Completeness and topologizability of semigroups

Serhii Bardyla

Institute of Mathematics, P.J. Šafárik University in Košice, Slovakia; and Institute of Discrete Mathematics and Geometry, TU Wien, Austria.

> Summer School on General Algebra and Ordered Sets, September 7, 2023

Topologizability of groups and semigroups.

- Completeness and unconditional closedness.
- Results establishing a connection between completeness and nontopologizability of countable groups.
- Results determining inner algebraic conditions which guarantee unconditional closedness of commutative semigroups.

Topologizability of groups and semigroups.

② Completeness and unconditional closedness.

- Results establishing a connection between completeness and nontopologizability of countable groups.
- Results determining inner algebraic conditions which guarantee unconditional closedness of commutative semigroups.

- Topologizability of groups and semigroups.
- ② Completeness and unconditional closedness.
- Results establishing a connection between completeness and nontopologizability of countable groups.
- Results determining inner algebraic conditions which guarantee unconditional closedness of commutative semigroups.

- Topologizability of groups and semigroups.
- ② Completeness and unconditional closedness.
- Results establishing a connection between completeness and nontopologizability of countable groups.
- Results determining inner algebraic conditions which guarantee unconditional closedness of commutative semigroups.

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;
- projectively *C*-nontopologizable if each homomorphic image of *X* is *C*-nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

• C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;

• projectively \mathcal{C} -nontopologizable if each homomorphic image of X is \mathcal{C} -nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

4 E b

- E - F

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;
- projectively \mathcal{C} -nontopologizable if each homomorphic image of X is \mathcal{C} -nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

4 B K 4 B K

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;
- projectively C-nontopologizable if each homomorphic image of X is C-nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

4 B K 4 B K

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;
- projectively C-nontopologizable if each homomorphic image of X is C-nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

4 B K 4 B K

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;
- projectively C-nontopologizable if each homomorphic image of X is C-nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

Let $\mathcal C$ be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology τ such that $(X, \tau) \in \mathcal{C}$ is discrete;
- projectively \mathcal{C} -nontopologizable if each homomorphic image of X is \mathcal{C} -nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn't find an example of a TG-nontopologizable group, he found an inner characterization of countable TG-nontopologizable groups. However, to state it we need another portion of definitions.

Definition

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n;$
- a semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies. For a group ${\cal G}$ its

group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {x ∈ G : f(x) ≠ e_G}, where f is a group polynomial on G.

For a semigroup X its

- Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X;
- weak Zariski topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

A 3 1 A 3 1

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n;$
- a semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies. For a group ${\cal G}$ its

group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {x ∈ G : f(x) ≠ e_G}, where f is a group polynomial on G.

For a semigroup X its

- Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X;
- weak Zariski topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

4 E b

- - E - F

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n;$
- a semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies. For a group G its

• group Zariski topology \mathfrak{Z}_G^{\pm} is generated by the subbase consisting of the sets $\{x \in G : f(x) \neq e_G\}$, where f is a group polynomial on G.

For a semigroup X its

- Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X;
- weak Zariski topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

(* E) * E *

3

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n;$
- a semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies. For a group ${\cal G}$ its

group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {x ∈ G : f(x) ≠ e_G}, where f is a group polynomial on G.

For a semigroup X its

- Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X;
- weak Zariski topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

3

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n;$
- a semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies. For a group ${\cal G}$ its

group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {x ∈ G : f(x) ≠ e_G}, where f is a group polynomial on G.

For a semigroup X its

- Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X;
- weak Zariski topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

3

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n;$
- a semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies. For a group ${\cal G}$ its

group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {x ∈ G : f(x) ≠ e_G}, where f is a group polynomial on G.

For a semigroup \boldsymbol{X} its

- Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X;
- weak Zariski topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

< ∃→

The following theorems give an inner characterization of nontopologizability of countable semigroups and groups.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^\pm is discrete.

