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Introduction

The definition and investigation of double Boolean algebras (dBas) arise from the
development of Contextual Logic at TU Darmstadt during the past years.
Contextual Logic is intended to be a mathematization of the traditional philisophical
logic with its doctrines of concepts,jugements and conclusions.
A survey of the basic ideas and results of this approach can be found in [Wi00], for
more detailed information see [Pr98], [GW99], [Wi00] and [Vor05].
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Introduction

Definition 1 ([GW99])
1 A formal context is a triple K = (G; M; I), where G is the set of objects, M is

the set of properties and I ⊆ G×M.

For any X ⊆ G; Y ⊆ M the following sets are defined :
Y ′ = {g ∈ G : gIm,∀m ∈ Y}, X′ = {m ∈ M : gIm,∀g ∈ X}.

2 A formal concept is a pair (A,B) with A ⊆ G, B ⊆ M such that A′ = B and
B′ = A; A and B are called the extent and the intent of the formal concept
(A,B), respectively.

The set of all concepts of a context K is denoted by B(K). An order relation is
defined on B(K) as follows :

(A,B) ≤ (C,D)⇐⇒ A ⊆ C(⇐⇒ D ⊆ B). (1)
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Introduction

The basic theorem on concept lattice states that:

Theorem 1 ([GW99])
The partial ordered set (B(K),≤) forms a complete lattice called the concept lattice
of the context K and conversely, each complete lattice is isomorphic to a concept
lattice of a suitable context K.

To facilitate the description of concepts, the notion of ”concept” has been
successively generalized to that of ”semiconcept” and ”protoconcept”.

Definition 2 ([GW99])
The pair (A,B) is called a semiconcept if A′ = B or B′ = A.
The pair (A,B) is called a protoconcept if and only if A′′ = B′. The set of all
protoconcepts of a context K is denoted by P(K).
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Introduction

The following operations are defined on P(K). For (A,B) and (C,D) in P(K),

meet: (A,B) u (C,D) := (A ∩ C, (A ∩ C)′)
join: (A,B) t (C,D) := ((B ∩ D)′,B ∩ D)
negation ¬(A,B) := (G\A, (G\A)′)
opposition y(A,B) := ((M\B)′,M\B)
nothing ⊥ := (∅,M)
all > := (G, ∅)

(P(K),u,t,¬, y,⊥,>) is an algebra of type (2, 2, 1, 1, 0, 0) called the protoconcept
algebra of the context K.
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Introduction

Theorem 2 ([Wil00])

The following equations hold in the algebra of protoconcepts.

(1a) (x u x) u y = x u y (1b) (x t x) t y = x t y
(2a) x u y = y u x (2b) x t y = y t x
(3a) x u (y u z) = (x u y) u z (3b) x t (y t z) = (x t y) t z
(4a) x u (x t y) = x u x (4b) x t (x u y) = x t x
(5a) x u (x ∨ y) = x u x (5b) x t (x ∧ y) = x t x
(6a) x u (y ∨ z) = (x u y) ∨ (x u z) (6b) x t (y ∧ z) = (x t y) ∧ (x t z)
(7a) ¬¬(x u y) = x u y (7b) yy(x t y) = x t y
(8a) ¬(x u x) = ¬x (8b) y(x t x) =yx
(9a) (x u ¬x) = ⊥ (9b) (xtyx) = >
(10a) ¬⊥ = > u> (10b) y> = ⊥ t⊥
(11a) ¬> = ⊥ (11b) y⊥ = >

(12) (x u x) t (x u x) = (x t x) u (x t x)
where x ∨ y = ¬(¬x u ¬y) and x ∧ y =y(yxtyy)
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Introduction

Definition 3 ([VW05])
The structure D = (D;u,t,¬, y,⊥,>) of type (2, 2, 1, 1, 0, 0) is called double
Boolean algebra (dBa) if it satisfies the 23 equations of Theorem 2.

On a dBa D = (D;u,t,¬, y,⊥,>) the relation v is defined as follows:

x v y⇐⇒ x u y = x u x and x t y = y t y (2)

”v” is a quasi-order on D.
We set Du = {x ∈ D : x u x = x}, Dt = {x ∈ D : x t x = x} and Dp = Du ∪ Dt.

Definition 4 ([Wil00],[Kwu07])
A dBa D is called :

1. Pure if for all x ∈ D, either x u x = x or x t x = x.

2. Trivial if > u> = ⊥ t⊥.

3. Regular if ”v” is an order.
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Introduction

Example 1

We consider the context describe by the following cartesian table:
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Introduction

Example 2

The algebra D3,I = (D3,I = {⊥, a,>};t,u,¬, y,⊥,>) with
D3u = {⊥, a} and D3t = {a,>} is a pure, trivial and regular dBa with the Cayley
tabular given below [Kwu07] :

D3u = {⊥, a} et D3t = {a,>}.

u ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ a a
> ⊥ a a

t ⊥ a >
⊥ a a >
a a a >
> > > >

x ⊥ a >
¬x a ⊥ ⊥
yx > > a
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Introduction

