
Slovak University of Technology in
Bratislava

Faculty of Civil Engineering
Reg. No.: SvF-16646-104364

Basic hydrological modeling
in software NaturaSat

Master’s thesis

2024 Bc. Ivana Piačková

Slovak University of Technology in
Bratislava

Faculty of Civil Engineering

Basic hydrological modeling
in software NaturaSat

Master’s thesis

Study programme: Mathematical and Computational Modeling
Study field: 9.1.9. Applied Mathematics
Training workplace: Department of Mathematics and Descriptive Geometry
Supervisor: Ing. Michal Kollár, PhD.
Consultant: Prof. RNDr. Karol Mikula, DrSc.

Bratislava 2024 Bc. Ivana Piačková

Slovak University of Technology in Bratislava
Department of Mathematics and Descriptive Geometry

Faculty of Civil Engineering
Academic year: 2023/2024
Reg. No.: SvF-16646-104364

MASTER THESIS TOPIC

Student: Bc. Ivana Piačková
Student’s ID: 104364
Study programme: Mathematical and Computational Modeling
Study field: Mathematics
Thesis supervisor: Ing. Michal Kollár, PhD.
Head of department: Ing. Marek Macák, PhD.
Consultant: prof. RNDr. Karol Mikula, DrSc.

Topic: Basic hydrological modeling in software NaturaSat

Language of thesis: English

Specification of Assignment:

The thesis will deal with the implementation of hydrological modeling into the NaturaSat software.
Hydrological modeling will be performed by solving the Laplace equation on a computational domain
bounded by distributaries, representing the potential wetland area. Dirichlet boundary conditions
corresponding to the water level will be specified at the boundary. By solving the Laplace equation,
groundwater levels within the computational domain will be obtained, which will be compared with a digital
terrain model to determine the optimal water levels in river branches for wetland occurrence. The Laplace
equation will be solved on a real computational domain obtained by segmentation from orthophoto images and
will be solved using the complementary volume method on an irregular triangular mesh.

Deadline for submission of Master thesis: 09. 05. 2024

Approval of assignment of Master thesis: 09. 05. 2024

Assignment of Master thesis approved by: prof. RNDr. Karol Mikula, DrSc. – study programme supervisor

Declaration

I declare that this thesis has been composed solely by myself under supervision of
my supervisor and using the literature stated in Bibliography.

Bratislava 9. 5. 2024

Ivana Piačková

Acknowledgement

First and foremost, I would like express my sincere gratitude towards my super-
visor, Ing. Michal Kollár, PhD., for his help, support, and invaluable guidance. His
accessibility and insightful advice were instrumental during the work on the thesis.

I am also grateful to my consultant, Prof. RNDr. Karol Mikula, DrSc., whose intro-
duction to the topic and valuable insights significantly contributed to the development
of this thesis.

Last but not least, I would like to express special thanks to my family and my
boyfriend for their unending support, encouragement and constructive feedback.

Bratislava 9. 5. 2024

Ivana Piačková

Abstract
Title: Basic hydrological modeling in software NaturaSat
Abstract: The thesis deals with the implementation of hydrological modeling into
the NaturaSat software. Hydrological modeling is performed by solving the Laplace
equation on a computational domain bounded by distributaries, which represents the
area of potential wetland occurrence. Dirichlet boundary conditions corresponding to
the water level are specified at the boundary. By solving the Laplace equation, we
obtain groundwater levels within the computational domain, which will be compared
with a digital terrain model to determine the optimal water levels in river branches for
wetland occurrence. The Laplace equation is solved on a real computational domain
obtained by segmentation from orthophoto images and is solved using the complemen-
tary volume method on an irregular triangular mesh.

