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As explained by D. J. Foulis and M. K. Bennett [14] and by
R. Giuntini and H. Greuling, effect algebras were introduced in
order to formalize effects of quantum mechanics. This process of
formalization is described in these papers and in detail also in the
monograph by A. Dvurečenskij and S. Pulmannová and hence it is
not necessary to repeat it here. However, there are still two aspects
which were not investigated in these sources.

Namely, if one considers effect algebras as a formalization of the
logic of quantum mechanics then the natural question arises what
are the logical connectives derived from them. The aims of our
paper is to analyze three possibilities how to define the logical
connectives implication and conjunction such that these form
adjoint pairs. The importance of this requirement is that when the
adjoint pair is established than the corresponding logic is equipped
with the derivation rule Modus Ponens.
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Preliminaries

Consider a poset P = (P,≤) and let A,B ⊆ P . If it has a bottom
element, this element will be denoted by 0. If P has a top element,
this element will be denoted by 1. The poset P is called bounded if
it has both 0 and 1, and in this case it will be denoted by
P = (P,≤, 0, 1).
By a binary operator on P we understand a mapping from P2 to
2P , i.e. it assigns to every pair (x , y) of elements of P a subset of
P . In what follows, for the sake of brevity, we will not distinguish
between a singleton {a} and its unique element a.
The poset P is said to satisfy the

Ascending Chain Condition (shortly ACC) if there are no
infinite ascending chains in P,
Descending Chain Condition (shortly DCC) if there are no
infinite descending chains in P.
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Notice that every finite poset satisfies both the ACC and the DCC.
Further, let MaxA and MinA denote the set of all maximal and
minimal elements of A, respectively. If P satisfies the ACC then for
every a ∈ A there exists some b ∈ MaxA with a ≤ b. This implies
that if A is not empty the same is true for MaxA. The
corresponding assertion holds for the DCC and MinA.
We define

A ≤1 B if for every a ∈ A there exists some b ∈ B with a ≤ b,

A ≤2 B if for every b ∈ B there exists some a ∈ A with a ≤ b,

A v B if there exists some a ∈ A and some b ∈ B with a ≤ b,

A ≈1 B if both A ≤1 B and B ≤1 A,

A ≈2 B if both A ≤2 B and B ≤2 A.

For every set A we denote the set of its non-empty subsets by P+A.
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Effect algebras

The concept of an effect algebra was introduced in 1989 by
R. Giuntini and H. Greuling [15] under a different name. The name
effect algebra was used the first time by D. J. Foulis and
M. K. Bennett [14], see e.g. also [13].
Recall from [13] that an effect algebra is a partial algebra
(E ,+, 0, 1) of type (2, 0, 0) satisfying the following conditions:
(E1) If a, b ∈ E and a+ b is defined then so is b + a and both

coincide,
(E2) if a, b, c ∈ E and a+ b and (a+ b) + c are defined then so are

b + c and a+ (b + c) and (a+ b) + c = a+ (b + c),
(E3) for each a ∈ E there exists a unique b ∈ E with a+ b = 1; in

the sequel, this element b will be denoted by a′ and called the
supplement of a,

(E4) a+ 1 is defined only if a = 0.
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Because of (E3), ′ is a unary operation on E and we will write
effect algebras in the form (E ,+, ′, 0, 1).
In the following let E = (E ,+, ′, 0, 1) be an effect algebra, a, b ∈ E
and A,B ⊆ E .
On E we introduce a binary relation ≤ as follows:

a ≤ b if there exists some c ∈ E with a+ c = b.

As shown e.g. in [13], (E ,≤, 0, 1) is a bounded poset. If (E ,≤) is
even a lattice then E is called a lattice effect algebra.
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Example 1

If E := {0, a, b, c , d , a′, b′, c ′, 1} and a partial binary operation +
and a unary operation ′ on E are defined by:

+ 0 a b c d c ′ b′ a′ 1
0 0 a b c d c ′ b′ a′ 1
a a − c ′ b′ − − − 1 −
b b c ′ d a′ b′ − 1 − −
c c b′ a′ − − 1 − − −
d d − b′ − 1 − − − −
c ′ c ′ − − 1 − − − − −
b′ b′ − 1 − − − − − −
a′ a′ 1 − − − − − − −
1 1 − − − − − − − −

x x ′

0 1
a a′

b b′

c c ′

d d
c ′ c
b′ b
a′ a
1′ 0

then (E ,+, ′, 0, 1) is a non-lattice effect algebra whose induced
poset is depicted in Figure 1:
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Fig. 1

