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Orbit growth function

Definition

A: structure.

on(A) := #{n-orbits of A} = #{orbits of Aut(A) y An}

Labelled growth:
`n(A) := #{injective n-orbits of A} = #{orbits of Aut(A) y A(n)}
Unlabelled growth:
un(A) := #{orbits of n-subsets of A} = #{orbits of Aut(A) y

(A
n

)
}

General question:
Given some upper bound f : ω → R, determine all structures with
`n(A) < f (n) or un(A) < f (n).
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ω-categoricity

Observation

TFAE for all n ∈ ω.

1 on(A) <∞.

2 `n(A) <∞.

3 un(A) <∞.

Note: un ≤ `n ≤ n!un, on(G ) =
∑n

k=1

{n
k

}
`k(G ).

Definition

A is ω-categorical (Aut(A) is oligomorphic) if on(A) <∞ for all n ∈ ω.

In this talk: all structures are countable and ω-categorical.
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Examples

A is ω-categorical ↔ `n <∞↔ un <∞

A is finite ↔ `n ∼ 0↔ un ∼ 0 if n is large enough

`n = 1↔ A = (N,=) (pure set)

un = 1↔ A is a reduct of (Q, <) (Cameron ’76)

`n < c for some constant c:
finite structures + (N,=)

un < c for some constant c :
finite structures + reducts of (Qt “some finite structure”) (see below)

`n < p(n) for some polynomial p:
finite structures + reducts of (N,=, c1, . . . , cn) (Easy.)

un < p(n) for some polynomial p: classified by Falque, Thiéry ’19

`n < cn for some c > 1:
reducts of unary structures with finitely many orbits (Bodirsky, B. ’21)

`n < cndn with d < 1↔ A is cellular (Bodirsky, B. ’21)

un < cn for all/some c > 1:

Topic of today’s talk, examples later.
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`n < cn for some c > 1:
reducts of unary structures with finitely many orbits (Bodirsky, B. ’21)

`n < cndn with d < 1↔ A is cellular (Bodirsky, B. ’21)

un < cn for all/some c > 1:

Topic of today’s talk, examples later.

Bertalan Bodor (University of Szeged) Structures with slow unlabelled growth SSAOS, Stará Lesná
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Correspondence to groups

Definition

A and B are bidefinable if ∃e bijection A→ B s.t. e and e−1 preserve
definable relations.

A and B are interdefinable if the above e can be chosen to be id(A).

Fact

A,B ω-categorical:
A and B are bidefinable ↔ Aut(A) ' Aut(B).

Fact

A permutation group G is of the form G = Aut(A) iff G ∈ Sym(A) is
closed (in the topology of pointwise convergence).
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Correspondence to groups

ω-categorical structures up to bidefinability ↔ closed oligomorphic groups

Alternative formulation of the question:
Given some upper bound f : ω → R, determine all closed groups with
`n(G ) < f (n) or un(G ) < f (n).
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Stability

Definition

A formula φ(x̄ , ȳ) has the order property (in A) if for all ∃(āj , b̄j : j ∈ ω)
such that A |= φ(āi , b̄j)⇔ i ≤ j . (“φ defines a half-graph”)

A structure A is stable if no formula in A has the order property.

ā0 ā1 ā2 ā3 . . . . . .

b̄0 b̄1 b̄2 b̄3 . . . . . .

Stable structures: pure set, unary structures, vector spaces,. . .

Unstable structures: (Q, <), random graph, infinite Boolean algebras,. . .
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Hereditarily cellular structures

Definition

An (ω-categorical) structure A is monadically stable it every expansion of
A by unary predicates is stable.

M:= the class of ω-categorical monadically stable structures.

Theorem (Braunfeld)

A: ω-categorical stable structure. Then one of the following holds.

1 ∃c (un(A) < cn) and A ∈M.

2 ∃c > 1 (un(A) > cn) and A 6∈ M.
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Hereditarily cellular structures

Definition

An (ω-categorical) structure A is monadically stable it every expansion of
A by unary predicates is stable.

M:= the class of ω-categorical monadically stable structures.

Theorem (Braunfeld)

A: ω-categorical stable structure. Then one of the following holds.