Keywords: hydrological modeling, groundwater level, Laplace equation, complemen-
tary volume method, triangular grid

Abstrakt
Názov práce: Základné hydrologické modelovanie v softvéri NaturaSat
Abstrakt: Práca sa zaoberá implementáciou hydrologického modelovania do softvéru
NaturaSat. Hydrologické modelovanie je vykonávané riešením Laplaceovej rovnice na
výpočtovej oblasti ohraničenej riečnymi ramenami, ktorá predstavuje oblasť možného
výskytu mokrade. Na hranici sú zadané Dirichletove okrajové podmienky zodpovedajú-
ce výške vodnej hladiny. Riešením Laplaceovej rovnice získame hladiny podzemnej
vody vo vnútri výpočtovej oblasti, ktoré budú porovnané s digitálnym modelom terénu
na určenie optimálnej hladiny vody v riečnych ramenách pre výskyt močiarov. Lapla-
ceova rovnica je riešená na reálnej výpočtovej oblasti získanej segmentáciou z ortofo-
tosnímok, a je riešená pomocou metódy komplementárnych objemov na nepravidelnej
trojuholníkovej sieti.

Kľúčové slová: hydrologické modelovanie, hladina podzemnej vody, Laplaceova rov-
nica, metóda komplementárnych objemov, trojuholníková sieť

5

Contents

1 Introduction 8

2 Triangulation 10
2.1 Delaunay triangulation . 11

2.1.1 Constrained Delaunay triangulation 11
2.2 Implementation using CGAL library 12

2.2.1 Generating constrained Delaunay triangulation 13
2.2.2 Mesh refinement . 14

3 Complementary volume method for solving the Laplace equation 16
3.1 Spatial discretization . 16
3.2 Numerical scheme . 17
3.3 System of linear equations . 20
3.4 Implementation . 21

4 Visualization 25
4.1 Using VTK file . 25
4.2 Interpolation onto the regular grid . 26

4.2.1 The regular grid . 26
4.2.2 Pixel localization . 27
4.2.3 Barycentric interpolation . 29

5 Numerical experiments 32
5.1 Synthetic region - square with the Poisson equation 32
5.2 Synthetic region - discretized circle . 35
5.3 Real region . 37

5.3.1 Synthetic boundary conditions 37
5.3.2 Boundary conditions from elevation data 40

6 Comparison of the solution of the Laplace equation with the DTM 43
6.1 Results for the real region . 44

6

7 Conclusions 49

Resumé 51

Bibliography 53

7

1 Introduction

Wetlands, regions that are permanently or seasonally flooded or saturated by water,
belong among the most productive and biodiverse ecosystems in the world. They fulfill
many important functions for both nature and our civilization, including providing
habitats for 40% of the world’s plant and animal species [22], storing and purifying
water, and helping with erosion and flood control [15]. However, wetlands are disap-
pearing at an alarming rate due to human activities, climate change, pollution, and
various other factors.

Figure 1.1: Decline of wetland cover since 1700 [3].

Maintaining the health of wetlands requires continuous monitoring, analysis of their
conditions, and, if necessary, the application of restoration mechanisms. However, the
analysis of wetland conditions through fieldwork alone is both challenging and time
inefficient. Our goal is to help with this process by implementing basic hydrological
modeling into the environmental software NaturaSat [14], which serves for identifying
and monitoring Natura2000 habitats.

One of the wetlands’ characteristics indicating their state is the water level. We con-
sider the surface of groundwater to behave as an elastic membrane connecting boundary
conditions, so it can be described using a non-linear minimal surface equation. We use
the Laplace equation, as it is a good approximation of the minimal surface equation in
cases where the gradients of the solution are small. The primary objective of hydrolog-
ical modeling is to determine the water level within a selected computational region.

8

The region is defined by a segmentation polygon, which can be obtained through semi-

automatic or automatic segmentation within the NaturaSat software [13, 12]. On the

boundary of the region we impose Dirichlet boundary conditions, representing the wa-

ter level at specific vertices of the segmentation polygon.

To solve this boundary problem, we apply the complementary volume method on

an irregular triangular grid. Firstly, we discretize the computational region into a

triangular grid using the triangulation of a polygonal region (see Chapter 2). Next,

we implement the derived numerical scheme of the complementary volume method for

the Laplace equation (see Chapter 3). The resulting solution can then be visualized

for the user within the NaturaSat software (see Chapter 4). Subsequently, we test the

implementation on a synthetic experiment to determine the EOC, as well as on a real

experiment involving the region in the Danube basin (see Chapter 5).

