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Markov Problem

Definition

Let C be a class of topological semigroups containing all discrete semigroups. A
semigroup X is called

C-nontopologizable if the only topology τ such that (X, τ) ∈ C is discrete;

projectively C-nontopologizable if each homomorphic image of X is
C-nontopologizable.

By TG we denote the class of all Hausdorff topological groups. Investigation of
nontopologizable groups started with the following problem of Markov.

Problem (Markov)

Does there exist a TG-nontopologizable group?

Despite Markov couldn’t find an example of a TG-nontopologizable group, he
found an inner characterization of countable TG-nontopologizable groups.
However, to state it we need another portion of definitions.
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Definitions

Definition

A group polynomial on a group G is a function f : G→ G of the form
f(x) = a0x

ε1a1 · · ·xεnan for some elements a0, . . . , an ∈ G and
εi ∈ {−1, 1}, i ≤ n;
a semigroup polynomial on a semigroup X is a function f : X → X of the
form f(x) = a0xa1 · · ·xan for some elements a0, . . . , an ∈ X1.

Nontopologizability of groups and semigroups can be described in terms of
corresponding Zariski topologies. For a group G its

group Zariski topology Z±G is generated by the subbase consisting of the
sets {x ∈ G : f(x) 6= eG}, where f is a group polynomial on G.

For a semigroup X its

Zariski topology ZX is the topology on X generated by the subbase
consisting of the sets {x ∈ X : f(x) 6= b} and {x ∈ X : f(x) 6= g(x)}
where b ∈ X and f, g are semigroup polynomials on X;

weak Zariski topology Z′X is the topology on X generated by the subbase
consisting of the sets {x ∈ X : f(x) 6= b} where b ∈ X and f is a
semigroup polynomial on X.
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Characterizations of nontopologizability

Further by T1S (T2S, resp.) we denote the classes of T1 (Hausdorff, resp.)
topological semigroups.
The following theorems give an inner characterization of nontopologizability of
countable semigroups and groups.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski
topology Z±G is discrete.

Theorem (Podewski)

A countable semigroup X is T1S-nontopologizable if and only if the weak
Zariski topology Z′X is discrete.

Theorem (Kotov)

A countable semigroup X is T2S-nontopologizable if and only if the Zariski
topology ZX is discrete.
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Solutions of Markov problem

The following results solve Markov problem.

Theorem (Shelah)

Assuming CH there exists a TG-nontopologizable group.

Theorem (Hesse)

There exists a TG-nontopologizable group.

Theorem (Olshanskii)

There exists a countable TG-nontopologizable group.

Theorem (Klyachko, Olshanskii, Osin)

There exists a countable simple bounded TG-nontopologizable group.
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Introduction (Completeness)

In many cases, completeness properties of various objects of General Topology
and Topological Algebra can be characterized externally as closedness in
ambient objects. For example:

Fact 1

A metric space X is complete if and only if X is closed in any metric space
containing X as a subspace.

Fact 2

A uniform space X is complete if and only if X is closed in any uniform space
containing X as a uniform subspace.

Fact 3

A Tychonoff space X is compact if and only if X is closed in any Tychonoff
space containing X as a subspace.

Fact 4

A topological group G is Raikov complete if and only if G is closed in any
topological group containing G both as a subgroup and a subspace.
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Definitions
Definition

Let C be a class of topological semigroups. A discrete semigroup X is called
C-closed if for any isomorphism h: X → Y to a topological semigroup
Y ∈ C such that h[X] is discrete, the image h[X] is closed in Y ;
injectively C-closed if for any injective homomorphism i: X → Y to a
topological semigroup Y ∈ C the image i[X] is closed in Y ;
absolutely C-closed if for any homomorphism h: X → Y to a topological
semigroup Y ∈ C the image h[X] is closed in Y .

We consider the classes:
TzS of Tychonoff zero-dimensional topological semigroups;
T2S of Hausdorff topological semigroups;
T1S of T1 topological semigroups.

Since TzS ⊆ T2S ⊆ T1S, the following implications hold:

absolutely T1S-closed +3

��

absolutely T2S-closed +3

��

absolutely TzS-closed

��
injectively T1S-closed +3

��

injectively T2S-closed +3

��

injectively TzS-closed

��
T1S-closed +3 T2S-closed +3 TzS-closed.
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Results

The next results reveal a connection between nontopologizability and
completeness of countable groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

G is injectively T1S-closed;

G is T1S-nontopologizable;

weak Zariski topology Z′G on G is discrete.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

G is absolutely T1S-closed;

G is projectively T1S-nontopologizable.

Remark

Each countable bounded simple TG-nontopologizable group G is absolutely
T1S-closed. In particular, so is the mentioned before group of Klyachko,
Olshanskii and Osin.
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Results
Definition

A semigroup X is called polybounded if X =
⋃n
i=1{x ∈ X : fi(x) = bi} for

some elements b1, . . . , bn ∈ X and semigroup polynomials f1, . . . , fn on X.

The next theorem characterizes countable C-closed groups.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

G is T1S-closed;
G is TzS-closed;
G is polybounded.

The following results show some application of polyboundedness.

Theorem (Banakh, B.)

Each polybounded T1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary (Banakh, B.)

Each polybounded cancellative T1 topological semigroup is a topological group.
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Definitions

Definition

A semigroup X is called

singular if there exists an infinite subset A ⊂ X such that AA is a
singleton;

periodic if for every x ∈ X there exists n ∈ N such that xn is an
idempotent;

bounded if there exists n ∈ N such that xn is an idempotent for every
x ∈ X;

group-finite if every subgroup of X is finite;

group-bounded if every subgroup of X is bounded.

Each semilattice E carries a natural partial order defined by a ≤ b iff ab = a.

Definition

A semilattice E is called chain-finite if all chains in (E,≤) are finite.
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Results

For a semigroup X by E(X) we denote the set of all idempotents of X. If X is
commutative, then E(X) is a semilattice.
The following result characterizes commutative C-closed semigroups.

Theorem (Banakh, B.)

For a commutative semigroup X the following conditions are equivalent:

X is TzS-closed;

X is T1S-closed;

the semilattice E(X) is chain-finite, X is nonsingular, periodic and
group-bounded.

Corollary (Banakh, B.)

For a semilattice X the following conditions are equivalent:

X is TzS-closed;

X is T1S-closed;

X is chain-finite.

Corollary (Banakh, B.)

For every class C such that TzS ⊆ C ⊆ T1S, every subsemigroup of a C-closed
commutative semigroup is C-closed.
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For a commutative semigroup X the following conditions are equivalent:
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X is absolutely T2S-closed;

the semilattice E(X) is chain-finite, X is bounded, group-finite and the
union of all subgroups of X has finite complement in X.

Theorem (Banakh, B.)

A commutative semigroup X is absolutely T1S-closed iff X is finite.

Remark

Commutativity is essential in previous results. Namely, the mentioned before
group of Klyachko, Olshanskii and Osin is absolutely T1S-closed.
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Thank You for attention!
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