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Definition of a loop

Universal algebra: (Q, ·, /, \, 1) satisfying
x · (x\y) = x\(x · y) = y = (y · x)/x = (y/x) · x and x · 1 = x = 1 · x .

Standard definition: (Q, ·, 1) such that 1 is a neutral element and
∀a, b ∈ Q ∃ !x , y ∈ Q such that a · x = b = y · a.

The connection: x = a\b and y = b/a.
Definition using transformations: (Q, ·) such that the left translation
La : x 7→ a · x and the right translation Ra : x 7→ x · a permute Q for
all a ∈ Q, and Le = Re = idQ for some e ∈ Q.

Normal subloops
S ⊴ Q ⇐⇒ S ≤ Q and ∀x ∈ Q : xS = Sx = S(Sx) = (xS)S .
If S ⊴ Q, then {xS : x ∈ Q} partitions Q and yields a congruence modS
such that

(x , y) ∈ modS ⇐⇒ xS = yS .
Equivalences modS , S ⊴ Q, are exactly the congruences of a loop Q.
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Fresh results about Moufang loops

Moufang loops are loops that satisfy Moufang laws
There are four Moufang laws: the ensuing two and their mirror images.
(x · (y · z)) · x = (x · y) · (z · x) and x · (y · (x · z)) = ((x · y) · x) · z .

When modS is an abelian congruence in a Moufang loop Q.
Theorem. If and only if S ⊴Q is abelian and weakly nuclear. (This means
that if s, t ∈ S and x ∈ Q, then s · (x · t) = (s · x) · t.)

When a finite Moufang loop Q is solvable
Theorem. Let Q be a finite Moufang loop. Then Q is classically solvable
whenever Q is congruence solvable.
Both solvabilities require a series 1 = S0 ≤ · · · ≤ Sk = Q, Si ⊴ Q.
Classical solvability: Si/Si−1 abelian, 1 ≤ i ≤ k .
Congruence solvability: mod(Si/Si−1) abelian congruence in Q/Si−1,
1 ≤ i ≤ k .
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Fresh results about Moufang loops II

Counterexamples
There exists an abelian group S ⊴ Q such that Q is Moufang and modS is
not an abelian congruence. (Q may be chosen to be nilpotent of order 16.)

There exists a classically solvable finite Bol loop of order 16 that is not
congruence solvable.

Applying congruence solvability to Moufang loops
Theorem. A finite Moufang loop Q is solvable if and only if Mlt(Q) is
solvable. — For |Q| odd proved by Glauberman (1968).
Explanation: Mlt(Q) is the multiplication group of Q, i.e., the permutation
group generated by left and right translations, Mlt(Q) = ⟨Lx ,Rx ; x ∈ Q⟩.

Infinite Moufang loops
Infinite Moufang loops are little studied. Even the word problem for free
Moufang loops has not been solved yet. I conjecture that for infinite
Moufang loops both notions of solvability disagree.
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A fresh problem—antiassociative varieties

Loops in which associative sections are trivial
Let Q be a loop. A loop S is a section of Q if there exist subloops
A ≤ B ≤ Q such that A⊴ B and B/A ∼= S .

Definition. Denote by C the class of loops Q such that
a section S of Q is a group ⇐⇒ |S | = 1.

Easy: C closed under homomorphic images and subloops.
Easy: Q /∈ C ⇐⇒ Q has a section ∼= Z/pZ, p a prime.

The antiassociative quasivariety
Lemma. C is closed under finite products.

Problem
Is C a variety?
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Another problem—Falconer varieties

Being antiassociative in all isotopes
Let C be again the class of loops in which associative sections are trivial.
Let F be the class of all loops Q such that every loop isotope of Q is in C.

Informally: Q ∈ F ⇐⇒ pattern of addition modulo a prime p appears
as a subsquare in no multiplication table of a section of Q.

Loop isotopes of a loop
Informally: Loops Q1 and Q2 are isotopic if permuting rows and columns
in the multiplication table of Q1 may produce a loop isomorphic to Q2.
Formally: There exists bijections α, β, γ : Q1 → Q2 such that
α(x) · β(y) = γ(x · y) for all x , y ∈ Q1.
Criterion: Q1 isotopic to Q2 ⇐⇒ Q2 is ∼= to a principal isotope of Q1.
A loop is a principal isotope of a loop Q if and only if the operation of the
loop may be expressed as (x/f ) · (e\y), for some e, f ∈ Q.

