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ABSTRACT
This thesis presents a novel approach to solving hyperbolic

partial differential equations by developing a higher order com-
pact implicit numerical schemes based on the finite volume
method. Unlike traditional explicit schemes, which are often
limited by stringent stability requirements, the proposed im-
plicit method allows for larger time steps without sacrificing
stability.

To ensure high resolution results and prevent nonphysical
oscillations, the scheme integrates Essentially Non-Oscillatory
(ENO) and Weighted Essentially Non-Oscillatory (WENO)
spatial reconstructions along with nonlinear flux limiting in
time. The method is further enhanced to accommodate space-
dependent velocities, and to be used to solve nonlinear transport
problems characterized by various sorption isotherms with a
focus on the Freundlich type of isotherm, which are important
in modeling contaminant migration in porous media and in
applications such as liquid chromatography. Computational effi-
ciency is achieved through the implementation of a fast sweeping
method, significantly reducing the computational effort typically
associated with implicit solvers.

The effectiveness of the developed schemes is demonstrated
on representative linear and nonlinear problems in one and two
dimensions; and also on transport equations with nonlinear
sorption isotherms. We demonstrate the effectiveness of high
resolution methods in minimizing oscillations near discontinu-
ities, thereby increasing the accuracy of the solution.

Keywords: hyperbolic problems; conservation law; higher
order accuracy; compact implicit scheme; advection equation;
Burgers equation; transport problem; sorption isotherm; Fre-
undlich isotherm.
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ABSTRACT
Táto dizertačná práca prezentuje nový prístup k riešeniu

hyperbolických parciálnych diferenciálnych rovníc prostred-
níctvom vývoja kompaktných implicitných numerických schém
vyššieho rádu presnosti založených na metóde konečných ob-
jemov. Na rozdiel od tradičných explicitných schém, ktoré sú
často obmedzené prísnymi požiadavkami na stabilitu, navrho-
vaná implicitná metóda umožňuje používať väčšie časové kroky
bez straty stability.

Na zabezpečenie vysokého rozlíšenia výsledkov a prevenciu
nefyzikálnych oscilácií, schéma integruje priestorové rekonštruk-
cie typu ENO (Essentially Non-Oscillatory) a WENO (Weighted
Essentially
Non-Oscillatory), spolu s nelineárnym limiterom toku v čase.
Metóda je ďalej rozšírená tak, aby zohľadňovala rýchlosti závislé
od priestorovej veličiny a aby mohla byť použitá na rieše-
nie nelineárnych transportných problémov charakterizovaných
rôznymi sorpčnými izotermami, so zameraním na Freundlichovu
izotermu. Tá je dôležitá pri modelovaní migrácie kontaminan-
tov v pórovitých médiách a v aplikáciách, ako je kvapalinová
chromatografia. Výpočtová efektivita je dosiahnutá pomocou
implementácie fast sweeping metódy, čím sa výrazne znižuje
výpočtová náročnosť typická pre riešenie implicitných schém.

Účinnosť vyvinutých schém je demonštrovaná na reprezen-
tatívnych lineárnych a nelineárnych problémoch v jednej a dvoch
dimenziách, ako aj na rovniciach reprezentujúcich transport
s nelineárnymi sorpčnými izotermami. Taktiež práca prezen-
tuje, že metódy s vysokým rozlíšením efektívne minimalizujú
oscilácie v blízkosti nespojitostí, čím zvyšujú presnosť riešenia.

Kľúčové slová: hyperbolické rovnice; zákon zachovania;
schémy vyššieho rádu presnosti; kompaktná implicitná schéma;
rovnica advekcie; Burgersova rovnica; sorpčná izoterma; Fre-
undlichova izoterma.
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1
Introduction

When numerically solving time-dependent partial differential
equations (PDEs), a key decision is the choice of time discretiza-
tion—explicit or implicit. Explicit methods, are simple and
computationally cheap but require stability-based restrictions
on time steps. Implicit methods, while unconditionally stable,
involve solving algebraic systems, which can be costly.

The main difference between explicit and implicit time dis-
cretization methods is significantly relaxed in the case when
the term with the time derivative in the PDE is nonlinear. In
such cases, even explicit time discretization methods can lead
to algebraic equations for the values of the numerical solution.

Many numerical methods apply time and space discretiza-
tions separately, often using spatial semi-discretization to reduce
PDEs to systems of ODEs. However, preserving structural prop-
erties of hyperbolic PDEs often necessitates a more integrated
approach.

Concerning implicit methods (or their combinations with
explicit methods), we can mention the class of Runge-Kutta
(RK) methods used for hyperbolic problems in [1, 3, 4, 6, 14,
21–24]. Furthermore, it is recognized that further improvements
can be achieved if, contrary to standard RK methods, not only
the values of the right-hand side function are used, but also its
derivatives. This approach is realized in the development of two-
or multi-derivative RK methods [26, 28], available also in the
form of implicit methods [15, 33]. Although all these methods
are very well developed, their application is not straightforward
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if certain structural properties of the solution for hyperbolic
equations are to be preserved not only by space discretization
but also by the time discretization.

The idea of implicit time discretization using the LW proce-
dure involving the mixed spatial-temporal derivatives [10, 12,
13] can be used not only to enhance the stability of the method
but also to improve the solvability of the resulting algebraic
systems.

In this thesis, we extend the approach of solving hyperbolic
problems by extending the compact implicit numerical scheme
in several important directions, building upon a previous work
such as [13]. The presented schemes are based on the finite
volume method, which provides enhanced flexibility, particu-
larly for problems involving nonuniform grids [27], in contrast
to the finite difference method that is generally restricted to
uniform grids. A significant methodological improvement over
earlier studies [13, 19] is the avoidance of the fractional time
step method. By eliminating this approach, we remove time
splitting errors that can undermine accuracy [18] and instead
introduce a more universal scheme with a newly developed
solution procedure.