A non-lattice effect algebra
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The elements a and b are called orthogonal to each other (shortly
a ⊥ b) if a ≤ b′. It can be shown that a+ b is defined if and only if
a ⊥ b. We define a partial binary operation � on E by
a� b := (a′ + b′)′. It is evident that a� b is defined if and only if
a′ ⊥ b′.

Example 2
The operation table of � corresponding to the effect algebra from
Example 1 looks as follows:

� 0 a b c d c ′ b′ a′ 1
0 − − − − − − − − 0
a − − − − − − − 0 a
b − − − − − − 0 − b
c − − − − − 0 − − c
d − − − − 0 − b − d
c ′ − − − 0 − − a b c ′

b′ − − 0 − b a d c b′

a′ − 0 − − − b c − a′

1 0 a b c d c ′ b′ a′ 1
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We say that
A+ B is defined if so is a+ b for all a ∈ A and all b ∈ B ,
A� B is defined if so is a� b for all a ∈ A and all b ∈ B ,
A ≤ B if a ≤ b for all a ∈ A and all b ∈ B .

If A+ B is defined we put A+ B := {a+ b | a ∈ A, b ∈ B}. If
A� B is defined we put A� B := {a� b | a ∈ A, b ∈ B}.
The following result is well-known, see e.g. [13] or [14].
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Lemma 3

If (E ,+, ′, 0, 1) is an effect algebra and a, b, c ∈ E then
(i) (E ,≤, ′, 0, 1) is a bounded poset with an antitone involution,
(ii) a+ 0 = a� 1 = a,
(iii) a+ a′ = 1 and a� a′ = 0,
(iv) a, b ≤ a+ b and a� b ≤ a, b,
(v) if a ≤ b then a = b � (a+ b′) =

(
b′ + (a+ b′)′

)′,
(vi) if a ≤ b then b = a+ (a′ � b) = a+ (a+ b′)′,
(vii) if a ≤ b and b + c is defined so is a+ c and we have

a+ c ≤ b + c ,
(viii) if a ≤ b and a� c is defined so is b � c and we have

a� c ≤ b � c ,
(ix) if a+ b and a+ c are defined and a+ b = a+ c then b = c ,
(x) if a� b and a� c are defined and a� b = a� c then b = c .
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Logical connectives in effect algebras

As stated in [14], effect algebras serve as a model for unsharp quantum
logic. Hence there is the question, what are the logical connectives within
this logic. Usually, the partial operations + and � are considered as
disjunction and conjunction, respectively. In every logic the most
productive connective, however, is implication. Using this connective it is
possible to derive new propositions from given ones by certain derivation
rules (e.g. Modus Ponens or substitution rule). The question arises how
to introduce the connective implication in the quantum logic based on an
effect algebra. For lattice-ordered effect algebras this problem was already
solved by the authors. Now we will investigate effect algebras that need
not be lattice-ordered. It is worth noticing that the present authors
together with R. Halaš derived a Gentzen system for the connective
implication in lattice effect algebras and also for the non-lattice case, but
the implication treated there differs essentially from that we will
investigate now. The main difference is that now we are going to connect
our implication with conjunction via a certain kind of adjointness.
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Let E = (E ,+, ′, 0, 1) be an effect algebra. Define the following
binary operator on E :

b → c := Max{x ∈ E | x � b is defined and x � b ≤ c}

(b, c ∈ E ). This is our “unsharp” implication in the logic based on
E. The denotation “unsharp” expresses the fact that the result of
b → c need not be an element of E (as it was the case for the
implication introduced in [2] and [6]), but may be a subset of E .
The elements of b → c form an antichain, it means we cannot
prefer one with respect to another by their order. Moreover, b → c
is defined for all b, c ∈ E .
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Example 4
The “operation table” of → corresponding to the effect algebra
from Example 1 looks as follows:

