Structures with slow unlabelled growth

Bertalan Bodor

University of Szeged

SSAOS, Stará Lesná, 6th September 2023

Bertalan Bodor (University of Szeged)

Structures with slow unlabelled growth

SSAOS, Stará Lesná

 \mathfrak{A} : structure.

•
$$o_n(\mathfrak{A}) := #\{n \text{-orbits of } \mathfrak{A}\} = #\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \curvearrowright A^n\}$$

 \mathfrak{A} : structure.

- $o_n(\mathfrak{A}) := #\{n \text{-orbits of } \mathfrak{A}\} = #\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \frown A^n\}$
- Labelled growth:

 $\ell_n(\mathfrak{A}) := \#\{ \text{injective } n \text{-orbits of } \mathfrak{A} \} = \#\{ \text{orbits of } \operatorname{Aut}(\mathfrak{A}) \frown A^{(n)} \}$

 \mathfrak{A} : structure.

- $o_n(\mathfrak{A}) := #\{n \text{-orbits of } \mathfrak{A}\} = #\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \frown A^n\}$
- Labelled growth: $\ell_n(\mathfrak{A}) := \#\{\text{injective } n\text{-orbits of } \mathfrak{A}\} = \#\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \frown A^{(n)}\}$
- Unlabelled growth:

 $u_n(\mathfrak{A}) := \#\{\text{orbits of } n\text{-subsets of } \mathfrak{A}\} = \#\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \curvearrowright \binom{A}{n}\}$

 \mathfrak{A} : structure.

- $o_n(\mathfrak{A}) := #\{n \text{-orbits of } \mathfrak{A}\} = #\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \frown A^n\}$
- Labelled growth: $\ell_n(\mathfrak{A}) := \#\{\text{injective } n\text{-orbits of } \mathfrak{A}\} = \#\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \frown A^{(n)}\}$
- Unlabelled growth: $u_n(\mathfrak{A}) := \#\{\text{orbits of } n\text{-subsets of } \mathfrak{A}\} = \#\{\text{orbits of } \operatorname{Aut}(\mathfrak{A}) \curvearrowright \binom{A}{n}\}$

General question:

Given some upper bound $f: \omega \to \mathbb{R}$, determine all structures with $\ell_n(\mathfrak{A}) < f(n)$ or $u_n(\mathfrak{A}) < f(n)$.

Observation

TFAE for all $n \in \omega$.

- $o_n(\mathfrak{A}) < \infty$.
- $2 \ \ell_n(\mathfrak{A}) < \infty.$
- $u_n(\mathfrak{A}) < \infty.$

Note: $u_n \le \ell_n \le n! u_n, o_n(G) = \sum_{k=1}^n {n \\ k } \ell_k(G).$

Observation

TFAE for all $n \in \omega$.

- $o_n(\mathfrak{A}) < \infty.$
- $\ 2 \ \ell_n(\mathfrak{A}) < \infty.$
- $u_n(\mathfrak{A}) < \infty.$

Note: $u_n \le \ell_n \le n! u_n, o_n(G) = \sum_{k=1}^n {n \\ k } \ell_k(G).$

Definition

 \mathfrak{A} is ω -categorical (Aut(\mathfrak{A}) is oligomorphic) if $o_n(\mathfrak{A}) < \infty$ for all $n \in \omega$.

Bertalan Bodor (University of Szeged)

Structures with slow unlabelled growth

Observation

TFAE for all $n \in \omega$.

- $o_n(\mathfrak{A}) < \infty.$
- $\ 2 \ \ell_n(\mathfrak{A}) < \infty.$
- $u_n(\mathfrak{A}) < \infty.$

Note: $u_n \le \ell_n \le n! u_n, o_n(G) = \sum_{k=1}^n {n \\ k} \ell_k(G).$

Definition

 \mathfrak{A} is ω -categorical (Aut(\mathfrak{A}) is oligomorphic) if $o_n(\mathfrak{A}) < \infty$ for all $n \in \omega$.

In this talk: all structures are countable and ω -categorical.