To avoid unphysical oscillations, this thesis proposes a high
resolution form of the compact implicit scheme using an Es-
sentially Non-Oscillatory (ENO) and a Weighted Essentially
Non-Oscillatory (WENO) reconstruction in space [27], and a
nonlinear limiting in time using a flux limiter. We treat here
a space dependent velocity situations and relate the computa-
tions of parameters in the numerical scheme with theoretical
results on a preservation of non-negative coefficients in the final
numerical scheme. To further increase the efficiency of the
method, we apply the procedures with the approach to com-
pute the parameters in the ENO and WENO approximations.
We implement the fast sweeping method with proper orderings
of unknowns in each Gauss-Seidel iteration to avoid a large
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number of iterations being used.
In this work, we also apply such a numerical schemes to

the transport equation with nonlinear sorption isotherms. Such
models are used to describe the transport of contaminants in
porous media when contaminant adsorption on pore skeletons
must be taken into account [11]. Other interesting applications
of such models are in liquid chromatography technology [16].
We show that to solve related representative mathematical
models, the computational cost of the compact implicit scheme
is comparable to explicit schemes, but with the clear advantage
of no stability requirement for the implicit scheme.

The main purpose of this study, is to show that, following
these guidelines, the resulting compact implicit scheme can
deliver accurate numerical solutions for representative scalar
hyperbolic equations. The main motivation is to show that
if the method is used as an implicit, a good accuracy can be
obtained in standard numerical experiments that is significantly
improved with respect to the implicit first order accurate scheme.
Consequently, the dominant criterion for the choice of time
steps is the accuracy of numerical resolution for the solution
phenomena that are of interest, and no restriction on the time
step is required due to the stability requirement that might
be related to some uninteresting phenomena. In this initial
study, we do not compute numerical examples in which such
stability requirements are presented, which we plan to do in
our subsequent research.

8



2
Scalar conservation law in one-
dimensional space

This chapter presents the development and analysis of com-
pact implicit finite volume schemes for one-dimensional scalar
conservation laws. These equations, fundamental in modeling
transport and wave phenomena, often require robust numerical
methods due to the presence of discontinuities and nonlineari-
ties.

2.1 Mathematical model and finite vol-
ume method

We consider two representative choices of scalar hyperbolic
equations [18], one in a form of a linear advection equation with
a space dependent velocity

∂tu+ ∂x(v(x)u) = 0 ,

and the second one being the nonlinear autonomous hyperbolic
equation

∂tu+ ∂xf(u) = 0 ,

with u = u(x, t) being the unknown function for x ∈ (xL, xR) ⊂
R and t ∈ (0, T ). The initial conditions are prescribed by
u(x, 0) = u0(x) and we use the Dirichlet boundary conditions
which will be described later together with a physical interpre-
tation.
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Firstly, we will focus on the advection equation (2.1) with a
given velocity. We can identify the unknown function u with
a concentration of a tracer that is dissolved in a fluid flowing
with the given velocity.

The numerical discretization to solve the equation (2.1) is
done in space and time using the notation tn = nτ , n = 0, 1, ...N
for a chosen number of time steps N and τ > 0, and the
spatial discretization is based on the finite volume method
[18]. The computational domain is divided into finite volumes
with a regular grid in the form Ii = (xi−1/2, xi+1/2), where
xi−1/2 = xL + (i − 1)h with i = 1, 2, ...,M for the chosen M
and h = (xR − xL)/M .

To obtain the numerical scheme, we use the finite volume
method [18] obtaining the scheme

hūn+1
i − hūn

i + τvi+1/2ū
n+1/2
i+1/2 − τvi−1/2ū

n+1/2
i−1/2 = 0. (2.1)

The scheme (2.1) is exact and it emphasizes the conservation
law behind the equation. It states that the difference of the
mass of the tracer in the volume Ii at two different times is
only due the mass entering and/or leaving the volume through
its boundary points.

The numerical solution is obtained from (2.1) by approx-
imating the values ū

n+1/2
i+1/2 using U

n+1/2
i+1/2 ≈ ū

n+1/2
i+1/2 [18, 27] and

Un
i ≈ ūn

i . Consequently, the numerical scheme takes the form

Un+1
i − Un

i +
τ

h
(vi+1/2U

n+1/2
i+1/2 − vi−1/2U

n+1/2
i−1/2 ) = 0 . (2.2)

To complete the description of the numerical scheme, we have
to define the values U

n+1/2
i+1/2 using the numerical values Un

i and
Un+1
i .

In case of considering the nonlinear hyperbolic equation
(2.1), the numerical scheme takes the form

Un+1
i − Un

i +
τ

h
(Fi+1/2 − Fi−1/2) = 0, (2.3)
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where, again, Un
i ≈ ūn

i .

2.2 First order accurate implicit nu-
merical scheme

The advection equation (2.1) includes explicitly defined velocity,
for which we can easily treat separately positive and negative
values. In particular, we apply the splitting of the velocity,
which is performed as

v = v+ + v−, with v+ := max(0, v), v− := min(0, v) . (2.4)

Similarly, for the nonlinear equation (2.1), it is beneficial if
one can split the flux into positive and negative values, with
the definition

f = f+ + f−, with
df+(u)

du
≥ 0,

df−(u)

du
≤ 0 . (2.5)

2.3 Fast sweeping method

The different approach to the fractional step method is to
use the full numerical scheme (2.2) and (2.3) and to imple-
ment the iterative fast sweeping method to obtain a numerical
solution of a better accuracy. To obtain the implicit numer-
ical scheme, we follow the standard approaches [7, 18, 27]
and we use the upwind approach proposing approximations
U

n+1/2,±
i+1/2 ≈ u(xi+1/2, t

n+1/2), which correspond to numerical val-
ues obtained by linear reconstructions in related finite volumes,
namely U

n+1/2,−
i+1/2 in Ii and U

n+1/2,+
i+1/2 in Ii+1, as we explain later.