→ 0 a b c d c ′ b′ a′ 1
0 1 1 1 1 1 1 1 1 1
a a′ 1 a′ a′ a′ 1 1 a′ 1
b b′ b′ 1 b′ 1 1 1 1 1
c c ′ c ′ c ′ 1 c ′ c ′ 1 1 1
d d d b′ d 1 b′ 1 b′ 1
c ′ c b′ a′ c a′ 1 {a′, b′} a′ 1
b′ b c ′ d a′ b′ {d , c ′} 1 {d , a′} 1
a′ a a c ′ b′ c ′ c ′ {b′, c ′} 1 1
1 0 a b c d c ′ b′ a′ 1
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The next result shows that our unsharp implication still shares some
important properties asked usually in any non-classical logic.

Lemma 5

Let (E ,+, ′, 0, 1) be an effect algebra satisfying the ACC and
a, b, c ∈ E . Then the following holds:
(i) a′ ≤1 a→ b and a→ b 6= ∅,
(ii) a→ 0 = a′ and 1→ a = a,
(iii) a→ b = 1 if and only if a ≤ b,
(iv) if a ≤ b then c → a ≤1 c → b.
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At first we show some kind of adjointness between � and →.

Theorem 6

Let (E ,+, ′, 0, 1) be an effect algebra satisfying the ACC and
a, b, c ∈ E and assume a� b to be defined. Then

a� b ≤ c if and only if a ≤1 b → c .

Adjointness shown in Theorem 6 yields an important derivation rule
valid in this logic. Namely,

a→ b ≤1 a→ b

implies by adjointness

a� (a→ b) = (a→ b)� a ≤ b

(provided a� (a→ b) is defined) saying properly that the value of
b cannot be less than the value of the conjunction of a and a→ b
(provided this conjunction is defined), which is just the derivation
rule Modus Ponens.
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Lemma 7

Let (E ,+, ′, 0, 1) be an effect algebra satisfying the ACC and
a, b ∈ E . Then the following holds:
(i) If (a→ b)� a is defined then (a→ b)� a ≤ b.
(ii) If a� b is defined then a ≤1 b → (a� b).

Hence, if (a→ b)� a is defined, evidently (a→ b)� a ≤ a, thus,
together with Lemma 7, we obtain

(a→ b)� a ≤1 Max L(a, b)

which is divisibility.
There is also another possibility how to define the connective
implication in an effect algebra (E ,+, ′, 0, 1), namely as the
following partial binary operation:

b  c := b′ + c

(b, c ∈ E ). It is evident that b  c is defined if and only if c ≤ b.
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Example 8
The operation table of  corresponding to the effect algebra from
Example 1 looks as follows:

 0 a b c d c ′ b′ a′ 1
0 1 − − − − − − − −
a a′ 1 − − − − − − −
b b′ − 1 − − − − − −
c c ′ − − 1 − − − − −
d d − b′ − 1 − − − −
c ′ c b′ a′ − − 1 − − −
b′ b c ′ d a′ b′ − 1 − −
a′ a − c ′ b′ − − − 1 −
1 0 a b c d c ′ b′ a′ 1
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Also this implication which is a partial operation satisfies several
important properties of implication known in non-classical logics.

Lemma 9

Let (E ,+, ′, 0, 1) be an effect algebra and a, b, c ∈ E . Then the
following holds:
(i) if a b is defined then a′ ≤1 a b,
(ii) a 0 = a′ and 1 a = a′,
(iii) a b = 1 if and only if a = b,
(iv) if a ≤ b and c  b is defined then c  a is defined and

c  a ≤ c  b.
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The following theorem shows the relationship between → and
 .Also for the implication  we can show some kind of
adjointness which is, however, only partial.

Theorem 10
Let (E ,+, ′, 0, 1) be an effect algebra and a, b, c ∈ E and assume
a� b and b  c to be defined. Then

a� b ≤ c if and only if a ≤ b  c .