Bertalan Bodor (University of Szeged)

• \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim 0 \leftrightarrow u_n \sim 0$ if *n* is large enough

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim \mathbf{0} \leftrightarrow u_n \sim \mathbf{0}$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim \mathbf{0} \leftrightarrow u_n \sim \mathbf{0}$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

• $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim 0 \leftrightarrow u_n \sim 0$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ,=)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim \mathbf{0} \leftrightarrow u_n \sim \mathbf{0}$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ, =)
- u_n < c for some constant c: finite structures + reducts of (ℚ⊔ "some finite structure") (see below)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim 0 \leftrightarrow u_n \sim 0$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ, =)
- u_n < c for some constant c: finite structures + reducts of (ℚ⊔ "some finite structure") (see below)
- ℓ_n < p(n) for some polynomial p: finite structures + reducts of (ℕ, =, c₁,..., c_n) (Easy.)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim \mathbf{0} \leftrightarrow u_n \sim \mathbf{0}$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ, =)
- u_n < c for some constant c: finite structures + reducts of (ℚ⊔ "some finite structure") (see below)
- ℓ_n < p(n) for some polynomial p: finite structures + reducts of (N, =, c₁,..., c_n) (Easy.)
- $u_n < p(n)$ for some polynomial p: classified by Falque, Thiéry '19

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim 0 \leftrightarrow u_n \sim 0$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ, =)
- u_n < c for some constant c: finite structures + reducts of (ℚ⊔ "some finite structure") (see below)
- ℓ_n < p(n) for some polynomial p: finite structures + reducts of (N, =, c₁,..., c_n) (Easy.)
- $u_n < p(n)$ for some polynomial p: classified by Falque, Thiéry '19
- l_n < cⁿ for some c > 1: reducts of unary structures with finitely many orbits (Bodirsky, B. '21)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim 0 \leftrightarrow u_n \sim 0$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ, =)
- u_n < c for some constant c: finite structures + reducts of (ℚ⊔ "some finite structure") (see below)
- ℓ_n < p(n) for some polynomial p: finite structures + reducts of (ℕ, =, c₁,..., c_n) (Easy.)
- $u_n < p(n)$ for some polynomial p: classified by Falque, Thiéry '19
- $\ell_n < c^n$ for some c > 1: reducts of unary structures with finitely many orbits (Bodirsky, B. '21)
- $\ell_n < cn^{dn}$ with $d < 1 \leftrightarrow \mathfrak{A}$ is cellular (Bodirsky, B. '21)

- \mathfrak{A} is ω -categorical $\leftrightarrow \ell_n < \infty \leftrightarrow u_n < \infty$
- \mathfrak{A} is finite $\leftrightarrow \ell_n \sim 0 \leftrightarrow u_n \sim 0$ if *n* is large enough

•
$$\ell_n = 1 \leftrightarrow \mathfrak{A} = (\mathbb{N}, =)$$
 (pure set)

- $u_n = 1 \leftrightarrow \mathfrak{A}$ is a reduct of $(\mathbb{Q}, <)$ (Cameron '76)
- ℓ_n < c for some constant c: finite structures + (ℕ, =)
- u_n < c for some constant c: finite structures + reducts of (ℚ⊔ "some finite structure") (see below)
- ℓ_n < p(n) for some polynomial p: finite structures + reducts of (ℕ, =, c₁,..., c_n) (Easy.)
- $u_n < p(n)$ for some polynomial p: classified by Falque, Thiéry '19
- $\ell_n < c^n$ for some c > 1: reducts of unary structures with finitely many orbits (Bodirsky, B. '21)
- $\ell_n < cn^{dn}$ with $d < 1 \leftrightarrow \mathfrak{A}$ is cellular (Bodirsky, B. '21)
- $u_n < c^n$ for all/some c > 1: Topic of today's talk, examples later.

 \mathfrak{A} and \mathfrak{B} are bidefinable if $\exists e$ bijection $A \rightarrow B$ s.t. e and e^{-1} preserve definable relations.

 \mathfrak{A} and \mathfrak{B} are bidefinable if $\exists e$ bijection $A \rightarrow B$ s.t. e and e^{-1} preserve definable relations.

 \mathfrak{A} and \mathfrak{B} are interdefinable if the above *e* can be chosen to be id(*A*).

 \mathfrak{A} and \mathfrak{B} are bidefinable if $\exists e$ bijection $A \rightarrow B$ s.t. e and e^{-1} preserve definable relations.

 \mathfrak{A} and \mathfrak{B} are interdefinable if the above *e* can be chosen to be id(*A*).

Fact

```
\mathfrak{A}, \mathfrak{B} \ \omega-categorical:
\mathfrak{A} and \mathfrak{B} are bidefinable \leftrightarrow \operatorname{Aut}(\mathfrak{A}) \simeq \operatorname{Aut}(\mathfrak{B}).
```

 \mathfrak{A} and \mathfrak{B} are bidefinable if $\exists e$ bijection $A \rightarrow B$ s.t. e and e^{-1} preserve definable relations.

 \mathfrak{A} and \mathfrak{B} are interdefinable if the above *e* can be chosen to be id(*A*).

