Varieties of commutative BCK-algebras: Free algebras

Václav Cenker

Palacký University in Olomouc

September 7, 2023

Free ŁBCK-algebras

The case of free ŁBCK-algebras in varieties $V(S_m)$, $m \in \mathbb{N}$, was treated in [Figallo et al., 2004].

Let $X = \{x_1, x_2, \dots, x_q\}$ be a set of generators.

For free ŁBCK–algebras $F_{{\rm V}(S_m)}(q)$ the following holds:

- ullet The maximal elements of $F_{{
 m V}(S_m)}(q)$ are the free generators.
- Every interval $[0, x_i]$, $1 \le i \le q$ is a direct product of chains.
- $F_{V(S_m)}(q)$ is symmetric, i.e. $[0,x_i]\cong [0,x_j]$ for every $i,j\in\{1,2,\ldots,q\}$

•

$$|F_{V(S_m)}| = \sum_{j=1}^{q} (-1)^{j+1} {q \choose j} |[0, \bigwedge_{i=1}^{j} x_i]|.$$

Free cBCK-algebras

Let T be finite subdirectly irreducible cBCK-algebra.

- The maximal elements of $F_{{\rm V}(T)}(q)$ are the free generators. Consequence of $x\ominus y\leq x$.
- Every interval $[0,x_i]$, $1 \le i \le q$, is a direct product of chains. The interval $[0,x_i]$ is bounded cBCK-algebra
- $[0,x_i]\cong [0,x_j]$ for every $i,j\in\{1,2,\ldots q\}$. By the universal property: Let $f\colon X\to F_{\mathrm{V}(T)}(q)$ be such that f(X)=X and $x_i\mapsto x_j,\,x_j\mapsto x_i$. Then $\overline{f}\colon F_{\mathrm{V}(T)}(q)\to F_{\mathrm{V}(T)}(q)$ is isomorphism.

0

$$|F_{V(T)}| = \sum_{j=1}^{q} (-1)^{j+1} {q \choose j} |[0, \bigwedge_{i=1}^{j} x_i]|.$$

Application of inclusion-exclusion principle.

Free cBCK-algebra

Free cBCK-algebras

The key is to find a direct decomposition of every interval $[0, \bigwedge_{i=1}^{j} x_i]$ to directly irreducible algebras = chains.

This was done in [Figallo et al., 2004] for free agebras in $V(S_n)$.

Our goal is to find this decomposition for free algebras in $V(S_{n,p})$.

Free algebras in $V(S_{n,p})$: intervals [0,x]

Let's denote $\mathcal{V} = V(S_{n,p})$ and $\mathcal{W} = V(S_{n+1})$.

- $\textbf{ 1et } h \colon F_{\mathcal{V}}(q) \to F_{\mathcal{W}}(q) \text{ be the homomorphism extending } id \colon X \to F_{\mathcal{W}}(q).$
- **2** Let Θ denote the congruence determined by h. We have $F_{\mathcal{V}}(q)/\Theta \cong F_{\mathcal{W}}(q)$ and for any $x \in X$:

$$[0,x]/\Theta \cong [0,x]_L$$
,

where the index L refers to interval of $F_{\mathcal{W}}(q)$.

3 Since cBCK-algebras are distributive and [0,x] is direct product of simple algebras, the lattice of congruences on [0,x] is Boolean. Moreover, bounded cBCK-algebras are permutable.

Therefore, there is a unique complement Φ of Θ such that Θ and Φ permute. Thus Θ and Φ are factor congruences and

$$[0,x] \cong [0,x]/\Phi \times [0,x]_L.$$

The above works for every $[0, \bigwedge_{i=1}^{j} x_i]$, $q \ge 2$, $1 \le j \le q$.

In the case of q=1, we have $F_{\mathcal{V}}(q)\cong S_1$.

Lemma

Let $\mathcal{V} = V(S_{n,p})$ and $\mathcal{W} = V(S_{n+1})$. Let $[0, \bigwedge_{i=1}^{j} x_i]$ be an interval in $F_{\mathcal{V}}(q)$ and $[0, \bigwedge_{i=1}^{j} x_i]_L$ be an interval in $F_{\mathcal{W}}(q)$. Then, Θ and Φ are factor congruences on the interval $[0, \bigwedge_{i=1}^{j} x_i]$. Thus

$$[0, \bigwedge_{i=1}^{j} x_i] \cong [0, \bigwedge_{i=1}^{j} x_i]/\Phi \times [0, \bigwedge_{i=1}^{j} x_i]_L.$$

Since the decompositions of the intervals $[0, \bigwedge_{i=1}^{j} x_i]_L$ are known, it remains to investigate $[0, \bigwedge_{i=1}^{j} x_i]/\Phi$.

Free algebras in $V(S_{n,p})$

General construction of free algebras

Let $X \neq \emptyset$ be a set and A be an algebra. Then a valuation is mapping $v \colon X \to A$. Let A(v) denote the subalgebra of A generated by v(X).

