A dagger kernel category of orthomodular lattices

Milan Lekár, Jan Paseka

Department of Mathematics and Statistics, Masaryk University Kotlářská 2, 611 37 Brno, Czech Republic paseka@math.muni.cz

Dagger kernel categories have been introduced in [HeJa] as a simple setting in which one can study categorical quantum logic. The present paper continues the study of dagger kernel categories in relation to orthomodular lattices in the spirit of [Jac].

In particular, we show that the category of orthomodular lattices **OMLatLin** where morphisms are mappings having adjoints is a dagger kernel category. We describe finite dagger biproducts and free objects over finite sets in **OMLatLin**.

A meet semi-lattice $(X, \wedge 1)$ is called an *ortholattice* if it comes equipped with a function $(-)^{\perp} \colon X \to X$ satisfying:

- $x^{\perp\perp} = x;$
- $x \leq y$ implies $y^{\perp} \leq x^{\perp}$;
- $x \wedge x^{\perp} = 1^{\perp}$.

One can then define a bottom element as $0 = 1 \wedge 1^{\perp} = 1^{\perp}$ and join by $x \vee y = (x^{\perp} \wedge y^{\perp})^{\perp}$, satisfying $x \vee x^{\perp} = 1$. We write $x \perp y$ if and only if $x \leq y^{\perp}$. Such an ortholattice is called *orthomodular* if $x \leq y$ implies $y = x \vee (x^{\perp} \wedge y)$.

Definition 1. A *dagger* on a category C is a functor $*: C^{\text{op}} \to C$ that is involutive and the identity on objects. A category equipped with a dagger is called a *dagger category*.

Let \mathcal{C} be a dagger category. A morphism $f: A \to B$ is called a *dagger* monomorphism if $f^* \circ f = \operatorname{id}_A$, and f is called a *dagger isomorphism* if $f^* \circ f = \operatorname{id}_A$ and $f \circ f^* = \operatorname{id}_B$.

We now introduce a new way of organising orthomodular lattices into a dagger category.

Definition 2. The category **OMLatLin** has orthomodular lattices as objects. A morphism $f: X \to Y$ in **OMLatLin** is a function $f: X \to Y$ between the underlying sets such that there is a function $h: Y \to X$ and, for any $x \in X$ and $y \in Y$,

 $f(x) \perp y$ if and only if $x \perp h(y)$.

We say that h is an *adjoint* of a *linear map* f. It is clear that adjointness is a symmetric property: if a map f possesses an adjoint h, then f is also an adjoint of h.

Moreover, a map $f: X \to X$ is called *self-adjoint* if f is an adjoint of itself. The identity morphism on X is the self-adjoint identity map id: $X \to X$. **Lemma 3.** Let $f: X \to Y$ be a morphism of orthomodular lattices. Then $\downarrow f^*(1)^{\perp} = \{x \in X : f(x) = 0\}$ is an orthomodular lattice.

OMLatLin has a zero object $\underline{0}$; this means that there is, for any orthomodular lattice X, a unique morphism $\underline{0} \to X$ and hence also a unique morphism $X \to \underline{0}$. The zero object $\underline{0}$ will be one-element orthomodular lattice $\{0\}$.

For objects X and Y, we denote by $0_{X,Y} = X \to \underline{0} \to Y$ the morphism uniquely factoring through $\underline{0}$.

Definition 4. For a morphism $f: A \to B$ in a dagger category with zero morphisms, we say that a morphism $k: K \to A$ is a *weak dagger kernel* of f if $fk = 0_{K,B}$, and if $m: M \to A$ satisfies $fm = 0_{M,B}$ then $kk^*m = m$.

A dagger kernel category is a dagger category with a zero object, hence zero morphisms, where each morphism f has a weak dagger kernel k (called dagger kernel) that additionally satisfies $k^*k = 1_K$.

Theorem 5. The category **OMLatLin** is a dagger kernel category. The dagger kernel of a morphism $f: X \to Y$ is $k: \downarrow k \to X$, where $k = f^*(1)^{\perp} \in X$.

Corollary 6. Every morphism $f: X \to Y$ in **OMLatLin** has a factorisation me where $m = f(1): \downarrow f(1) \to Y$ and $e = f|^{\downarrow f(1)}: X \to \downarrow f(1)$.

By a *dagger biproduct* of objects A, B in a dagger category C with a zero object, we mean a coproduct $A \xrightarrow{\iota_A} A \oplus B \xleftarrow{\iota_B} B$ such that ι_A, ι_B are dagger monomorphisms and $\iota_B^* \circ \iota_A = 0_{A,B}$. The dagger biproduct of an arbitrary set of objects is defined in the expected way.

Proposition 7. The category **OMLatLin** has arbitrary finite dagger biproducts \bigoplus . Explicitly, $\bigoplus_{i \in I} X_i$ is the cartesian product of orthomodular lattices X_i , $i \in I$, I finite.

The coprojections $\kappa_j \colon X_j \to \bigoplus_{i \in I} X_i$ are defined by $(\kappa_j)(x) = x_{j=}$ with $x_{j=}(i) = \begin{cases} x & \text{if } i=j; \\ 0 & \text{otherwise.} \end{cases}$ and $(\kappa_j)^*((x_i)_{i \in I}) = x_j$. The dual product structure is given by $p_j = (\kappa_j)^*$.

Proposition 8. A free object on a finite set A in **OMLatLin** is isomorphic to the finite Boolean algebra $\mathcal{P}A$.

References

- [HeKa] C. Heunen, M. Karvonen. Limits in dagger categories, Theory Appl. Categ. 34 468--513 (2019).
- [HeJa] C. Heunen, B. Jacobs. Quantum Logic in Dagger Kernel Categories, Electr. Notes Theor. Comput. Sci. 270 (2) 79--103 (2011).
- [Jac] B. Jacobs. Orthomodular lattices, Foulis Semigroups and Dagger Kernel Categories, Logical Methods in Computer Science, June 18 6 (2:1) 1--26 (2010).