Theorem (Podewski)

A countable semigroup X is T₁S-nontopologizable if and only if the weak Zariski topology \mathfrak{Z}'_X is discrete.

Theorem (Kotov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

1 B 1 1 B 1

The following theorems give an inner characterization of nontopologizability of countable semigroups and groups.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}^\pm_G is discrete.

Theorem (Podewski)

A countable semigroup X is T₁S-nontopologizable if and only if the weak Zariski topology \mathfrak{Z}'_X is discrete.

Theorem (Kotov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

→ Ξ → → Ξ →

The following theorems give an inner characterization of nontopologizability of countable semigroups and groups.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^\pm is discrete.

Theorem (Podewski)

A countable semigroup X is T₁S-nontopologizable if and only if the weak Zariski topology \mathfrak{Z}'_X is discrete.

Theorem (Kotov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

The following theorems give an inner characterization of nontopologizability of countable semigroups and groups.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^\pm is discrete.

Theorem (Podewski)

A countable semigroup X is T₁S-nontopologizable if and only if the weak Zariski topology \mathfrak{Z}'_X is discrete.

Theorem (Kotov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

★ Ξ ► ★ Ξ ►

The following theorems give an inner characterization of nontopologizability of countable semigroups and groups.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^\pm is discrete.

Theorem (Podewski)

A countable semigroup X is T₁S-nontopologizable if and only if the weak Zariski topology \mathfrak{Z}'_X is discrete.

Theorem (Kotov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

- E - F

Theorem (Shelah)

Assuming CH there exists a TG-nontopologizable group.

Theorem (Hesse)

There exists a TG-nontopologizable group.

Theorem (Olshanskii)

There exists a countable TG-nontopologizable group.

Theorem (Klyachko, Olshanskii, Osin)

There exists a countable simple bounded TG-nontopologizable group.

- E - F

Theorem (Shelah)

Assuming CH there exists a TG-nontopologizable group.

Theorem (Hesse)

There exists a TG-nontopologizable group.

Theorem (Olshanskii)

There exists a countable TG-nontopologizable group.

Theorem (Klyachko, Olshanskii, Osin)

There exists a countable simple bounded TG-nontopologizable group.

< ≣⇒

Theorem (Shelah)

Assuming CH there exists a TG-nontopologizable group.

Theorem (Hesse)

There exists a TG-nontopologizable group.

Theorem (Olshanskii)

There exists a countable TG-nontopologizable group.

Theorem (Klyachko, Olshanskii, Osin)

There exists a countable simple bounded TG-nontopologizable group.

Theorem (Shelah)

Assuming CH there exists a TG-nontopologizable group.

Theorem (Hesse)

There exists a TG-nontopologizable group.

Theorem (Olshanskii)

There exists a countable TG-nontopologizable group.

Theorem (Klyachko, Olshanskii, Osin)

There exists a countable simple bounded TG-nontopologizable group.

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example:

Fact 1

A metric space X is complete if and only if X is closed in any metric space containing X as a subspace.

Fact 2

A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace.

Fact 3

A Tychonoff space X is compact if and only if X is closed in any Tychonoff space containing X as a subspace.

Fact 4

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example:

Fact 1

A metric space X is complete if and only if X is closed in any metric space containing X as a subspace.

Fact 2

A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace.

Fact 3

A Tychonoff space X is compact if and only if X is closed in any Tychonoff space containing X as a subspace.

Fact 4

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example:

Fact 1

A metric space X is complete if and only if X is closed in any metric space containing X as a subspace.

Fact 2

A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace.

Fact 3

A Tychonoff space X is compact if and only if X is closed in any Tychonoff space containing X as a subspace.

Fact 4

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example:

Fact 1

A metric space X is complete if and only if X is closed in any metric space containing X as a subspace.

Fact 2

A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace.

Fact 3

A Tychonoff space X is compact if and only if X is closed in any Tychonoff space containing X as a subspace.

Fact 4

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example:

Fact 1

A metric space X is complete if and only if X is closed in any metric space containing X as a subspace.