The next goal is to compare the solution of the Laplace equation with the digital

terrain model (DTM) to identify the relationship between the ground and the water

surface (see Chapter 6). This comparison serves to assess the wetland’s conditions and

determine the optimal water level in surrounding water bodies, especially rivers and

streams, for the wetland occurrence, which can help with their restoration.

9

2 Triangulation

Triangulation, in general, is a subdivision of a planar object into non-overlapping
triangles. Within the scope of our application, we specifically employ triangulation for
polygons. This process involves partitioning a polygonal area into a set of triangles.
The set of triangular facets adheres to the following principles:

• two facets are either disjoint or share a lower-dimensional face, such as an edge
or a vertex,

• the union of all facets reconstructs the original area,

• the vertices of each triangle coincide with the vertices of the original polygon.

Figure 2.1: Polygon triangulation

Facets of triangulation can be given an orientation, which subsequently influences
the orientation of the edges of the facet. The orientation of two adjacent facets is
termed consistent if they induce opposite orientations on their shared incident edge.
The entire triangulation can be characterized as orientable when this condition holds
for each pair of adjacent facets. [26]

There are several types of triangulations suitable for different uses, such as De-
launay, regular, or constrained triangulation. In our context, we focus on Delaunay
triangulation, more specifically constrained Delaunay triangulation, because it consists
of only acute triangles of similar size and shape. These characteristics guarantee an
easy construction of co-volumes, which is described in the next chapter and there are

10

no singularities or problematic geometrical features, which leads to efficient numerical
calculations.

2.1 Delaunay triangulation
The Delaunay triangulation is a triangulation of a set of points in a plane, which

satisfies so-called Delaunay property (or empty circumcircle property): the circumcircle
of any facet contains no point from the given set (Fig.2.2). The circumcircle of a triangle
is defined as the circle passing through all three vertices of this triangle. Additionally,
Delaunay triangulation is designed to maximize the minimum angle of all triangles
which leads to ”well-shaped” triangles.

(a) Delaunay triangulation (b) Non-Delaunay triangulation

Figure 2.2: Two different triangulations on the same set of points showing the Delaunay
property. The yellow vertex indicates a violation of this property.

2.1.1 Constrained Delaunay triangulation

Constrained, not necessarily Delaunay triangulation is a type of triangulation that
forces specific polylines to be included among the resulting edges (Fig.2.3). These
polylines are referred to as constraints and the corresponding edges in the triangulation
are called constrained edges. The basic version of the triangulation process assumes
that input constraints do not intersect, except at their endpoints. While it is possible
to generate a constrained triangulation even when constraints intersect, such cases
require the introduction of new vertices at the intersection points. [26]

Specifically, constrained Delaunay triangulation presents a triangulation method
that simultaneously fulfills the empty circumcircle property of Delaunay triangulation
and includes the specified input constraints into the resulting edges.

11

This method aligns with our application objectives, as we want to create a primal
triangular grid on the area defined by a segmentation polygon. Segmentation polygons
are closed polygons that result from semi-automatic and automatic segmentation of
the observed biotopes, particularly wetlands, using the NaturaSat software [13, 12]. It
is necessary to preserve the edges given by segmentation polygons within the grid.

Figure 2.3: Set of points and constraints (left) and the resulting constrained triangulation
(right). [26]

2.2 Implementation using CGAL library
Numerous algorithms exist for triangulation and there are many libraries that im-

plement them, including CGAL [21], CDT [11], Triangle [20] or Fade2D [4]. In our case,
CGAL appears as the most fitting choice, so we use it for the triangulation process.
CGAL (The Computational Geometry Algorithms Library) is an open-source library
that provides computational geometry algorithms in C++. The library covers a wide
range of topics, with different triangulations among them.

CGAL provides complete triangulations which means that they cover the convex
hull of the set of vertices. This may be problematic when creating a grid over concave
areas or regions with holes inside. To overcome this issue, the domain of triangulation
is introduced. By defining a domain, we can access only the triangles within it and
ignore ones outside the domain.

Triangulation in CGAL is represented by faces and vertices rather than by edges.
This approach saves storage space and results in faster algorithms. Each face gives
access to its three incident vertices and its three adjacent faces. Each vertex gives
access to one of its incident faces and through this face to the circular list of its all
incident faces.