Together with the splitting (2.4), the scheme will become

Un+1
i − Un

i +
τ

h

[
v+
i+1/2

Un+1,−
i+1/2

− v+
i−1/2

Un+1,−
i−1/2

+v−
i+1/2

Un+1,+
i+1/2

− v−
i−1/2

Un+1,+
i−1/2

]
= 0 . (2.6)
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In the case of the first order scheme, we obtain

Un+1
i − Un

i +
τ

h

[
v+
i+1/2

Un+1
i − v+

i−1/2
Un+1
i−1

+v−
i+1/2

Un+1
i+1 − v−

i−1/2
Un+1
i

]
= 0 . (2.7)

The approach of the fast sweeping method indicates that the
scheme is solved iteratively, with each fast sweeping iteration
corresponding to a single Gauss-Seidel iteration applied sequen-
tially in alternating index directions across the computational
domain. Specifically, we ”sweep” from each end of the domain
as follows:

First sweep: i = 1, . . . ,M − 1, (2.8)
Second sweep: i = M − 1, . . . , 1. (2.9)

At each of these ”sweeps”, we solve (2.7) using the Gauss-Seidel
method. Namely, let Un+1,0

i = Un
i and to obtain Un+1,k

i ≈ Un+1
i

for k > 0 we express this value from
(
1 +

τ

h

[
v
+
i+1/2

− v
−
i−1/2

])
U

n+1,k
i = U

n
i +

τ

h

[
v
+
i−1/2

U
n+1,∗
i−1 − v

−
i+1/2

U
n+1,∗
i+1

]
, (2.10)

where ∗ = k if the value Un+1,k+1
i±1 is available, otherwise ∗ =

k − 1.
Generally, to reduce the absolute error of the solution, more

than two fast sweeping iterations (positive and negative) may
be required for each computational time step. Note that in the
case of v(x) > 0, only the first sweep is necessary (2.8) (positive
sweep). Conversely, when v(x) < 0, the second sweep alone
is sufficient (2.9) (negative sweep). The number of required
iterations depends on the problem’s complexity. For higher
order accuracy or nonlinear problems involving challenging
features such as shocks, the iteration count increases, especially
for problems in several dimensions.

In case of solving the nonlinear problem (2.3), to construct
the numerical fluxes, we follow the same proposition [7, 18, 27]
of the approximations U

n+1/2,±
i+1/2 ≈ u(xi+1/2, t

n+1/2).
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Having such values, one has to choose a proper numerical
flux function H = H(u−, u+) of two arguments [18, 27], and
one defines

Fi+1/2 = H(U
n+1/2,−
i+1/2 , U

n+1/2,+
i+1/2 ) . (2.11)

For our purposes, we choose the Godunov flux H defined by

H(u−, u+) =


min

u−≤u≤u+
f(u) if u− ≤ u+

max
u+≤u≤u−

f(u) if u− > u+
, (2.12)

with the simplest first order accurate numerical scheme using
the approximations

U
n+1/2,−
i+1/2 = Un+1

i , U
n+1/2,+
i+1/2 = Un+1

i+1 , (2.13)

which creates the full scheme without fractional time splitting
and can be solved using the fast sweeping method described
in this chapter. Note that it is necessary to deal with the
nonlinearity in the flux term. To solve this, at each of the
"sweeps", we solve the scalar nonlinear algebraic equation (2.3)
for each index i using Newton’s method.

2.4 Second order accurate compact im-
plicit numerical scheme

One of the approaches to approximate the values U
n+1/2
i+1/2 up to

the second order of accuracy [7], is using the parameter ω ∈ [0, 1],
getting the compact implicit numerical approximation

U
n+1/2
i+1/2 = Un+1

i − 1

2

(
ω(Un+1

i−1 − Un
i ) + (1− ω)(Un+1

i − Un
i+1)

)
. (2.14)

Notice that we have managed to obtain a compact stencil as
the value Un+1

i+1 in (2.14) is canceled. This is also a substantial
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difference from the approach given in [7]. Two particular choices
of the parameter ω ∈ [0, 1] do not use the full stencil in (2.14)
which we later conveniently use for the ENO approximation
[27].

The compact implicit numerical scheme for solving linear
advection equation for cases with positive velocity (v > 0)
eventually looks like

Un+1
i − Un

i +
τ

h

[
vi+1/2

(
Un+1
i −

1

2

(
ω(Un+1

i−1 − Un
i ) + (1− ω)(Un+1

i − Un
i+1)

))
−vi−1/2

(
Un+1
i−1 −

1

2

(
ω(Un+1

i−2 − Un
i−1) + (1− ω)(Un+1

i−1 − Un
i )
))]

= 0 .

(2.15)

The scheme is unconditionally stable in the case of constant
speed for any ω ≥ 0 as proved in [13] using von Neumann
stability analysis.

Observe that the term un+1
i+1 from (2.35) and (2.36) is can-

celed in (2.15). This indicates that for such cases, the solution
can be obtained directly using only one fast sweeping iteration
for i = 2, 3, . . . ,M − 1. This necessitates, as visible in (2.15),
some extension of the boundary conditions.

In case of solving the equation (2.1) with the velocity that
changes the sign, very similarly, we obtain the numerical ap-
proximation of u(xi+1/2, t

n+1/2) as

U
n+1/2,+
i+1/2

= Un+1
i+1 −

1

2

(
ω(Un+1

i+2 − Un
i+1) + (1− ω)(Un+1

i+1 − Un
i )
)
. (2.16)

As the scheme expands to include both positive and negative
velocity values using two different schemes with distinct upwind
approaches, we also need to extend the parameter ω as ω =
(ω+, ω−) and the scheme becomes

U
n+1
i − U

n
i +

τ

h

[
v
+
i+1/2

(
U

n+1
i −

1

2

(
ω
+
(U

n+1
i−1 − U

n
i ) + (1 − ω

+
)(U

n+1
i − U

n
i+1)

))
−v

+
i−1/2

(
U

n+1
i−1 −

1

2

(
ω
+
(U

n+1
i−2 − U

n
i−1) + (1 − ω

+
)(U

n+1
i−1 − U

n
i )