Easy: F is a pseudovariety. Problem: Is it a variety?
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Persons involved

Who was Falconer
Etta Zuber Falconer (1933–2002) was an African-American female
mathematician who got her Master’s Degree in Madison, U. of Wiscosin,
and her Ph.D. at Emory University (Trevor Evans supervisor). Her thesis
resulted in two publications. The Isotopy invariants in quasigroups (TAMS
1970) contains a problem to find a universal variety of loops (i.e.,
isotopically invariant variety) that intersects the variety of groups trivially.
In other words, to find nontrivial subvarieties of F .

Kinyon and Allsop
The problem was not widely known. But Michael Kinyon knew the problem
and made Jack Allsop aware that his construction of certain latin squares
(under supervision of Ian Wanless) solves the problem. In loops derived
from the constructed latin squares all nontrivial left translations are
semiregular permutations of prime order p, while in no nontrivial right
translation there exists a cycle of length divisible p.
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Building varieties from finite loops

Easy: To produce an isomorphically isotopic anti-associative variety of
loops (i.e., a subvariety of F , and thus a solution to the problem of
Falconer).

Just take HSP(Q), where Q is a finite loop such that the
multiplication table of Q has no proper subsquare and Q is not a group.

More difficult: To describe subvarieties of F that would be finitely based
(Allsop’s construction belongs to such a variety).

Difficult: To describe maximal varieties in F . (Maybe there is only one
such variety, namely F itself.)

In general, there seem to be very few results that take a finite loop Q and
prove that HSP(Q) is not finitely based.
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The existence of finite basis and Moufang’s theorem

Steiner triple systems (STS) and loops
An STS is a system of 3-element subsets (blocks) of a set X ; each
2-element subset of X is in exactly one block. Define a loop Q on X ∪ {1}
in such a way that x · x = 1, 1 · x = x = x ·1, while if x ̸= y and 1 /∈ {x , y},
then x · y = z , where {x , y , z} is the block containing {x , y}.

Equationally,
Steiner loops are the loops with x · y = y · x , x · x = 1 and x · (y · z) = y .

Steiner loop of order 10
Up to ∼= there ∃ ! such Q, given by the STS of affine lines in F2

3.
Fact: Q is in the variety V of Steiner loops that fulfil

(x · z) · (((x · y) · z) · (y · z)) = ((x · z) · ((x · y) · z)) · (y · z).
Problem: Show that HSP(Q) is not finitely based.

Moufang’s theorem
is true in a loop Q if x · (y · z) = (x · y) · z ⇒ ⟨x , y , z⟩ is a group.
Theorem: The variety V fulfils Moufang’s theorem.
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Moufang’s theorem and propagating identities

1935 Ruth Moufang: Moufang loops fulfil the Moufang theorem.
2011 Andrew Rajah: Which other loop varieties fulfil Moufang’s theorem?
2020 The variety induced by an STS of order 9 (Aequ. Math.).

Many varieties fulfil Moufang’s theorem
Result: Let A be a variety of abelian groups. Let X1, . . .Xn be finite loops
that fulfil Moufang’s theorem. Suppose that each Xi has this property:
every subloop is an abelian group or a simple loop. Then
HSP(X1, . . . ,Xn) ∨ A fulfils Moufang’s theorem.

Generalization to propagating identities
Let A be an algebra and ε(x1, . . . , xn) an equation in the signature of A.
Say that ε propagates in A if this implication holds for all a1, . . . , an ∈ A:
ε(a1, . . . , an) =⇒ ε(b1, . . . , bn) for any b1, . . . , bn ∈ ⟨a1, . . . , an⟩.

“ε propagates in V” = “ε propagates in every A ∈ V”.
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Propagating identities

Equations that propagate in a variety
Result: Let V be a variety in which there propagates an equation ε. Let
X1, . . .Xn be finite loops in which ε propagates too. Suppose that each Xi

has this property: every subloop is in V or a nonabelian simple loop. Then
ε propagates in HSP(X1, . . . ,Xn) ∨ V too.

Research suggestion
Transfer the above result to Maľcev varieties.

Examples of propagating identities in a variety
xx = x in groupoids, commutativity in semigroups, xm = 1 in groups.

Propagating core of equation ε in variety V
is defined as the class of all A ∈ V in which ε propagates. It is a
quasivariety. But what else?
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