For manipulating the triangulation, we address the triangulation classes which pro-
vide various functionalities, such as the location of a point, insertion, removal, or
displacement of a point. These classes have two template parameters that separate the
geometric and combinatorial aspect of the triangulation:

• a geometric traits class providing the geometric primitives and the elementary
operations,

12

• a triangulation data structure class, which defines the faces and vertices of
the triangulation and enables us to access them. [17]

2.2.1 Generating constrained Delaunay triangulation

Generating any triangulation in CGAL requires the definition of an object of the
corresponding triangulation class. For the constrained Delaunay triangulation, we opt
for Constrained_Delaunay_triangulation_2 with the following template param-
eters: Traits for the geometric aspect, Tds for the triangulation data structure, and
Itag, which allows the user to select if intersecting constraints are supported.

Subsequently, the user needs to input the points and the constraints into this object.
The points are inserted into triangulation using the insert function, which supports
inserting individual points and also an array of points specified by their iterator range.
The constraints of the triangulation can be defined using the function insert_constraint.
This function allows the insertion of individual line segments, given by their endpoints
in the form of vertex handles. Additionally, it enables the user to insert constraints as
a pre-defined polyline, such as the Polygon_2 type of CGAL [5]. This approach is
particularly relevant for our application, as we are dealing with segmentation polygons.
The Polygon_2 object is filled with points of a polygon using the function push_back.

The insertion of these basic geometric entities into the triangulation object au-
tomatically leads to a triangulation generation. It means that this process does not
require calling any additional function. The created triangulation can be visualized
using the draw function, which takes the triangulation object as an argument. A show-
case of the output of this function is presented in Fig. 2.4, where we demonstrate
constrained Delaunay triangulation on both a square and a discretized circle.

Figure 2.4: Examples of constrained Delaunay triangulation. Red points correspond to given
vertices and green edges to given constraints.

13

Note: CGAL’s constrained Delaunay triangulation tries to be as much Delaunay as
possible. However, the resulting triangles do not necessarily fulfill the empty
circumcircle property. Instead, they fulfill a weaker condition called the con-
strained empty circumcircle property: the circumcircle of any triangle does not
enclose any vertex visible from the interior of the triangle. In this context, vis-
ibility is obstructed by constrained edges, which we consider as blocking the
view.

2.2.2 Mesh refinement

At this point, we can establish a basic triangulation on a set of points and con-
straints. For the application of the complementary volume method on this discretiza-
tion, a significantly denser primal grid is required. Mesh density is very important in
numerical methods as increased mesh density leads to more accurate results.

In CGAL, a mesh is defined as a partition of a specified region into simplices,
satisfying several criteria related to shape and size. The region intended for meshing is
referred to as the domain and it has to be a bounded region. The domain is defined by
a planar straight line graph - its segments are constraints that will be represented as
edges in the mesh. Additionally, it can contain isolated points that will be represented
as vertices of the mesh.

The user can define various criteria that the generated mesh should satisfy. The
first criterion is to set which specified components of the region are to be meshed or on
the other side, not meshed. This proves useful particularly when dealing with regions
containing internal holes that are not intended for meshing. This criterion can be set
either by specifying the domain using the mark_domain_in_triangulation function or
by specifying a set of seed points (see Fig.2.5).

Figure 2.5: Triangulation and mesh generated on a discretized unit circle with an inside hole.
The hole is identified by setting the domain (yellow) and new vertices are created only inside
it.

14

(a) Default shape and size cri-
teria

(b) Default shape criterion and
size bound S = 0.5

(c) Default shape criterion and
size bound S = 0.25

Figure 2.6: Mesh generated on a discretized unit circle with different size criteria.

The second criterion deals with the shape of triangles. It sets a lower bound B on
the ratio between the circumradius and the shortest edge length. This implies a lower
bound of arcsin(1

2B
) on the minimum angle for each triangle.

Lastly, the user can influence the size of triangles, directly impacting mesh density.
The size criterion sets an upper bound S for the length of all segments of all triangles
(see Fig.2.6).