Example 3

The algebra D6 = (D6 = {⊥, a, b, c, d,>},t,u,¬, y,⊥,>) with D6u = {⊥, a, b, c}
and D6t = {a, c, d,>} is a pure and regular dBa which is not trivial with the
Cayley tabular given below :
u ⊥ a b c d >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a ⊥ a a a
b ⊥ ⊥ b b ⊥ b
c ⊥ a b c a c
d ⊥ a ⊥ a a a
> ⊥ a b c a c
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t ⊥ a b c d >
⊥ a a c c d >
a a a c c d >
b c c c c > >
c c c c c > >
d d d > > d >
> > > > > > >

x ⊥ a b c d >
¬x c b a ⊥ b ⊥
yx > > d d c a
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Introduction

Definition 5 ([BS81])

Let B = (B,∨,∧, ′ , 0, 1) be a Boolean algebra.

(a) A subset I of B is called an ideal if it satisfies:

(1) 0 ∈ I
(2) ∀x, y ∈ B, x, y ∈ I ⇒ x ∨ y ∈ I
(3) ∀x, y ∈ B, y ∈ I, x ≤ y⇒ x ∈ I

(b) A subset F of B is called a filter if it satisfies:

(1) 1 ∈ F
(2) ∀x, y ∈ B, x, y ∈ F ⇒ x ∧ y ∈ F
(3) ∀x, y ∈ B, x ∈ D, x ∈ F, x ≤ y⇒ y ∈ F
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Introduction

Definition 6
Let D = (D;t,u,¬, y,⊥,>) be a dBa. An equivalence relation θ on D is called
Congruence if it is compatible with u, t, ¬ and y, that is for any (a, b), (c, d) ∈ θ,
(a u c, b u d), (a t c, b t d), (¬a,¬b), (ya, yb) ∈ θ.

Lemma 3

Let D = (D;t,u,¬, y,⊥,>) be a dBa and θ be a congruence relation on D. Then

1 [⊥]θ ∩ Du is an ideal of Du.

2 [>]θ ∩ Dt is a filter of Dt.

Definition 7 ([Vor05])
For a dBa D = (D;t,u,¬, y,⊥,>) we define two functions · : D× D −→ D and
+ : D× D −→ D by:

x · y := (xtyy) ∧ (yx t y),

x + y := (x u ¬y) ∨ (¬x u y).
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Congruence on double Boolean algebra

Definition 8 ([Vor05])
In a dBa D = (D;t,u,¬, y,⊥,>), we call a pair (I,F) where I is an ideal of Du, F
is a filter of Dt and ¬F ⊆ I, yI ⊆ F a congruence generating pair.

Notation 1.1
Let D be a dBa. For a congruence generating pair (I,F) we denote by θI,F the
congruence relation on D generated by (I,F) and by C(D) the set of all congruence
generating pair of D.

We have aθI,F iff a + b ∈ I and a.b ∈ F. On the set C(D) of all congruences
generating pair of a given dBa D we define an order relation by :

(I,F) ≤ (G,H)⇐⇒ I ⊆ G and F ⊆ H (See[Vor05]).
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Subdirectly irreducible dBa

Theorem 4 ([Vor05])

Let D = (D;t,u,¬, y,⊥,>) be a double Boolean algebra. The map

φ : Con(D) −→ C(D)

θ 7−→ ([⊥]θ ∩ Du, [>]θ ∩ Dt)

is an isomorphism betwen the lattice of congruences on D and the ordered set of all
congruences generating pair of D.

Now, we characterize some subdirectly irreducible double Boolean algebras.

Definition 9
An algebra A is subdirectly irreducible if its congruences lattice has one atom.
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Subdirectly irreducible dBa

Proposition 1
Let D be a double Boolean algebra.

1. The map f defined from Con(Dp) to Con(D) by θ 7→ f (θ) = θ ∪∆D is an
embedding.

2. If D is regular and card(Dp) > 1, then⋂
(Con(D)\{∆D}) =

⋂
(Con(Dp)\{∆Dp}) ∪∆D.

3. If D is not regular and card(Dp) > 1, then⋂
(Con(D)\{∆D}) = ∆D

Corollary 5
A regular double Boolean algebra D such that Dp is nontrivial is subdirectly
irreducible if and only if Dp is subdirectly irreducible.
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Subdirectly irreducible dBa

Corollary 6
Let D be a double Boolean algebra not regular. D is subdirectly irreducible if and
only if Card(D) ≤ 2.

Proposition 2
Let D be a double Boolean algebra such that for every x ∈ D, ¬yx v x and x vy¬x.
The double Boolean algebra D is subdirectly irreducible if and only if card(Du) ≤ 2
and card(Dt) ≤ 2.
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Conclusion

In this work we have shown that the study of the subdirectly irreducibility of a double
Boolean algebra is focused on his pure part and we hve characterized some specific
double Boolean algebras subdirecly irreducibles.
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