1 ∃c (un(A) < cn) and A ∈M.

2 ∃c > 1 (un(A) > cn) and A 6∈ M.

Bertalan Bodor (University of Szeged) Structures with slow unlabelled growth SSAOS, Stará Lesná



Hereditarily cellular structures
Recursive description

Theorem (B. ’21+Lachlan ’92)

M is the smallest class of structures which contains all finite structures,
and is closed under taking

1 finite disjoint unions,

2 infinite copies,

3 first-order reducts.

Disjoint union: the domains of the original structures are named by
unary predicates

Infinite copies: we add an equivalence relation E whose equivalence
classes are the copies

We call these structures hereditarily cellular.
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Hereditarily cellular structures
Group description

Theorem (B. ’21+Lachlan ’92)

{Aut(A) : A ∈M} is the smallest class of groups which contains all
groups with finite degree, and is closed under taking

1 finite direct products,

2 wreath product with Sym(ω),

3 closed supergroups.

Clarification:

Direct products act on disjoint unions.

G o Sym(ω) acts on Dom(G )× ω.

Remark: These groups can be described explicitly.
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groups with finite degree, and is closed under taking

1 finite direct products,

2 wreath product with Sym(ω),

3 closed supergroups.

Clarification:

Direct products act on disjoint unions.

G o Sym(ω) acts on Dom(G )× ω.

Remark: These groups can be described explicitly.

Bertalan Bodor (University of Szeged) Structures with slow unlabelled growth SSAOS, Stará Lesná



Hereditarily cellular structures
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Removing stability

Question: for which structures do we have un < cn for all/some c > 1?

Theorem (Cameron ’76)

If un = 1 then A is bidefinable with one of the 5 reducts of (Q, <).

Theorem (Simon ’21)

If Aut(A) is primitive then either un(A) = 1 or un(A) > 2n/p(n) for some
polynomial p.

Remark: This solves a conjecture by Cameron from ’85.
Remark: un ∼ 2n−1/n can be attained (by S(2), the local order)
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Structures with subexponential unlabelled growth
Recursive characterization

Theorem (Baby version, B. ’23+)

S0 = {A : un(A) < cn for all c} is the smallest class of structures which
contain is closed under taking

1 finite disjoint unions,

2 infinite copies,

3 first-order reducts,

and contains

all finite structures,

(Q, <).

Remark: The automorphism groups can be described explicitly.
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Structures with at most (2− ε)n unlabelled growth
Recursive characterization

Theorem (Full version, B. ’23+)

S = {A : un(A) < 2n/p(n) for all polynomials p} is the smallest class of
structures which contain is closed under taking

1 finite disjoint unions,

2 infinite copies,

3 first-order reducts,

and contains

all finite structures,

“some” finite covers of (Q, <).

Remark: The automorphism groups can be described explicitly.
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Structures with at most (2− ε)n unlabelled growth
Some consequences

Corollaries (B.)

Every structure in S has finitely many reducts up to interdefinability.

S has countably many structures up to bidefinability.

Every structure in S is finitely homogenizable.

Every structure in S has a first-order interpretation in (Q, <).
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Structures with at most (2− ε)n unlabelled growth
Orbit growth gaps

Theorem (B.)

Let A ∈ S. Then one of the following holds.

1 un(A) is slower than exponential, and un(A) = un(A∗) for some
A∗ ∈M. (c.f. Braunfeld ’22).

2 c1γ
n
d < un(A) < c2(γd + ε)n for some 2 ≤ d ∈ ω where γd is the

largest real root of the polynomial xd − xd−1 − · · · − 1 = 0.

γ2 ≈ 1.618
γ3 ≈ 1.839
γd ↗ 2
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Some questions

What can we say about structures with at most cn unlabelled growth?

Conjecture (Braunfeld)

{A : un(A) < cn for some c} is closed under ω-categorical unary
expansions.

Conjecture

If un(A) < cn then A is finitely homogenizable.

Conjecture

There are countably many structures A with un(A) < cn up to
bidefinability.

Questions

What happens with c = 2?

What is the next gap (primitive example is known for c ≈ 2.483)?
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