On discrete properties of monotone mappings #### Emília Halušková Mathematical Institute, Slovak Academy of Sciences, Košice. Slovakia > SSAOS, Stará Lesná September 3-8, 2023 #### Outline - Introduction - Partial Order - Stine Linear Order - Well Order - Numbers #### Section 1: ### Introduction $A \neq \emptyset$, ε partial order on the set A, $h: A \rightarrow A$ h is ε -increasing (resp. ε -decreasing) if for every $a, b \in A$: $$\begin{array}{l} \text{if } a\neq b \text{ and } (a,b)\in \varepsilon \text{, then} \\ h(a)\neq h(b) \text{ and } (h(a),h(b))\in \varepsilon \text{ (resp. } (h(b),h(a))\in \varepsilon) \end{array}$$ *h* is ε -monotone if it is ε -increasing or ε -decreasing $$\Delta = \{(a, a), a \in A\}$$ h is Δ -increasing and Δ -decreasing #### Alternative terminology: increasing strictly isotone, strictly ascending or strictly order-preserving, strictly monotone decreasing strictly antitone, strictly descending or strictly order-reversing $$P \neq \emptyset$$, $a, b \in P$, $a \neq b$, $f_{ab}(x) = \begin{cases} b & \text{if } x = a, \\ x & \text{if } x \in P, x \neq a. \end{cases}$ #### Proposition (Chajda, Länger, 2023) Let (P, \leq) be a poset. TFAE - f_{ab} is strictly monotone (i.e. \leq -increasing) - $a \parallel b, L^*(a) \subseteq L^*(b)$ and $U^*(a) \subseteq U^*(b)$ $$A \neq \emptyset$$, $h: A \rightarrow A$ Is there any non-trivial PARTIAL (LINEAR, WELL) order ε such that *h* is ε -increasing (ε -decreasing)? Let $A \neq \emptyset$, $h : A \rightarrow A$. TFAE - **1** there is a non-trivial partial (linear, well) order ε such that h is ε -increasing (ε -decreasing), - 2 the monounary algebra (A, h) is such that ... $$A \neq \emptyset, h: A \rightarrow A$$ (A, h) monounary algebra $$a \in A$$ cyclic element cycle connected algebra component source $$E_h = \{[a, h(a)], a \in A\}$$ (A, E_h) oriented graph, discrete structure of h #### Section 2: # Partial Order Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE - **1** there exists a partial order $\varepsilon \neq \Delta$ on A such that h is ε -increasing; - (A, h) is not connected or it contains no cycle. #### Proof. $$(1) \to (2)$$ two comparable elements in a component of (A, h) with a cycle are not possible $$(2) \rightarrow (1)$$ If $$(A, h)$$ has cycles C_1, C_2 , then $\varepsilon := (C_1 \times C_2) \cup \Delta$. If (A, h) contains a component B without a cycle, $b \in B$, then take ε the chain which copies a ray generated by b in (A, h). Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE - there exists a partial order $\varepsilon \neq \Delta$ on A such that h is ε -decreasing; - ② (A, h) contains a cycle of even length or a component without a cycle. Proof. (2) \rightarrow (1) If $C = \{0, 1, ..., 2n - 1\}, n \in \mathbb{N}$ is a cycle of (A, h), $h(i) = i + 1 \pmod{2n}$ for $i \in C$, C_1 are odd and C_2 even numbers of C, then $\varepsilon := (C_1 \times C_2) \cup \Delta$. Let B be a component of (A, h) without a cycle. #### Corollary Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE - **1** there is no non-trivial partial order ε on A such that h is ε -monotone; - (A, h) is connected with a cycle of odd length. #### Section 3: # Linear Order #### Oldřich Kopeček - Equation f(p(x)) = q(f(x)) for given real mappings p, q, Czech. Math. J., 62(137)(2012), 1011–1032. - On solvability of f(p(x)) = q(f(x)) for given real functions p,q, Aequat. Math. 90 (2016), 471 494. - The solvability of f(p(x)) = q(f(x)) for given strictly monotonous continuous real functions p,q, Aequat. Math. 96 (2022), 901–925. Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE - **1** there exists a linear order ε on A such that h is ε -increasing; - algebra (A, h) has at most these 3 types of components: Let $A \neq \emptyset$, $h : A \rightarrow A$. TFAE - **1** there exists a linear order ε on A such that h is ε -decreasing; - algebra (A, h) has at most has at most these 4 types of components: Ó while occurs at most once. # Corollary Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE 1 there is a linear order ε on A such that h is ε -monotone; 2 algebra (A, h)has at most these 4 types of components: and if it has occurs at most once. Let $A \neq \emptyset$, $h: A \rightarrow A$. TFAE - **1** there exists a well order ε on A such that h is ε -increasing; - 2 every component of (A, h) is •••• or #### Proposition Let $A \neq \emptyset$, $h : A \rightarrow A$. Denote κ the number of components of the algebra (A, h), μ the number of cycles of (A, h). Suppose that h is ε -increasing for some linear order ε . Then the number of linear orders δ such that h is δ -increasing is - at least $2^{\kappa-\mu} \cdot \kappa!$ if κ is finite; - $2^{\|A\|}$ else. #### Proposition Let $A \neq \emptyset$, $h: A \rightarrow A$. Denote κ the number of components of the algebra (A,h), μ the number of cycles of (A, h). Suppose that h is ε -decreasing for some linear order ε . Then the number of linear orders δ such that h is δ -decreasing is - at least $2^{\kappa-\mu} \cdot \kappa!$ if κ is finite and h has no fixed point; - at least $2^{2\kappa-\mu-1} \cdot (\kappa-1)!$ if κ is finite and h has a fixed point; - $2^{\|A\|}$ else. # Thank you very much for your attention!