Fact

 $\mathfrak{A}, \mathfrak{B} \ \omega$ -categorical: \mathfrak{A} and \mathfrak{B} are bidefinable $\leftrightarrow \operatorname{Aut}(\mathfrak{A}) \simeq \operatorname{Aut}(\mathfrak{B})$.

Fact

A permutation group G is of the form $G = Aut(\mathfrak{A})$ iff $G \in Sym(A)$ is closed (in the topology of pointwise convergence).

$\omega\text{-}\mathsf{categorical}\xspace$ structures up to bidefinability \leftrightarrow closed oligomorphic groups

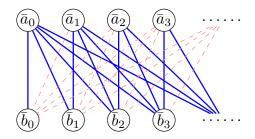
- ω -categorical structures up to bidefinability \leftrightarrow closed oligomorphic groups Alternative formulation of the question:
- Given some upper bound $f: \omega \to \mathbb{R}$, determine all closed groups with $\ell_n(G) < f(n)$ or $u_n(G) < f(n)$.

Definition

A formula $\phi(\bar{x}, \bar{y})$ has the order property (in \mathfrak{A}) if for all $\exists (\bar{a}_j, \bar{b}_j : j \in \omega)$ such that $\mathfrak{A} \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i \leq j$. (" ϕ defines a half-graph")

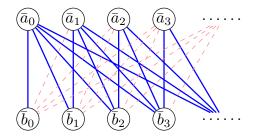
Definition

A formula $\phi(\bar{x}, \bar{y})$ has the order property (in \mathfrak{A}) if for all $\exists (\bar{a}_j, \bar{b}_j : j \in \omega)$ such that $\mathfrak{A} \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i \leq j$. (" ϕ defines a half-graph")



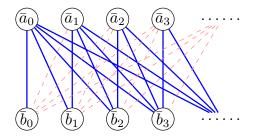
Definition

A formula $\phi(\bar{x}, \bar{y})$ has the order property (in \mathfrak{A}) if for all $\exists (\bar{a}_j, \bar{b}_j : j \in \omega)$ such that $\mathfrak{A} \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i \leq j$. (" ϕ defines a half-graph") A structure \mathfrak{A} is stable if no formula in \mathfrak{A} has the order property.



Definition

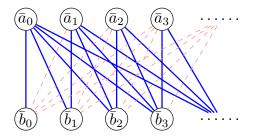
A formula $\phi(\bar{x}, \bar{y})$ has the order property (in \mathfrak{A}) if for all $\exists (\bar{a}_j, \bar{b}_j : j \in \omega)$ such that $\mathfrak{A} \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i \leq j$. (" ϕ defines a half-graph") A structure \mathfrak{A} is stable if no formula in \mathfrak{A} has the order property.



• Stable structures: pure set, unary structures, vector spaces,...

Definition

A formula $\phi(\bar{x}, \bar{y})$ has the order property (in \mathfrak{A}) if for all $\exists (\bar{a}_j, \bar{b}_j : j \in \omega)$ such that $\mathfrak{A} \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i \leq j$. (" ϕ defines a half-graph") A structure \mathfrak{A} is stable if no formula in \mathfrak{A} has the order property.



- Stable structures: pure set, unary structures, vector spaces,...
- Unstable structures: $(\mathbb{Q}, <)$, random graph, infinite Boolean algebras,...

An (ω -categorical) structure \mathfrak{A} is monadically stable it every expansion of \mathfrak{A} by unary predicates is stable.

An (ω -categorical) structure \mathfrak{A} is monadically stable it every expansion of \mathfrak{A} by unary predicates is stable.

 \mathcal{M} := the class of ω -categorical monadically stable structures.

An (ω -categorical) structure \mathfrak{A} is monadically stable it every expansion of \mathfrak{A} by unary predicates is stable.

 \mathcal{M} := the class of ω -categorical monadically stable structures.

Theorem (Braunfeld)

 \mathfrak{A} : ω -categorical stable structure. Then one of the following holds.

- $\exists c (u_n(\mathfrak{A}) < c^n) \text{ and } \mathfrak{A} \in \mathcal{M}.$
- ② $\exists c > 1 (u_n(\mathfrak{A}) > c^n)$ and $\mathfrak{A} \notin \mathcal{M}$.

Hereditarily cellular structures

Recursive description

Theorem (B. '21+Lachlan '92)

 ${\cal M}$ is the smallest class of structures which contains all finite structures, and is closed under taking

- finite disjoint unions,
- infinite copies,
- I first-order reducts.