))
+v

−
i+1/2

(
U

n+1
i+1 −

1

2

(
ω
−
(U

n+1
i+2 − U

n
i+1) + (1 − ω

−
)(U

n+1
i+1 − U

n
i )

))
−v

−
i−1/2

(
U

n+1
i −

1

2

(
ω
−
(U

n+1
i+1 − U

n
i ) + (1 − ω

−
)(U

n+1
i − U

n
i−1)

))]
= 0 ,

(2.17)
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which, again, may be solved using the fast sweeping method
described in Section 2.3 which consists of two sweeps

First sweep: i = 2, 3, . . . ,M − 2 , (2.18)
Second sweep: i = M − 2,M − 3, . . . , 2 . (2.19)

When solving the nonlinear equation, to finalize the sec-
ond order accurate compact implicit scheme, we express the
numerical fluxes in (2.3) using (2.11) with the numerical ap-
proximations U

n+1/2,±
i+1/2 from (2.14), and (2.16); and we solve it

using the fast sweeping method using two sweeps (2.18), (2.19).

2.5 High resolution schemes

For discontinuous initial conditions or when shocks are present
in the solution, unphysical oscillations may occur in numerical
solutions if the numerical methods from the previous section
with a fixed parameter are used.

To avoid such oscillations, we choose the values of the pa-
rameters ω in each numerical flux differently, i.e., depending
on the numerical solution [13, 27].

Let ω± = ω±
i ∈ [0, 1] for each Ii be the free parameter that

we want to determine. Notice that the values ω = (ω+
i , ω

−
i )

may change for each time step, which we do not focus on in the
notation.

As it is known from the literature [1, 7, 13, 23, 24], unphys-
ical oscillations can occur not only due to an inappropriately
fixed choice of space reconstruction, but also due to the fixed
time reconstruction. Therefore, similarly to [13], we add another
numerical parameter l = (l±) = (l+, l−), which, if necessary,
can limit the second order space reconstruction to the first order
form of the scheme that produces numerical solutions free of
unphysical oscillations. Again, the parameter l is defined in
each Ii in the form l+i , l

−
i ∈ [0, 1]. Notice again that the values
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l also change at each time step, which we do not emphasize in
the notation.

In summary, the approximation of Un+1/2,±
i+1/2 will transform

into the form

U
n+1/2,−
i+1/2

= Un+1
i −

l−i
2

(
ω−
i (Un+1

i−1 − Un
i ) + (1− ω−

i )(Un+1
i − Un

i+1)
)
,

U
n+1/2,+
i+1/2

= Un+1
i+1 −

l+i+1

2

(
ω+
i+1(U

n+1
i+2 − Un

i+1) + (1− ω+
i+1)(U

n+1
i+1 − Un

i )
)
. (2.20)

The high resolution scheme is then defined by (2.2), and
(2.3) with (2.11), with the face values given in (2.20).

Concerning the space reconstruction, we present in the next
sections two standard choices - the simplest Essentially Non-
Oscillatory (ENO) method and a variant of the Weighted ENO
(WENO) method. The value of ω for the ENO approximation
will depend on the following ratios r = (r+i , r

−
i ) which will be

defined for each finite volume Ii as

r−i =
Un+1
i−1 − Un

i

Un+1
i − Un

i+1

, r+i =
Un+1
i+1 − Un

i

Un+1
i − Un

i−1

, (2.21)

while the WENO approximation will depend on the nominators
and denominators in the definitions of r. Clearly, due to the
dependence of r on unknown values of the numerical solution,
an iterative procedure shall be proposed [13, 23] to compute
the parameters ω.

Once the solution dependent values of ω are computed, they
are used for the definition of the parameters l−i

l−i = min
{
1,max

{
0,

(
ω−
i +

1− ω−
i

r−i

)−1 (
2

C
+ l−i−1(ω

−
i−1r

−
i−1 + 1− ω−

i−1)

)}}
,

(2.22)

with C being the local Courant like number. The l+i+1 in (2.20)
is defined analogously.

Additionally to (2.22), we also require l±i = 0 if r±
i < 0.

Note that the ratios in r (2.21) take negative values only near
the extrema of numerical solutions.
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2.6 Third order accurate compact im-
plicit numerical scheme

In this section, we focus on deriving a compact implicit numeri-
cal scheme of third order accuracy for cases involving smooth
solutions [29, 30]. The derivation is mainly concerned with
formulating the term U .,±

i+1/2 in different time steps with a third
order accuracy. Specifically, it is necessary to use two Gauss
points, tn + s1τ and tn + s2τ , with the parameters s1 and s2 de-
fined later in the text, and to approximate the values u(xi+1/2, t)
in t = tn+s1 = tn + s1τ and t = tn+s2 = tn + s2τ .

The derivation differs, but remains straightforward for the
positive and negative cases (denoted by the index ±). For
simplicity, we will detail only the derivation for the values
U .,−
i+1/2. Similarly, we can address the values U .,+

i+1/2, for which
we will provide only the final definitions.

Firstly, we will focus on giving detailed derivation of the
scheme to solve the nonlinear equation and later we will give
details to the linear advection equation (2.1).