There is a further possibility how to define the connective
implication in an effect algebra E = (E ,+, ′, 0, 1) that need not be
lattice-ordered, namely

b ⇒ c := b′ +Max L(b, c)

(b, c ∈ E , cf. [2]). If E satisfies the ACC then b ⇒ c 6= ∅. This
kind of implication is, of course, again an unsharp one since the
result of a⇒ b need not be an element of the corresponding effect
algebra, but may be a subset of it. On the other hand, we see that
⇒ is an everywhere defined binary operator on E .
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Example 11
The “operation table” of ⇒ corresponding to the effect algebra
from Example 1 looks as follows:

⇒ 0 a b c d c ′ b′ a′ 1
0 1 1 1 1 1 1 1 1 1
a a′ 1 a′ a′ a′ 1 1 a′ 1
b b′ b′ 1 b′ 1 1 1 1 1
c c ′ c ′ c ′ 1 c ′ c ′ 1 1 1
d d d b′ d 1 b′ 1 b′ 1
c ′ c b′ a′ c a′ 1 {a′, b′} a′ 1
b′ b c ′ d a′ b′ {d , c ′} 1 {d , a′} 1
a′ a a c ′ b′ c ′ c ′ {b′, c ′} 1 1
1 0 a b c d c ′ b′ a′ 1
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The properties of the implication ⇒ are very natural, see the
following result.

Lemma 12

Let (E ,+, ′, 0, 1) be an effect algebra satisfying the ACC and
a, b, c ∈ E . Then the following holds:
(i) a′ ≤ a⇒ b 6= ∅,
(ii) a⇒ 0 = a′ and 1⇒ a = a,
(iii) a⇒ b = 1 if and only if a ≤ b,
(iv) if a ≤ b then c ⇒ a ≤1 c ⇒ b.

Ivan Chajda and Helmut Länger Implications in effect algebras



Now we can compare all three implications considered here.

Theorem 13
Let (E ,+, ′, 0, 1) be an effect algebra and a, b ∈ E . Then the
following holds:
(i) a⇒ b ≤1 a→ b.
(ii) If a b is defined then a→ b = a⇒ b = a b,
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There is the question how to define a binary operator ⊗ on an
effect algebra E = (E ,+, ′, 0, 1) such that ⊗ and ⇒ form an
adjoint pair. For this purpose we define

a⊗ b := MinU(a, b′)� b

(a, b ∈ E ). It is easy to see that

a⊗ b = (b ⇒ a′)′,

a⇒ b = (b′ ⊗ a)′

for all a, b ∈ E . For subsets A,B of E we define

A⊗ B := {a⊗ b | a ∈ A, b ∈ B},
A⇒ B := {a⇒ b | a ∈ A, b ∈ B}.
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Example 14
The “operation table” of ⊗ corresponding to the effect algebra from
Example 1 looks as follows:

⊗ 0 a b c d c ′ b′ a′ 1
0 0 0 0 0 0 0 0 0 0
a 0 a 0 0 b a {d , a′} 0 a
b 0 0 0 0 0 {a, b} 0 {b, c} b
c 0 0 0 c b 0 {c , d} c c
d 0 a 0 c 0 a b c d
c ′ 0 a b 0 d c ′ a b c ′

b′ 0 a 0 c b a d c b′

a′ 0 0 b c d b c a′ a′

1 0 a b c d c ′ b′ a′ 1
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Analogous to Lemma 12 we obtain

Lemma 15
Let (E ,+, ′, 0, 1) be an effect algebra satisfying the DCC and
a, b, c ∈ E . Then the following holds:
(i) ∅ 6= a⊗ b ≤ b,
(ii) a⊗ 1 = 1⊗ a = a,
(iii) a⊗ b = 0 if and only if a ⊥ b,
(iv) if a ≤ b then a⊗ c ≤2 b ⊗ c .
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We can show that also the operators ⊗ and ⇒ form an adjoint pair.

Theorem 16
Let (E ,+, ′, 0, 1) be an effect algebra satisfying both the ACC and
the DCC and a, b, c ∈ E . Then the following holds:
(i) a⊗ b v c if and only if a v b ⇒ c (adjointness),
(ii) (a⇒ b)⊗ a = Max L(a, b) (divisibility).

The previous result can be generalized for subsets of E .

Lemma 17

Let (E ,+, ′, 0, 1) be an effect algebra satisfying both the ACC and
the DCC and A,B,C ∈ P+A. Then A⊗ B v C is equivalent to
A v B ⇒ C (adjointness)
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The end!

Thanks for your attention!!
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