The mesh generation algorithm in CGAL [18] starts with a constrained Delaunay
triangulation and then produces the final mesh using the Delaunay refinement method.
This method introduces new vertices to the triangulation and stops once the specified
criteria are satisfied. In our case, we already have the constrained Delaunay triangula-
tion which serves as an input for the mentioned refinement method. It can be accessed
through the refine_Delaunay_mesh_2 function with two arguments: the triangulation
and the criteria. Alternatively, the user can choose to use the Delaunay_mesher_2
class, which implements a 2D mesh generator. The object of this class is initiated with a
triangulation and using functions set_seeds and set_criteria allows for the specification
of mesh criteria.

15

3 Complementary volume method
for solving the Laplace equation

Laplace equation is a second-order partial differential equation

∆u(x) = 0 x ∈ Ω, (3.1)

where ∆ represents the Laplace operator, u is a twice-differentiable function, and Ω is
the domain for solving the equation. In our case, Ω corresponds to the region defined
by the segmentation polygon. When Ω is a closed region, solving the equation requires
specifying boundary conditions

u(x) = u0(x) x ∈ ∂Ω, (3.2)

where u0(x) is a given function and ∂Ω is the boundary of Ω.

3.1 Spatial discretization
The Laplace equation (3.1) can be numerically solved using the complementary

volume method, which combines the finite volume method [2] and the finite element
method. The initial step is to discretize the domain Ω into co-volumes. The domain
Ω is already approximated by a triangulation (see Chapter 2). As mentioned in the
previous chapter, we use the Delaunay triangulation, which is composed solely of acute
triangles of similar size and shape and thus is suitable for the complementary volume
method, guaranteeing both efficiency of numerical calculations and easy construction
of co-volumes. The triangulation contains a finite number of nodes

Xi, Xi ∈ Ω, i = 1, . . . , N,

which correspond to the vertices of the triangular grid. The value ui represents the
solution at node Xi. The triangles of this grid with vertex Xi are referred to as

Tiq, i = 1, . . . , N, q = 1, . . . , Qi,

16

where Qi is the number of triangles sharing the vertex Xi. The remaining two vertices
of the triangle Tiq are denoted by Xq1

i and Xq2
i .

Now, we can construct a co-volume grid based on the triangulation [9]. For each
vertex Xi, we define a co-volume Vi (Fig.3.1) as a polygon with vertices at:

• the centers of mass of all triangles sharing the vertex Xi,

• the midpoints of line segments between the vertex Xi and the neighboring vertices
Xq1

i and Xq2
i .

Figure 3.1: Co-volume Vi

3.2 Numerical scheme
By integrating equation (3.1) over the co-volume Vi, we get∫

Vi

∆u dx = 0, (3.3)

which can be further adjusted by applying Green’s theorem:∫
∂Vi

∇u · η⃗i ds = 0, (3.4)

where ∇u is the gradient of the function u and η⃗i is the outer unit normal vector to
the finite volume boundary ∂Vi.

Considering the geometry of the boundary ∂Vi, it can be divided into separate
boundary components ∂Viq corresponding to individual triangles Tiq, where Viq denotes

17

Vi ∩ Tiq. The integral in (3.4) is then expressed as

Qi∑
q=1

∫
∂Viq

∇u · η⃗iq ds = 0, (3.5)

where η⃗iq is the outer unit normal vector to the boundary component ∂Viq.
As depicted in Fig. 3.2, there are two edges e1iq and e2iq of the co-volume Vi inside

the triangle Tiq with different outer unit normal vectors η⃗jiq, j = 1, 2. Therefore, the
integral in (3.5) can be further decomposed into two integrals, resulting in:

Qi∑
q=1

2∑
j=1

∫
ejiq

∇u · η⃗jiq ds = 0. (3.6)

Figure 3.2: Portion of the co-volume Vi corresponding to the triangle Tiq with highlighted
edges of co-volume e1iq and e2iq, outer unit normal vectors to the co-volume edges η⃗1iq and η⃗2iq,
the triangle edges ∂T 1

iq, ∂T 2
iq and ∂T 3

iq, and outer unit normal vectors to the triangle edges
n⃗1
iq, n⃗2

iq and n⃗3
iq.