Recursive description

Theorem (B. '21+Lachlan '92)

 ${\cal M}$ is the smallest class of structures which contains all finite structures, and is closed under taking

- finite disjoint unions,
- infinite copies,
- *§* first-order reducts.
 - Disjoint union: the domains of the original structures are named by unary predicates
 - Infinite copies: we add an equivalence relation *E* whose equivalence classes are the copies

Recursive description

Theorem (B. '21+Lachlan '92)

 ${\cal M}$ is the smallest class of structures which contains all finite structures, and is closed under taking

- finite disjoint unions,
- infinite copies,
- Irst-order reducts.
 - Disjoint union: the domains of the original structures are named by unary predicates
 - Infinite copies: we add an equivalence relation *E* whose equivalence classes are the copies

We call these structures hereditarily cellular.

Group description

Theorem (B. '21+Lachlan '92)

 ${Aut(\mathfrak{A}) : \mathfrak{A} \in \mathcal{M}}$ is the smallest class of groups which contains all groups with finite degree, and is closed under taking

- finite direct products,
- **2** wreath product with $Sym(\omega)$,
- 3 closed supergroups.

Group description

Theorem (B. '21+Lachlan '92)

 $\{Aut(\mathfrak{A}) : \mathfrak{A} \in \mathcal{M}\}$ is the smallest class of groups which contains all groups with finite degree, and is closed under taking

- finite direct products,
- 2 wreath product with $Sym(\omega)$,
- 3 closed supergroups.

Clarification:

- Direct products act on disjoint unions.
- $G \wr Sym(\omega)$ acts on $Dom(G) \times \omega$.

Group description

Theorem (B. '21+Lachlan '92)

 ${Aut(\mathfrak{A}) : \mathfrak{A} \in \mathcal{M}}$ is the smallest class of groups which contains all groups with finite degree, and is closed under taking

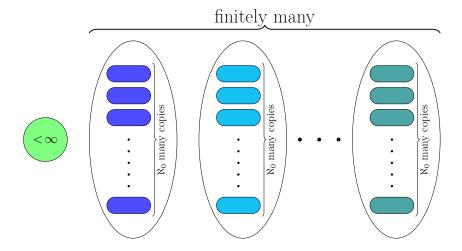
- finite direct products,
- 2 wreath product with $Sym(\omega)$,
- Iclosed supergroups.

Clarification:

- Direct products act on disjoint unions.
- $G \wr Sym(\omega)$ acts on $Dom(G) \times \omega$.

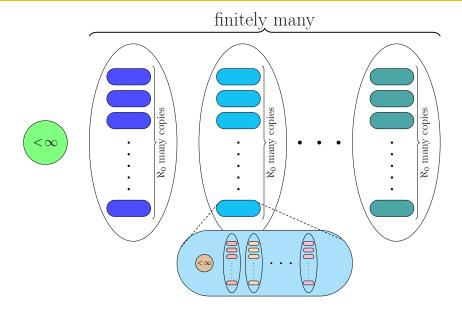
Remark: These groups can be described explicitly.

Hereditarily cellular structures



Bertalan Bodor (University of Szeged)

Hereditarily cellular structures



Bertalan Bodor (University of Szeged)

Theorem (Cameron '76)

If $u_n = 1$ then \mathfrak{A} is bidefinable with one of the 5 reducts of $(\mathbb{Q}, <)$.

Theorem (Cameron '76)

If $u_n = 1$ then \mathfrak{A} is bidefinable with one of the 5 reducts of $(\mathbb{Q}, <)$.

Theorem (Simon '21)

If $Aut(\mathfrak{A})$ is primitive then either $u_n(\mathfrak{A}) = 1$ or $u_n(\mathfrak{A}) > 2^n/p(n)$ for some polynomial p.

Theorem (Cameron '76)

If $u_n = 1$ then \mathfrak{A} is bidefinable with one of the 5 reducts of $(\mathbb{Q}, <)$.

Theorem (Simon '21)

If $Aut(\mathfrak{A})$ is primitive then either $u_n(\mathfrak{A}) = 1$ or $u_n(\mathfrak{A}) > 2^n/p(n)$ for some polynomial p.

Remark: This solves a conjecture by Cameron from '85.

Theorem (Cameron '76)

If $u_n = 1$ then \mathfrak{A} is bidefinable with one of the 5 reducts of $(\mathbb{Q}, <)$.

Theorem (Simon '21)

If $Aut(\mathfrak{A})$ is primitive then either $u_n(\mathfrak{A}) = 1$ or $u_n(\mathfrak{A}) > 2^n/p(n)$ for some polynomial p.