For the numerical approximation, we use the Gaussian
quadrature [20] to obtain the third order accuracy. Namely, we
take

Fi+1/2 ≈ f̄i+1/2 ≈
1

2

(
f(u(xi+1/2, t

n + s1τ)) + f(u(xi+1/2, t
n + s2τ))

)
, (2.23)

with parameters s1 and s2 being

s1 =
1

2
(1−

1
√
3
) and s2 =

1

2
(1 +

1
√
3
) . (2.24)

To approximate u(xi+1/2, t
n+sτ), we truncate the Taylor series

u(x, tn + sτ) = u(x, tn+1)− sτ∂tu(x, t
n+1) +

s2τ2

2
∂ttu(, t

n+1) +O(τ3) . (2.25)

Denoting s̄ = 1
2
√
3

then the time approximations using Taylor
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series can be written in the form

Un+s1
i+1/2

= U
n+1/2−s̄
i+1/2

= Un+1
i+1/2

−
(1
2
+ s̄
)
τ∂tU

n+1
i+1/2

+
(1
2
+ s̄
)2 τ2

2
∂ttU

n+1
i+1/2

,

Un+s2
i+1/2

= U
n+1/2+s̄
i+1/2

= Un+1
i+1/2

−
(1
2
− s̄
)
τ∂tU

n+1
i+1/2

+
(1
2
− s̄
)2 τ2

2
∂ttU

n+1
i+1/2

. (2.26)

Now, the first, second, and third terms in (2.26) will be approx-
imated in space using the reconstruction polynomial pn+1

k with
k = 3, 2, 1, respectively. Before doing so, we have to replace the
time derivatives with space (or mixed) derivatives. First, we
use the Taylor series to approximate the first time derivative

τ∂tU
n+1
i+1/2 = (Un+1

i+1/2 − Un
i+1/2) +

τ 2

2
∂ttU

n+1
i+1/2 , (2.27)

and express ∂ttU
n+1
i+1/2 using the Lax-Wendroff procedure

∂ttu(xi+1/2, t
n+1) = −∂txf(u(xi+1/2, t

n+1)) , (2.28)

with the mixed derivative approximated by a standard finite
difference scheme

τh∂txf(u(xi+1/2, t
n+1)) ≈ f(Un+1

i )− f(Un+1
i−1 )− f(Un

i ) + f(Un
i−1). (2.29)

Putting together (2.26) - (2.29), we get the approximation

U
n+1/2±s̄
i+1/2

=U
n+1
i+1/2

(2.30)

− (
1

2
∓ s̄)(U

n+1
i+1/2

− U
n
i+1/2) (2.31)

+
(
(
1

2
∓ s̄) − (

1

2
∓ s̄)

2) τ

2h

(
f(U

n+1
i ) − f(U

n+1
i−1 ) − f(U

n
i ) + f(U

n
i−1)

)
. (2.32)

Using the quadratic and linear polynomial in (2.30) and (2.31),
respectively, we obtain

U
n+1/2±s̄
i+1/2

= pn+1
3 (xi+1/2)− (

1

2
∓ s̄)

(
pn+1
2 (xi+1/2)− pn2 (xi+1/2)

)
+
(
(
1

2
∓ s̄)∓ (

1

2
− s̄)2

)(
f(Un+1

i )− f(Un+1
i−1 )− f(Un

i ) + f(Un
i−1)

)
.

(2.33)
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For the polynomial pn+1
3 (xi+1/2) we obtain [27]

pn+1
3 (xi+1/2) =

1

3
Un+1
i+1 +

5

6
Un+1
i − 1

6
Un+1
i−1 . (2.34)

Furthermore, we use pn+1
2

pn+1
1 (xi+1/2) = (1− ω)Un+1

i+1 + ωUn+1
i , (2.35)

pn+1
2 (xi+1/2) =

ω

2
(3Un+1

i − Un+1
i−1 ) +

1− ω

2
(Un+1

i + Un+1
i+1 ) . (2.36)

with different values ω± to cancel the term Un+1
i+1 in (2.34) when

used in (2.33). To do so, we must solve two simple equations

1

3
−
(1− ω+

2

)(1
2
− s̄
)
= 0 ,

1

3
−
(1− ω−

2

)(1
2
+ s̄
)
= 0 , (2.37)

where we obtain the values ω+ = 1+
√
3

−3+
√
3

and ω− = −1+
√
3

3+
√
3

.
The numerical scheme with the third order accuracy, can

then be expressed in the form of (2.3) with

Fi+1/2 =
1

2

[
H(U

n+1/2−s̄,−
i+1/2

, U
n+1/2−s̄,+
i+1/2

) +H(U
n+1/2+s̄,−
i+1/2

, U
n+1/2+s̄,+
i+1/2

)
]
, (2.38)

with function H in (2.12), where

U
n+1/2∓s̄,−
i+1/2

=U
n+1
i +

1

12

[
(−3 ± 3

√
3)U

n+1
i + (−3 ∓

√
3)U

n+1
i−1

+ (1 ±
√

3)U
n
i−1 + (1 ∓ 3

√
3)U

n
i + 4U

n
i+1

]
+

(
(
1

2
∓ s̄) − (

1

2
∓ s̄)

2) τ

2h

[
f(U

n+1
i ) − f(U

n+1
i−1 ) − f(U

n
i ) + f(U

n
i−1)

]
. (2.39)

Using analogously the upwind approach, one can straightfor-
wardly determine the values U

n+1/2,+
i+1/2 . The problem is solved

using the fast sweeping method described in Section 2.3.
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3
Scalar conservation law in two-
dimensional space

This chapter introduces a novel approach for the numerical
solution of two-dimensional conservation laws, focusing on a
compact implicit discretization scheme that enables the use of
fast algebraic solvers, such as the fast sweeping method also
mentioned in Chapter 2.

We consider two representative scalar hyperbolic partial
differential equations in two-dimensional case. First, we consider
the nonlinear hyperbolic equation in the form

∂tu+∇ · f(u) = 0, (3.1)

with f(u) = (f(u), g(u)) being the vector flux function, so (3.1)
can be written in the form

∂tu+ ∂xf(u) + ∂yg(u) = 0 (3.2)

with u = u(x, y, t) being the unknown function for t ∈ (0, T )
and x ∈ (xL, xR) ⊂ R, y ∈ (yL, yR) ⊂ R. The initial condition
is defined by u(x, y, 0) = u0(x, y) and the Dirichlet boundary
conditions, if prescribed, are denoted by

u(xL, y, t) = uxL (y, t), u(x, yL, t) = uyL (x, t)

u(xR, y, t) = uxR (y, t), u(x, yR, t) = uyR (x, t) . (3.3)

In case of dealing with the linear advection equation in two
dimensions, the f in (3.1) is present in the form f = v⃗u and
the equation becomes

∂tu+ ∂x(vu) + ∂y(wu) = 0 , (3.4)
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where v⃗ represents the velocity field v⃗ = v⃗(x, y) = (v(x, y), w(x, y))
which is a known function.