Considering a linear representation of a solution u on individual triangles Tiq, the
gradient ∇u is a constant vector on each triangle. The gradient can be approximated
by the mean value

∇u ≈ 1

m(Tiq)

∫
Tiq

∇u dx, (3.7)

where m(Tiq) represents the area of triangle Tiq. Applying Green’s theorem on the
previous equation (3.7) we obtain:

∇u ≈ 1

m(Tiq)

∫
∂Tiq

un⃗iq ds, (3.8)

where n⃗iq is the outer unit normal vector to the boundary of the triangle Tiq.

18

The integral in the equation (3.8) can be divided into three integrals over each edge
of the triangle. Thus, we get the equation with a sum:

∇u ≈ 1

m(Tiq)

3∑
j=1

∫
∂T j

iq

un⃗j
iq ds, (3.9)

where ∂T j
iq is the j-th edge of the triangle and n⃗j

iq is the normal vector to this edge, as
shown in Fig. 3.2. The normal vector to the edge of the triangle is constant, thus it
can be put outside of the integral:

∇u ≈ 1

m(Tiq)

3∑
j=1

n⃗j
iq

∫
∂T j

iq

u ds. (3.10)

The remaining integral can be, as a consequence of the linear representation of u,
expressed as an average value on the corresponding edge ∂Tiq. For example, for the
first edge ∂T 1

iq between the vertices Xi and Xq1
i it is:∫

∂T 1
iq

u ds =
ui + uq1

2
m(∂T 1

iq). (3.11)

Let denote the length of the triangle edges m(∂T j
iq) as djiq. Then, we get a constant

representation of the gradient ∇u on the triangle Tiq, denoted as P⃗Tiq
:

P⃗Tiq
=

1

m(Tiq)

(
ui + uq1

2
d1iqn⃗

1
iq +

uq1 + uq2

2
d2iqn⃗

2
iq +

ui + uq2

2
d3iqn⃗

3
iq

)
, (3.12)

where ui, uq1 and uq2 denote the solution in the vertices of the triangle Tiq. Values d1iq,
d2iq and d3iq represent the lengths of the triangle edges and vectors n⃗1

iq, n⃗2
iq and n⃗3

iq are
the outer unit normal vectors to each side of the triangle Tiq (see Fig. 3.2).

Now, we substitute the gradient with its approximation (3.12) in the equation (3.6):

Qi∑
q=1

2∑
j=1

∫
ejiq

P⃗Tiq
· η⃗jiq ds = 0. (3.13)

As P⃗Tiq
is a constant vector, it can be factored out of the integral. The remaining

integral of the outer unit normal vector to the co-volume boundary part ejiq is expressed
as: ∫

ejiq

η⃗jiq ds = m(ejiq)η⃗
j
iq, (3.14)

where m(ejiq) is the length of the co-volume edge ejiq. Consequently, in (3.13), we

19

eliminate the integral, resulting in the equation

Qi∑
q=1

2∑
j=1

m(ejiq)P⃗Tiq
· η⃗jiq = 0. (3.15)

It represents the numerical scheme for solving Laplace equation.

3.3 System of linear equations
The obtained numerical scheme (3.15) gives us for i = 1, . . . , N a system of linear

equations in the form:
Au⃗ = 0⃗, (3.16)

where A denotes the system matrix and u⃗ = [u1, u2, . . . , uN] is the vector of nodal
values of the solution. In (3.15), these unknown nodal values are hidden inside the
gradient approximation P⃗Tiq

.
To determine the individual coefficients of the matrix A, we need to consider that

the nodal value of the solution at a specific vertex must be consistent across all triangles
sharing that vertex. The definition of the gradient approximation (3.12) contains nodal
values in local numbering based on triangles (e.g. uq1 or uq2) and we need to identify
values corresponding to the same node. According to the geometry of the co-volume
Vi, we get:

uiq1 =

uiQi2, if q = 1

ui(q−1)2, otherwise
(3.17)

To simplify the numbering, nodal values for the co-volume Vi are denoted as ui for the
central vertex and ui1, . . . , uiQi

for the boundary vertices (see Fig. 3.3). Using this
numbering, we can transform the equation (3.15) and isolate each nodal value:

aiui +

Qi∑
q=1

aiquiq = 0, (3.18)

where ai and aiq for q = 1, . . . , Qi are non-zero coefficients present in the i-th row of
the system matrix A. These coefficients are assigned to specific columns according to
the global numbering of nodes in the whole grid.

