=a,

P+£10, a,be P, b, f. =
70 a a7 b fanl) {X if xe P,x# a.

Proposition (Chajda, Langer, 2023)

Let (P, <) be a poset. TFAE
Q f,p is strictly monotone (i.e. <-increasing)
@ a| b, L*(a) C L*(b) and U*(a) C U*(b)
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Introduction

A£D, h-A—= A

Is there any non-trivial

PARTIAL (LINEAR, WELL) order ¢ such that

?
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Introduction

Let A#0, h: A— A. TFAE

@ there is a non-trivial partial (linear, well) order ¢ such that h is
e-increasing (e-decreasing),

@ the monounary algebra (A, h) is such that ...
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Introduction

A
A#£D, h: A=A
(A, h) monounary algebra

" cyclic element
" hia) CyC|e
connected algebra
a component
source

A
By = {[a, h(a)], a € A}
(A, Ep) oriented graph, discrete structure of h
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(R, )

every component is

; sources: r € Ry
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Partial Order

Let A% 0, h: A— A TFAE

@ there exists a partial order ¢ £ A on A such that h is
e-increasing;

@ (A, h) is not connected or it contains no cycle.

Proof.

(1) —(2)

two comparable elements in a component of (A, h) with a cycle are
not possible

(2) > (1)

If (A, h) has cycles Ci, Gy, then € := (G x ) UA.

If (A, h) contains a component B without a cycle, b € B, then take
e the chain which copies a ray generated by b in (A, h).
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Partial Order

Let A%£(Q, h: A— A TFAE

@ there exists a partial order € = A on A such that h is
e-decreasing;

@ (A, h) contains a cycle of even length or a component without
a cycle.

Proof. (2) — (1)

If C=1{0,1,...,2n—1},n € N is a cycle of (A, h),

h(i) = i+ 1(mod 2n)for i € C, C; are odd and C, even numbers of
C then e := (G x G)UA.
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Partial Order

Let B be a component of (A, h) without a cycle.

Emilia Haluskova On discrete properties of monotone mappings



Partial Order

Emilia Haluskova discrete properties of otone mappings



Partial Order

Emilia Haluskova discrete properties of otone mappings



Partial Order

£

L]

L]
h '(h]
h:"f\h)

b

hib)
t’iHUJ:J
irﬁ(fl}

L]

Emilia Haluskova discrete properties of otone mappings



Partial Order

Let A% D, h: A— A TFAE

@ there is no non-trivial partial order € on A such that h is
e-monotone;

@ (A, h) is connected with a cycle of odd length.

Emilia Haluskova On discrete properties of monotone mappings



Well Order
Numbers

Linear Order

Section 3:

Linear Order
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Well Order

R Numbers
Linear Order

Oldrich Kopecek

e Equation f(p(x)) = q(f(x)) for given real mappings p, q,
Czech. Math. J., 62(137)(2012), 1011-1032.

e On solvability of f(p(x)) = q(f(x)) for given real functions p,q,
Aequat. Math. 90 (2016), 471 - 494.

@ The solvability of f(p(x)) = q(f(x)) for given strictly

monotonous continuous real functions p,q, Aequat. Math. 96
(2022), 901-925.
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Linear Order

Let A%0D, h: A— A. TFAE
@ there exists a linear order € on A such that h is e-increasing;
@ algebra (A, h)

has at most
these 3 types H :
of components: : ]
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Well Order

R Numbers
Linear Order

Let A#0D, h: A— A. TFAE
@ there exists a linear order € on A such that h is e-decreasing;
@ algebra (A, h)

has at most

these 4 types t :

of components: : ' .
while occurs at most once.
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Well Order

R Numbers
Linear Order

Let A#0D, h: A— A TFAE
@ there is a linear order € on A such that h is e-monotone;
@ algebra (A, h)

has at most

these 4 types H :

of components: i . .
and if it has -/ , then occurs at most once.
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Well Order

R Numbers
Linear Order

Let A%, h: A— A TFAE

@ there exists a well order € on A such that h is e-increasing;

@ every component of (A, h) is e e e e «-. or
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Well Order

Linear Order Lupel

Proposition

Let A#%0Q, h: A— A. Denote
k the number of components of the algebra (A, h),
W the number of cycles of (A, h).

Suppose that h is e-increasing for some linear order €. Then
the number of linear orders § such that h is d-increasing is

@ at least 257H . gl if K is finite;
o 214l g/se.
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Well Order
Numbers

Linear Order

Proposition
Let A%(, h: A— A. Denote

k the number of components of the algebra (A, h),

i the number of cycles of (A, h).

Suppose that h is e-decreasing for some linear order €. Then
the number of linear orders § such that h is d-decreasing is

@ at least 2 # - k! if k is finite and h has no fixed point;
o at least 22°=F=1. (x — 1) if ki is finite and h has a fixed point;
o 214l gfse.

v
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inear Order

Thank you very much
for your attention!
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