Remark: This solves a conjecture by Cameron from '85. Remark: $u_n \sim 2^{n-1}/n$ can be attained (by S(2), the *local order*)

Structures with subexponential unlabelled growth

Recursive characterization

Theorem (Baby version, B. '23+)

 $S_0 = \{\mathfrak{A} : u_n(\mathfrak{A}) < c^n \text{ for all } c\}$ is the smallest class of structures which contain is closed under taking

- finite disjoint unions,
- infinite copies,
- I first-order reducts,

and contains

- all finite structures,
- ($\mathbb{Q}, <$).

Structures with subexponential unlabelled growth

Recursive characterization

Theorem (Baby version, B. '23+)

 $S_0 = \{\mathfrak{A} : u_n(\mathfrak{A}) < c^n \text{ for all } c\}$ is the smallest class of structures which contain is closed under taking

- finite disjoint unions,
- infinite copies,
- I first-order reducts,

and contains

- all finite structures,
- $(\mathbb{Q}, <).$

Remark: The automorphism groups can be described explicitly.

Structures with at most $(2 - \varepsilon)^n$ unlabelled growth

Recursive characterization

Theorem (Full version, B. '23+)

 $S = \{\mathfrak{A} : u_n(\mathfrak{A}) < 2^n/p(n) \text{ for all polynomials } p\}$ is the smallest class of structures which contain is closed under taking

- finite disjoint unions,
- infinite copies,
- first-order reducts,
- and contains
 - all finite structures,
 - "some" finite covers of $(\mathbb{Q}, <)$.

Remark: The automorphism groups can be described explicitly.

Structures with at most $(2 - \varepsilon)^n$ unlabelled growth

Some consequences

Corollaries (B.)

- Every structure in ${\cal S}$ has finitely many reducts up to interdefinability.
- $\mathcal S$ has countably many structures up to bidefinability.
- Every structure in S is finitely homogenizable.
- Every structure in S has a first-order interpretation in $(\mathbb{Q}, <)$.

Structures with at most $(2 - \varepsilon)^n$ unlabelled growth Orbit growth gaps

Theorem (B.)

Let $\mathfrak{A} \in \mathcal{S}$. Then one of the following holds.

- $u_n(\mathfrak{A})$ is slower than exponential, and $u_n(\mathfrak{A}) = u_n(\mathfrak{A}^*)$ for some $\mathfrak{A}^* \in \mathcal{M}$. (c.f. Braunfeld '22).
- ② $c_1\gamma_d^n < u_n(\mathfrak{A}) < c_2(\gamma_d + \varepsilon)^n$ for some $2 \le d \in \omega$ where γ_d is the largest real root of the polynomial $x^d x^{d-1} \cdots 1 = 0$.

 $\gamma_2 \approx 1.618$ $\gamma_3 \approx 1.839$ $\gamma_d \nearrow 2$

What can we say about structures with at most c^n unlabelled growth?

What can we say about structures with at most c^n unlabelled growth?

Conjecture (Braunfeld)

 $\{\mathfrak{A} : u_n(\mathfrak{A}) < c^n \text{ for some } c\}$ is closed under ω -categorical unary expansions.

What can we say about structures with at most c^n unlabelled growth?

Conjecture (Braunfeld)

 $\{\mathfrak{A} : u_n(\mathfrak{A}) < c^n \text{ for some } c\}$ is closed under ω -categorical unary expansions.

Conjecture

If $u_n(\mathfrak{A}) < c^n$ then \mathfrak{A} is finitely homogenizable.

What can we say about structures with at most c^n unlabelled growth?

Conjecture (Braunfeld)

 $\{\mathfrak{A} : u_n(\mathfrak{A}) < c^n \text{ for some } c\}$ is closed under ω -categorical unary expansions.

Conjecture

If $u_n(\mathfrak{A}) < c^n$ then \mathfrak{A} is finitely homogenizable.

Conjecture

There are countably many structures \mathfrak{A} with $u_n(\mathfrak{A}) < c^n$ up to bidefinability.

What can we say about structures with at most c^n unlabelled growth?

Conjecture (Braunfeld)

 $\{\mathfrak{A} : u_n(\mathfrak{A}) < c^n \text{ for some } c\}$ is closed under ω -categorical unary expansions.

Conjecture

If $u_n(\mathfrak{A}) < c^n$ then \mathfrak{A} is finitely homogenizable.

Conjecture

There are countably many structures \mathfrak{A} with $u_n(\mathfrak{A}) < c^n$ up to bidefinability.

Questions

- What happens with c = 2?
- What is the next gap (primitive example is known for $c \approx 2.483$)?

Bertalan Bodor (University of Szeged)

Structures with slow unlabelled growth