 $F_{{
m V}(A)}(X)$ of is the subalgebra of $\prod_{v\in A^X}A(v)$ generated by the image of X .

A homomorphism $h\colon A(v)\to A(v')$ respects the labelling iff h(v(x))=v'(x) for every $x\in X$.

Two valuations are equivalent $v \sim v'$ iff there exist homomorphisms $h \colon A(v) \to A(v')$ and $h' \colon A(v') \to A(v)$ such that both respect the labelling.

Let E(V) denote any maximal set of non-equivalent valuations. The free algebra is the subalgebra of $\prod_{v \in E(V)} A(v)$ generated by the image of X.

Equivalence of valuations $v: X \to S_{n,p}$

Proposition

Let $v, v' \colon X \to S_{n,p}$ such that A(v), A(v') are not chains. Then $v \sim v'$ iff there exists an isomorphism $h \colon A(v) \to A(v')$ which respects the labelling.

Let m(A) denote the set of maximal elements of A.

Corollary

Let $v, v' \colon X \to S_{n,p}$ such that A(v), A(v') are not chains. Then $v \sim v'$ iff there exists a bijection $\varphi \colon m(A(v)) \to m(A(v'))$ respecting the labelling and for each $v(x) \notin m(A(v))$ we have v(x) = v'(x).

Description of $[0, \bigwedge_{i=1}^{j} x_i]/\Phi$

Proposition

Let $X=\{x_1,\ldots,x_q\}$ be a set of generators and $q\geq 2,\ 1\leq j\leq q$. Let $[0,\bigwedge_{i=1}^j x_i]$ be an interval of the free algebra $F_{\mathcal{V}}(q)$. Then there are index sets $K_2,\ K_3,\ \ldots,\ K_p$ such that the following holds:

$$[0, \bigwedge_{i=1}^{j} x_i]/\Phi \cong \prod_{k_2 \in K_2} [0, \bigwedge_{i=1}^{j} v_{k_2}(x_i)] \times \cdots \times \prod_{k_p \in K_p} [0, \bigwedge_{i=1}^{j} v_{k_p}(x_i)],$$

where for every $l \in \{2,3,\ldots,p\}$ the set $\{v_{k_l} \mid k_l \in K_l\}$ is a maximal set of mutually non-equivalent valuations satisfying $A(v_{k_l}) \cong S_{n,l}$ and $[0, \bigwedge_{i=1}^j v_{k_l}(x_i)]$ is an interval of $A(v_{k_l})$.

Description of free algebras

Let

$$\beta(m,q,j)$$

denote the power of S_m in the direct decomposition of the interval $[0, \bigwedge_{i=1}^{j} x_i]_L$ and let

$$\gamma_l(m,q,j)$$

denote the power of S_m in $\prod_{k_l \in K_l} [0, \bigwedge_{i=1}^j v_{k_l}(x_i)]$.

Corollary

Let $\mathcal{V} = V(S_{n,p})$. Then we have

$$|F_{\mathscr{V}}(q)| = \sum_{j=1}^{q} (-1)^{j+1} {q \choose j} \prod_{m=1}^{n+1} (m+1)^{\beta(m,q,j) + \sum_{l=2}^{p} \gamma_l(m,q,j)}.$$

Proposition

Let $2 \le q < p$, $\mathcal{U} = S_{n,p}$ and $\mathcal{V} = S_{n,q}$. Then the following is true

$$F_{\mathcal{U}}(q) \cong F_{\mathcal{V}}(q).$$

For the calculation of γ_l , it is sufficient to assume $2 \leq p \leq q$.

Main theorem

Let $2 \le l \le p \le q$ and $1 \le j \le q$. Then the following holds for $\gamma_l(m,q,j)$, $1 \le m \le n+1$.

- **1** Case m = n + 1:
 - **1** Subcase q > l + j 1:

$$\gamma_l(n+1,q,j) = \frac{1}{l!} \sum_{i=0}^{l-1} (-1)^i \binom{l}{l-i} (n+1+l-i)^{q-j} (l-i).$$

2 Subcase q = l + j - 1:

$$\gamma_l(n+1,q,j) = \frac{1}{l!} \sum_{i=0}^{l} (-1)^i \binom{l}{l-i} (n+1+l-i)^l.$$

 $\mbox{Subcase } q < l+j-1: \\ \gamma_l(n+1,q,j) = 0.$

Main theorem

- ② Case m=n:
 - **1** Subcase q > l + j 1:

$$\gamma_l(n,q,j) = \frac{1}{l!} \left[\sum_{i=0}^l (-1)^i \binom{l}{l-i} (n+1+l-i)^{q-j} [(n+1+l-i)^j - l+i] - \sum_{k=1}^j \binom{j}{k} [(n+1)^k - 1] \sum_{i=0}^l (-1)^i \binom{l}{l-i} (n+1+l-i)^{q-k} \right].$$