The diagonal coefficient ai can be expressed as

ai =

Qi∑
q=1

1

2m(Tiq)

2∑
j=1

m(ejiq)η⃗
j
iq · (d1iqn⃗1

iq + d3iqn⃗
3
iq). (3.19)

20

Figure 3.3: Local numbering of nodal values based on triangles numbered q = 1, . . . , Qi,
where Qi = 6 for the co-volume Vi and its simplification (red numbering).

The non-diagonal coefficient aiq corresponds to the nodal value uiq in the vertex,
which neighbors with two triangles indexed q and k, where

k =

Qi, if q = 1

q − 1, otherwise

and it can be expressed as

aiq =
1

2m(Tiq)

2∑
j=1

m(ejiq)η⃗
j
iq · (d1iqn⃗1

iq + d2iqn⃗
2
iq)

+
1

2m(Tik)

2∑
j=1

m(ejik)η⃗
j
ik · (d

3
ikn⃗

3
ik + d2ikn⃗

2
ik). (3.20)

Finally, we can include the boundary conditions into the system, since the vertices
lying on the boundary of the region have known values of the solution. The respective
rows of the system matrix have their diagonal elements equal to 1 and zeroes elsewhere.
On the right-hand side, we insert the boundary conditions for the corresponding ver-
tices. Now, we can solve the system for the unknown values at the inner vertices of the
grid.

3.4 Implementation
After the triangulation process, the software creates a co-volume for each vertex.

Therefore, we introduce the FiniteVolume class, designed to compute and store all
information about each co-volume and also the supporting Triangle class.

21

The Triangle class is used to simplify the FiniteVolume class. It contains char-
acteristics corresponding to the specific face around the central vertex:

• all vertices of the face (vertices),

• the lengths of the edges of the triangle (edgeLengths),

• the normal vectors to the triangle edges (edgeNormals),

• the lengths of the co-volume edges - only the edges internal to the face (volume-
Lengths),

• the normal vectors to the co-volume edges - only the edges internal to the face
(volumeNormals),

• the area of the face (area).

These attributes are essential for computing the matrix coefficients (see equations (3.19)
and (3.20)), and are initialized within the constructor of this class.

The parametrized constructor requires the input of the triangle’s vertices, which are
subsequently assigned to the vertices variable. They are then used within the functions
computeEdgeCharasteristics and computeVolumeCharacteristics for computing the re-
maining variables.

Calculating the length of a line segment defined by two vertices with coordinates
(x1, y1) and (x2, y2) is done by the formula

d =
√

(x1 − x2)2 + (y1 − y2)2.

This formula applies to both the lengths of the triangle edges and the co-volume edges.
Calculating the former is straightforward since the coordinates of the triangle vertices
are known. However, the latter requires a calculation of the coordinates of the midpoint
between two vertices and the centroid beforehand. The midpoint is computed as the
average of vertices’ coordinates of the corresponding edge and the centroid is computed
as the average of the coordinates of all triangle’s vertices:

T =

(
x1 + x2 + x3

3
,
y1 + y2 + y3

3

)
.

Now, we know the coordinates of points of both triangle edges and co-volume
edges and we determine their respective tangent vectors. Since the normal vectors are
orthogonal to the tangent vectors, we simply rotate the tangent vectors by 90 degrees.
We need to ensure that the normal vectors are unit vectors, so we divide them by the
length of the corresponding edge. Moreover, the normal vectors must point outward

22

from the triangle or the co-volume. As the triangulation is orientable, rotating the
tangent vector by +90 degrees always gives an outer normal vector.

Finally, we compute the area of the triangle using Heron’s formula [25]. Assuming
the lengths of the triangle edges d1, d2, d3, we begin by calculating the triangle’s
semiparameter:

s =
d1 + d2 + d3

2
,

and then determine the area as:

area =
√

s(s− d1)(s− d2)(s− d3).