3.1 Numerical scheme and finite vol-
ume method

Firstly, we will describe the derivation for the (3.2).
The discretization is done in space and time using the fol-

lowing notation. We denote tn = nτ , n = 0, 1, ...N for a chosen
N and τ > 0 with tn+1/2 = tn + τ/2. The spatial discretization
is based on the finite volume method [2, 8, 18]. For simplicity
of the notation, we assume a squared computational domain
(x, y ∈ (xL, xR)) that is divided into finite volumes of the form
Ii,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2) with the regular square
grid, where xi−1/2 = xL + (i− 1)h and yj−1/2 = xL + (j − 1)h
with i, j = 1, 2, ...,M for the chosen M and h = (xR − xL)/M .

The main idea behind the finite volume method is to inte-
grate the differential equation (3.2) over Ii,j × (tn, tn+1), obtain-
ing the exact form

ūn+1
i,j − ūn

i,j +
τ

h
(f̄i+1/2,j − f̄i−1/2,j) +

τ

h
(gi,j+1/2 − gi,j−1/2) = 0 . (3.5)

To obtain a numerical scheme, of the second order of ac-
curacy, we consider midpoint quadrature rules. Using Un+1

i,j ≈
ūn+1
i,j ≈ u(xi, yj, t

n+1) and numerical fluxes

Fi+1/2,j ≈ f̄i+1/2,j ≈ f(u(xi+1/2, yj , t
n+1/2)) ,

Gi,j+1/2 ≈ ḡi,j+1/2 ≈ g(u(xi, yj+1/2, t
n+1/2)) ,

the numerical scheme takes then the form

Un+1
i,j − Un

i,j +
τ

h
(Fi+1/2,j − Fi−1/2,j) +

τ

h
(Gi,j+1/2 −Gi,j−1/2) = 0 . (3.6)

To construct the numerical fluxes F,G in, we follow stan-
dard approaches [7, 18, 27], also mentioned in Chapter 2, and
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the only need is to propose the approximations U
n+1/2,±
i+1/2,j ≈

u(xi+1/2, yj, t
n+1/2) and U

n+1/2,±
i,j+1/2 ≈ u(xi, yj+1/2, t

n+1/2) that cor-
respond to numerical values obtained by linear reconstructions
in related finite volumes, namely U

n+1/2,−
i+1/2,j in Ii,j and U

n+1/2,+
i+1/2,j

in Ii+1,j , and analogously for Un+1/2,±
i,j+1/2 . Having such values and

properly chosen numerical flux function H = H(u−, u+) of two
arguments [18, 27], one defines

Fi+1/2,j = H(U
n+1/2,−
i+1/2,j

, U
n+1/2,+
i+1/2,j

) , (3.7)

and similarly for the flux Gi,j+1/2,

Gi,j+1/2 = H(U
n+1/2,−
i,j+1/2

, U
n+1/2,+
i,j+1/2

) . (3.8)

For our purposes, we choose the Godunov flux H defined by

H(u−, u+) =


min

u−≤u≤u+
h(u) if u− ≤ u+

max
u+≤u≤u−

h(u) if u− > u+
, (3.9)

where h = f for (3.7) and h = g for (3.8).

Note that the simplest first order accurate numerical scheme
uses the approximations

U
n+1/2,−
i+1/2,j

= Un+1
i,j , U

n+1/2,+
i+1/2,j

= Un+1
i+1,j ,

U
n+1/2,−
i,j+1/2

= Un+1
i,j , U

n+1/2,+
i,j+1/2

= Un+1
i,j+1 . (3.10)

3.2 Second order accurate compact im-
plicit numerical scheme

In this section, we present the parametric form of the second
order accurate scheme in time and space that is later used also in
the framework of high resolution schemes. As discussed above,
one has to define the approximations U

n+1/2,±
i+1/2,j and U

n+1/2,±
i,j+1/2
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based on the upwind approach. The approximations then look
like

U
n+1/2,−
i+1/2,j

= Un+1
i,j −

1

2

(
ωx,−(Un+1

i−1,j − Un
i,j) + (1− ωx,−)(Un+1

i,j − Un
i+1,j)

)
, (3.11)

U
n+1/2,−
i,j+1/2

= Un+1
i,j −

1

2

(
ωy,−(Un+1

i,j−1 − Un
i,j) + (1− ωy,−)(Un+1

i,j − Un
i,j+1)

)
. (3.12)

Notice that we have managed to obtain a compact stencil
as the values Un+1

i+1,j and Un+1
i,j+1 in (3.11) and (3.12) are canceled.

This is also the substantial difference to the approach given
in [7]. Two particular choices of parameters ωx,− ∈ [0, 1] and
ωy,− ∈ [0, 1] do not use the full stencil in (3.11) and (3.12)
that we use later conveniently for ENO approximation [27]. In
particular, with the value ωx,− = 0 and ωy,− = 0 we create
in (3.11) and (3.12) a "central" kind of discretization and for
ωx,− = 1 (and ωy,− = 1) the "upwind" one.

Very similarly, one obtains the numerical approximations of
U

n+1/2,+
i+1/2,j and U

n+1/2,+
i,j+1/2 as

U
n+1/2,+
i+1/2,j

= Un+1
i+1,j −

1

2

(
ωx,+(Un+1

i+2,j − Un
i+1,j) + (1− ωx,+)(Un+1

i+1,j − Un
i,j)
)
,

U
n+1/2,+
i,j+1/2

= Un+1
i,j+1 −

1

2

(
ωy,+(Un+1

i,j+2 − Un
i,j+1) + (1− ωy,+)(Un+1

i,j+1 − Un
i,j)
)
. (3.13)

To finalize the second order accurate compact implicit
scheme for the nonlinear problem (3.2), we express the nu-
merical fluxes in (3.6) using (3.7) and (3.8) with the numeri-
cal approximations U

n+1/2,±
i+1/2,j , U

n+1/2,±
i,j+1/2 from (3.11), (3.12), and

(3.13).
The discretization schemes create a system of algebraic

equations that can be solved, again, iteratively, using the fast
sweeping method mentioned in Chapter 2.