Fact 2

A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace.

Fact 3

A Tychonoff space X is compact if and only if X is closed in any Tychonoff space containing X as a subspace.

Fact 4

Definition

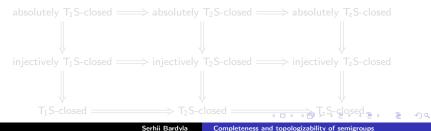
Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

We consider the classes:

- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T_1S of T_1 topological semigroups.

Since $T_zS \subseteq T_2S \subseteq T_1S$, the following implications hold:



Definition

Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

We consider the classes:

- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T_1S of T_1 topological semigroups.

Since $T_z S \subseteq T_2 S \subseteq T_1 S$, the following implications hold:



Definition

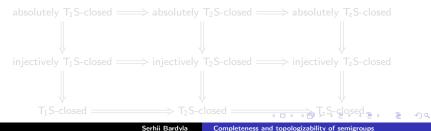
Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

We consider the classes:

- $\bullet~T_zS$ of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T_1S of T_1 topological semigroups.

Since $T_z S \subseteq T_2 S \subseteq T_1 S$, the following implications hold:



Definition

Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

We consider the classes:

- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T_1S of T_1 topological semigroups.

Since $T_z S \subseteq T_2 S \subseteq T_1 S$, the following implications hold:



Definition

Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

We consider the classes:

- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;

• T_1S of T_1 topological semigroups. Since $T_2S \subseteq T_2S \subseteq T_1S$, the following implications hold:

Definition

Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ the image h[X] is closed in Y.

We consider the classes:

- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T₁S of T₁ topological semigroups.

Since $T_z S \subseteq T_2 S \subseteq T_1 S$, the following implications hold:

Definition

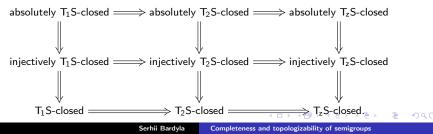
Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphism $h: X \to Y$ to a topological semigroup $Y \in C$ such that h[X] is discrete, the image h[X] is closed in Y;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

We consider the classes:

- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T₁S of T₁ topological semigroups.

Since $T_z S \subseteq T_2 S \subseteq T_1 \tilde{S}$, the following implications hold:



The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- *G* is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- *G* is absolutely T₁S-closed;
- *G* is projectively T₁S-nontopologizable.

Remark

The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is absolutely T₁S-closed;
- G is projectively T₁S-nontopologizable.

Remark

The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is absolutely T₁S-closed;
- G is projectively T₁S-nontopologizable.

Remark

The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is absolutely T₁S-closed;
- *G* is projectively T₁S-nontopologizable.

Remark

The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is absolutely T₁S-closed;
- G is projectively T₁S-nontopologizable.

Remark

The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is absolutely T₁S-closed;
- G is projectively T₁S-nontopologizable.

Remark

The next results reveal a connection between nontopologizability and completeness of countable groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is injectively T₁S-closed;
- G is T₁S-nontopologizable;
- weak Zariski topology \mathfrak{Z}'_G on G is discrete.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is absolutely T₁S-closed;
- G is projectively T₁S-nontopologizable.

Remark

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is T₁S-closed;
- *G* is T_zS-closed;
- \bullet G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable \mathcal{C} -closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- \bullet G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

```
• G is T<sub>1</sub>S-closed;
```

```
G is T<sub>z</sub>S-closed;
```

```
• G is polybounded.
```

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group ${\boldsymbol{G}}$ the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Each polybounded cancellative T_1 topological semigroup is a topological group.

) 2 (?

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Definition

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

A semilattice E is called chain-finite if all chains in (E, \leq) are finite.

э

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

A semilattice E is called chain-finite if all chains in (E, \leq) are finite.

→ Ξ →

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

A semigroup X is called

- singular if there exists an infinite subset $A \subset X$ such that AA is a singleton;
- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that x^n is an idempotent for every $x \in X$;
- group-finite if every subgroup of X is finite;
- group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by $a \leq b$ iff ab = a.