2 Subcase q = l + j - 1:

$$\gamma_l(n,q,j) = \frac{1}{l!} \left[\sum_{i=0}^l (-1)^i \binom{l}{l-i} (n+1+l-i)^l [(n+1+l-i)^{j-1} - 1] - \sum_{k=1}^{j-1} \binom{j}{k} [(n+1)^k - 1] \sum_{i=0}^l (-1)^i \binom{l}{l-i} (n+1+l-i)^{q-k} \right].$$

Main Theorem

3 Subcase q < l + j - 1:

$$\gamma_{l}(n,q,j) = \frac{1}{l!} \left[\sum_{i=0}^{l} (-1)^{i} {l \choose l-i} (n+1+l-i)^{q} - \sum_{k=1}^{\min\{q-l,j\}} {j \choose k} [(n+1)^{k}-1] \sum_{i=0}^{l} (-1)^{i} {l \choose l-i} (n+1+l-i)^{q-k} \right].$$

3 Case $1 \le m < n$:

$$\gamma_l(m,q,j) = \frac{1}{l!} \sum_{k=1}^{\min\{q-l,j\}} {j \choose k} \sum_{i=0}^l (-1)^i {l \choose l-i} (n+1+l-i)^{q-k}.$$

Proving the main theorem

- Valuations of the property $P \longleftrightarrow \text{words}$ of property P'Let V_l denote the set of valuations such that $A(v) \cong S_{n,\,l}$. Then the corresponding set of words is the set of q-long words over alphabet $S_{n,\,p}$ such that they contain exactly l maximal elements.
- $\ \, \ \, \ \,$ Calculate the number of $|V_l|.$ Using word representation, it is easy to find that

$$|V_l| = \binom{p}{l} \sum_{\substack{k_1, k_2, \dots k_l \ge 1, \\ k_1 + k_2 + \dots + k_{n+l+1} = q}} P(k_1, \dots, k_{n+l+1}) = \binom{p}{l} \sum_{i=0}^{l} (-1)^i \binom{l}{l-i} (n+1+l-i)^q,$$

where P is permutation with repetition.

3 Calculate the number of $|V_l/\sim|$. Equivalent valuations correspond to injections $\{1,\ldots l\}\to\{1,\ldots,p\}$.

$$|V_l/\sim|=\frac{1}{l!}\sum_{i=0}^l(-1)^i\binom{l}{l-i}(n+1+l-i)^q.$$

- $\begin{tabular}{l} \hline \bullet & \mbox{For every case of } \gamma_l(m,q,j) \mbox{ consider } V_{\gamma} \mbox{valuations of the case.} \\ & \mbox{Example: For the first case of } m=n+1 \mbox{ the } v \in V_{\gamma} \mbox{ are valuations } \\ & \mbox{such that } [0,\bigwedge_{i=1}^{j} v(x_i)] \cong S_{n+1} \mbox{ and } A(v) \cong S_{n,\,l}. \\ & \mbox{In other words, } v \in V_{\gamma} \mbox{ are } q\mbox{-long words over the alphabet } S_{n,\,p} \mbox{ such that} \\ \hline \end{tabular}$
 - ullet the first j letters are the same maximal element and
 - they contain exactly l maximal elements.
- **6** Calculate $|V_{\gamma}/\sim|$ use the previous result for $|V_l/\sim|$ and few clever ideas.

Examples

Example 1

For $S_{1,2}$, q=2, we have

$$\beta(2,2,1)=1, \quad \beta(1,2,1)=3, \quad \beta(1,2,2)=3,$$

$$\gamma_2(2,2,1)=1, \quad \gamma_2(1,2,2)=1,$$

others values of γ_2 and β are zero. Thus

$$[0, x_1] \cong S_1^3 \times S_2^{1+1},$$

 $[0, x_1 \wedge x_2] \cong S_1^{3+1},$
 $|F_{V(S_{1,2})}(2)| = 128.$

Example 2

For $S_{1,2}$, q = 3

$$[0, x_1] \cong S_1^{9+1} \times S_2^{5+7},$$

$$[0, x_1 \wedge x_2] \cong S_1^{9+7} \times S_2^{1+1},$$

$$[0, x_1 \wedge x_2 \wedge x_3] \cong S_1^{7+8},$$

$$|F_{V(S_{1,2})}(3)| = 1630850048.$$

References

- [Berman, 2005] Berman, J. (2005). The structure of free algebras. In Kudryavtsev, V. B., Rosenberg, I. G., and Goldstein, M., editors, Structural Theory of Automata, Semigroups, and Universal Algebra, pages 47–76, Dordrecht. Springer Netherlands.
- [Cornish, 1980] Cornish, W. H. (1980). Varieties generated by finite BCK-algebras. Bulletin of the Australian Mathematical Society, 22(3):411–430.
- [Dvurečenskij and Pulmannová, 2000] Dvurečenskij, A. and Pulmannová, S. (2000). BCK-algebras, pages 293-377. Springer Netherlands, Dordrecht.
- [Figallo et al., 2004] Figallo, A. J., Figallo, M., and Ziliani, A. (2004). Free (n+1)-valued Łukasiewicz BCK-algebras. Demonstratio Mathematica [electronic only], 37.