3.3 Fast sweeping method in 2D

The approach of the fast sweeping method indicates that the
scheme is solved iteratively, with alternating index directions
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across the computational domain [19, 34]. In particular, for
two-dimensional case, we use four different ”sweeps” from each
corner of a rectangular domain:

First sweep: i = 2, ...,M − 2 , j = 2, ...,M − 2

Second sweep: i = M − 2, ..., 2 , j = 2, ...,M − 2

Third sweep: i = M − 2, ..., 2 , j = M − 2, ..., 2

Fourth sweep: i = 2, ...,M − 2 , j = M − 2, ..., 2 (3.14)

or, alternatively, when applying the first order accurate scheme,
the sweeps are performed from i/j = 1 to i/j = M − 1 (or
opposite direction) because of the smaller stencil used in scheme.
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4
Transport problem with sorption
isotherm

In this Chapter, we are interested in numerical solution of
nonlinear transport equations in a conservative form [31] where
the time derivative in the model is applied to a nonlinear
function of the solution.

Such models are used to describe the transport of contami-
nants in porous media when contaminant adsorption on pore
skeletons must be taken into account [11]. Other interest-
ing applications of such models are in liquid chromatography
technology [16]. We show that to solve related representative
mathematical models, the computational cost of the compact
implicit scheme is comparable to explicit schemes, but with
the clear advantage of no stability requirement for the implicit
scheme.

4.1 Mathematical model and numeri-
cal scheme

We consider the representative nonlinear transport problem in
the form

∂tF (u) + ∂xu = 0, (4.1)
with u = u(x, t) ≥ 0 being the unknown function for t ∈ (0, T )
and x ∈ (xL, xR) ⊂ R. The initial condition is defined by

u(x, 0) = u0(x) . (4.2)
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As F ′(u) > 0 for u ∈ R, the Dirichlet boundary condition is
defined only at the left boundary,

u(xL, t) = uxL
(t) , (4.3)

and no boundary condition is required at the right boundary.
The mathematical model can represent the transportation

of contaminant [5, 9, 11, 17] or liquids in chromatography [16,
25] with the sorption isotherm

Ψ(u) = F (u)− u . (4.4)

One of the most frequently encountered type of (nonlinear)
sorption isotherms is the Freundlich type,

Ψ(u) = aup , a, p > 0 . (4.5)

In this paper, we will focus on a single choice a = 1.
The solution to (4.1) discussed in this paper is based on the

theoretical results [18], which ensure the existence and unique-
ness of so-called entropy solutions for hyperbolic problems.
Such theoretical framework has been established for hyperbolic
equations in the form

∂tq + ∂xf(q) = 0 , (4.6)

that can be obtained with the transformation

q = F (u) , u = f(q) , (4.7)

where f = F−1 is the inverse function of F .
In general, the function f may not be available analytically.

In the case where f is known, the problem can be readily
addressed using established methods for hyperbolic problems
[18].

26



The equation (4.1) may be extended using the velocity v(x),
known for each value of x, into the form

∂tF (u) + ∂x(v(x)u) = 0 , (4.8)

where the velocity may take on both positive and negative
values and the Dirichlet boundary condition will be extended
also to the right boundary

u(xR, t) = uxR
(t) . (4.9)

The numerical discretization to solve the equation (4.8) is
done in space and time using the notation tn = nτ , n = 0, 1, ...N
for a chosen N and τ > 0, and the spatial discretization is
based on the finite volume method [18]. The computational
domain is divided into finite volumes with a regular grid in the
form Ii = (xi−1/2, xi+1/2), where xi−1/2 = xL + (i − 1)h with
i = 1, 2, ...,M for the chosen M and h = (xR − xL)/M .

To obtain the numerical scheme, we use the finite volume
method, [18]. To solve (4.8), we need to treat the positive and
negative velocities separately as in 2.4

After integrating the differential equation (4.8) over Ii ×
(tn, tn+1), we obtain the scheme

q̄n+1
i − q̄ni +

τ

h
(vi+1/2ū

n+1/2
i+1/2 − vi−1/2ū

n+1/2
i−1/2 ) = 0 . (4.10)

The numerical solution of (4.10) is obtained by approximating
the values ū

n+1/2
i+1/2 using U

n+1/2
i+1/2 ≈ ū

n+1/2
i+1/2 [18, 27] and Qn

i ≈ q̄ni .
The numerical scheme takes the form

Qn+1
i −Qn

i +
τ

h
(vi+1/2U

n+1/2
i+1/2 − vi−1/2U

n+1/2
i−1/2 ) = 0 . (4.11)

To complete the description of the numerical scheme, we have
to define the values U

n+1/2
i+1/2 using the numerical values Un

i and
Qn+1

i = F (Un+1
i ).
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4.2 First order accurate numerical scheme

For convenience and a comparison, we give notation for the
first order accurate explicit and implicit numerical schemes. To
obtain the first order accurate explicit numerical scheme, we
use the upwind approach together with the velocity splitting,
and the scheme [18] will become

Qn+1
i = Qn

i −
τ

h

[
v+
i+1/2

Un
i − v+

i−1/2
Un
i−1

+v−
i+1/2

Un
i+1 − v−

i−1/2
Un
i

]
, (4.12)

where the explicit structure of the scheme is clearly evident.
It is important to note that when employing an explicit

numerical scheme (4.12), the challenge of solving the non-
linear problem does not vanish and is still present in terms
Qn+1

i = F (Un+1
i ). The nonlinearity F (u) = u+ up still requires

resolution, which necessitates the use of an iterative method to
obtain the solution, such as Newthon’s method, together with
the necessity to adhere to the stability restrictions imposed by
explicit numerical schemes.