Definition

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative $\mathcal C$ -closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice \boldsymbol{X} the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For every class C such that $T_zS \subseteq C \subseteq T_1S$, every subsemigroup of a C-closed commutative semigroup is C-closed.

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For every class C such that $T_zS \subseteq C \subseteq T_1S$, every subsemigroup of a C-closed commutative semigroup is C-closed.

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup \boldsymbol{X} the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;

• the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For every class C such that $T_zS \subseteq C \subseteq T_1S$, every subsemigroup of a C-closed commutative semigroup is C-closed.

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup \boldsymbol{X} the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;

• the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For every class C such that $T_zS \subseteq C \subseteq T_1S$, every subsemigroup of a C-closed commutative semigroup is C-closed.

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice \boldsymbol{X} the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is commutative, then E(X) is a semilattice.

The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- the semilattice E(X) is chain-finite, X is nonsingular, periodic and group-bounded.

Corollary (Banakh, B.)

For a semilattice \boldsymbol{X} the following conditions are equivalent:

- X is T_zS-closed;
- X is T₁S-closed;
- X is chain-finite.

Corollary (Banakh, B.)

For every class $\mathcal C$ such that $T_zS\subseteq \mathcal C\subseteq T_1S$, every subsemigroup of a $\mathcal C\text{-closed}$ commutative semigroup is $\mathcal C\text{-closed}.$

The following results characterize absolutely C-closed commutative semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is absolutely T_zS-closed;
- X is absolutely T₂S-closed;
- the semilattice E(X) is chain-finite, X is bounded, group-finite and the union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T_1S -closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before group of Klyachko, Olshanskii and Osin is absolutely T_1 S-closed.

The following results characterize absolutely C-closed commutative semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is absolutely T_zS-closed;
- X is absolutely T₂S-closed;

• the semilattice E(X) is chain-finite, X is bounded, group-finite and the union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T_1S -closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before group of Klyachko, Olshanskii and Osin is absolutely T_1 S-closed.

The following results characterize absolutely C-closed commutative semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is absolutely T_zS-closed;
- X is absolutely T₂S-closed;

• the semilattice E(X) is chain-finite, X is bounded, group-finite and the union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T_1S -closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before group of Klyachko, Olshanskii and Osin is absolutely T₁S-closed.

The following results characterize absolutely C-closed commutative semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is absolutely T_zS-closed;
- X is absolutely T₂S-closed;
- the semilattice E(X) is chain-finite, X is bounded, group-finite and the union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T_1S -closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before group of Klyachko, Olshanskii and Osin is absolutely T₁S-closed.

- E - F

The following results characterize absolutely C-closed commutative semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is absolutely T_zS-closed;
- X is absolutely T₂S-closed;
- the semilattice E(X) is chain-finite, X is bounded, group-finite and the union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T_1S -closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before group of Klyachko, Olshanskii and Osin is absolutely T_1 S-closed.

- E - F

The following results characterize absolutely C-closed commutative semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

- X is absolutely T_zS-closed;
- X is absolutely T₂S-closed;
- the semilattice E(X) is chain-finite, X is bounded, group-finite and the union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T_1S -closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before group of Klyachko, Olshanskii and Osin is absolutely T_1 S-closed.

Thank You for attention!

Ξ.

- T. Banakh, S. Bardyla: "Categorically closed countable semigroups", Forum Mathematicum, **35**:3 (2023), 689-711.
- T. Banakh, S. Bardyla: "Characterizing categorically closed commutative semigroups", Journal of Algebra **591** (2022), 84–110.
- T. Banakh, S. Bardyla: "Characterizing chain-compact and chain-finite topological semilattices", Semigroup Forum, 98 (2019), no.2, 234–250.
- T. Banakh, S. Bardyla: "Absolutely closed semigroups", (submitted) arXiv:2207.12778.