In case of using the implicit numerical scheme, one gets

Qn+1
i −Qn

i +
τ

h

[
v+
i+1/2

Un+1
i − v+

i−1/2
Un+1
i−1

+v−
i+1/2

Un+1
i+1 − v−

i−1/2
Un+1
i

]
= 0 , (4.13)

where the nonlinearity is readily apparent in the previously
mentioned relation Qn+1

i = F (Un+1
i ).

The discretization scheme creates a system of algebraic
equations (4.13) that can be solved iteratively, using the fast
sweeping method [34].
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4.3 Second order accurate compact im-
plicit numerical scheme

In this section, we will focus on the derivation of the second
order accurate compact implicit numerical scheme and its high
resolution formulation. We will start with assuming only v > 0.

To obtain the second order of accuracy [7] of (4.11), the
derivation is very similar to the one described in Section 2.4
obtaining the approximation for U

n+1/2
i+1/2 (2.14)

U
n+1/2
i+1/2

= Un+1
i −

1

2

(
ωi(U

n+1
i−1 − Un

i ) + (1− ωi)(U
n+1
i − Un

i+1)
)
. (4.14)

To deal with the oscillations that may arise due to disconti-
nuities in the solution, again, we propose a high resolution form
of the scheme. Such scheme incorporates a variable parameter
ω and a limiter l to control numerical oscillations and to ensure
stability [13, 32]. By adapting ω and employing the limiter l,
the scheme effectively balances accuracy and non-oscillatory be-
havior near discontinuities. Consequently, the proposed method
(for cases with v > 0) is transformed into the following form,

Q
n+1
i − Q

n
i +

τ

h

[
vi+1/2

(
U

n+1
i −

li

2

(
ωi(U

n+1
i−1 − U

n
i ) + (1 − ωi)(U

n+1
i − U

n
i+1)

))
−vi−1/2

(
U

n+1
i−1 −

li−1

2

(
ωi−1(U

n+1
i−2 − U

n
i−1) + (1 − ωi−1)(U

n+1
i−1 − U

n
i )

))]
= 0 .

(4.15)

Again, it is necessary to handle the nonlinearity present in
Q, since Q = F (U), and to determine the values of ω and l. To
do that, we use the ENO or WENO approximations, together
with the iterative procedure.

In case of solving the equation (4.8) with the velocity that
changes the sign, we need to extend the values ω = (ω+, ω−)
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and l = (l+, l−) and the scheme becomes

Q
n+1
i − Q

n
i +

τ

h

[
v
+
i+1/2

(
U

n+1
i −

l+i

2

(
ω
+
i (U

n+1
i−1 − U

n
i ) + (1 − ω

+
i )(U

n+1
i − U

n
i+1)

))
−v

+
i−1/2

(
U

n+1
i−1 −

l+i−1

2

(
ω
+
i−1(U

n+1
i−2 − U

n
i−1) + (1 − ω

+
i−1)(U

n+1
i−1 − U

n
i )

))
+v

−
i+1/2

(
U

n+1
i+1 −

l−i+1

2

(
ω
−
i+1(U

n+1
i+2 − U

n
i+1) + (1 − ω

−
i+1)(U

n+1
i+1 − U

n
i )

))
−v

−
i−1/2

(
U

n+1
i −

l−i
2

(
ω
−
i (U

n+1
i+1 − U

n
i ) + (1 − ω

−
x )(U

n+1
i − U

n
i−1)

))]
= 0 ,

(4.16)

which, again, may be solved using the fast sweeping method.
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5
Conclusion

The thesis presents a development of implicit numerical schemes
for hyperbolic problems which are of a high order of accuracy,
unifying methodologies across linear and nonlinear scalar con-
servation laws in one and two dimensions.

Central to this research is the derivation of the compact
implicit schemes that are based on the finite volume method
combined with Taylor series expansions. These schemes are
distinguished by their use of compact stencils, which reduce the
number of grid points required for spatial discretization while
maintaining high order accuracy.

The schemes show flexibility, adapting both smooth and
discontinuous solutions for linear and nonlinear problems. High
resolution techniques with limiters ensure physically plausible
solutions together with Essentially Non-Oscillatory (ENO) and
Weighted ENO (WENO) methods, effectively reducing oscilla-
tions near discontinuities through the careful optimization of
parameters. This is further examined in nonlinear transport
problems, such as those involving Freundlich sorption isotherms,
where implicit methods outperform explicit counterparts in sta-
bility and efficiency, particularly at high Courant numbers.

In one-dimensional problems, the integration of the Lax-
Wendroff procedure enables a single time-step approach by
resolving mixed space-time derivatives, enhancing computa-
tional efficiency to create the third order accurate scheme. For
two-dimensional cases, the compact stencil design simplifies alge-
braic systems, allowing iterative solutions via the fast sweeping
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method and nonlinear Gauss-Seidel techniques without compro-
mising stability.

Validation through extensive numerical experiments under-
line the accuracy and convergence of the proposed schemes.
The second order methods exhibit the expected rate of conver-
gence for smooth cases and perform well in scenarios involving
discontinuities, yielding the desired increase in precision. The
third order extension of the scheme achieves the anticipated
convergence rates for smooth solutions.

The implicit framework eliminates the restrictive time-step
constraints characteristic of explicit methods. Computational
efficiency is further enhanced by the fast sweeping method,
which reduces the algebraic complexity of multi-dimensional
systems.

The practical implications of this work include environmen-
tal hydrology, materials science, and contaminant transport
modeling, where accurate and stable simulations are critical.
Future research directions include extending these schemes to
systems of coupled equations. Furthermore, validation using
experimental data from real-world applications will improve the
selection of parameters and the predictive accuracy, thereby
strengthening the connection between theoretical models and
industrial practice.

By combining innovative techniques with computational
efficiency, this thesis establishes a framework for compact im-
plicit methods that offers a balanced approach to accuracy,
stability, and performance in solving a broad class of hyperbolic
problems.
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