The class FiniteVolume deals with a co-volume as a whole and enables us to
compute diagonal and non-diagonal coefficients of the system matrix corresponding to
a specific vertex and its respective row. It contains

• a vertex handle for the central vertex (v),

• the number of faces sharing the central vertex (facesNumber),

• the handles to the faces sharing the central vertex (faces),

• the Triangle objects corresponding to each face of faces (triangles).

To initialize these variables, the initializeFiniteVolume function is provided, which
requires the generated triangulation as an argument. The triangulation offers informa-
tion about the incident faces to the central vertex of the co-volume. Subsequently, we
determine the value of facesNumber and the coordinates of vertices for each face. The
coordinates are used to create a Triangle object for each face, as described earlier.

This class involves two functions to compute the matrix coefficients, namely com-
puteDiagonalElement and computeOffDiagonalElements. These functions use the pre-
calculated characteristics of each triangle in the co-volume in formulas (3.19) and (3.20).

For solving a system of equations, we utilize the Eigen library, a C++ template
library for linear algebra [8]. Eigen offers various methods for solving linear systems.
We specifically choose the BiCGSTAB - biconjugate gradient stabilized method for
sparse square problems [23]. The corresponding Eigen function requires the system
matrix in the form of a SparseMatrix object from the library, along with the right-
hand side of the system in the form of a vector.

The SparseMatrix object is constructed from triplets (row, column, value). The
triplets are determined by iterating through all finite volumes, computing their matrix
coefficients using previously mentioned functions of FiniteVolume class, and assigning
them to the specific row and column based on the global numbering of vertices. At the
same time, we fill the right-hand side vector with zeros. However, we need to consider

23

the boundary co-volumes with predefined boundary conditions. For these co-volumes,
the only non-zero value in the row is the diagonal coefficient with a value of 1, and
the corresponding element of the right-hand side is filled with the given boundary
condition.

Insertion of the matrix and the right-hand side vector into the BiCGSTAB function
of Eigen results in the solution vector. The solution can be visualized through various
means, such as using the VTK format or by interpolating the solution onto the regular
grid (see Chapter 4).

24

4 Visualization

The visualization of the solution to the problem described in Chapter 3 aids in
better understanding the output. Various methods can be employed to visualize the
vector of solution on the triangular grid. Our approach includes visualization using
VTK files [24] and interpolation of the solution onto a regular grid.

4.1 Using VTK file
We initially explored visualization through VTK files. VTK (The Visualization

Toolkit) is an open-source software system for 3D computer graphics, image processing,
modeling, volume rendering, and scientific visualization [19]. It utilizes a VTK file
format, compatible with visualization applications like ParaView. ParaView is an
open-source post-processing visualization engine that uses VTK as the data processing
and rendering engine [16].

The most important aspect is correctly setting up the VTK file within the program.
Firstly, we set a count of points and then specify their coordinates. Then, we define the
triangles of the triangular grid as polygons, represented by the indices of their vertices.
This process captures the geometry of the region within the VTK file. Finally, we
insert information about the solution, which can be visualized by assigning different
colors to each point on the grid.

When loading the file into ParaView, various representations of the geometry can
be displayed (Fig. 4.1). When we choose the surface representation, ParaView uses
color data present at the geometry’s points and interpolates it across the remaining
internal points of the geometry.

However, utilizing this method requires access to a visualization engine compatible
with VTK files. To overcome this disadvantage, we decided to implement interpolation
of the solution onto the regular grid, which can be saved as an image, because the image
is a set of pixels lined up in a regular grid. The advantage of image format is that
it is much more accessible because it can be viewed through more commonly used
applications and also we can easily display it within NaturaSat software.

25

(a) The point representation in ParaView (b) The surface representation in ParaView

Figure 4.1: The Laplace equation solved on a discretized circle with half of the boundary
given boundary condition with value of 0 and the remaining part with value of 1. Example
of the visualization using VTK file inside ParaView application.

4.2 Interpolation onto the regular grid
Interpolation is the process of estimating unknown values that lie between existing

data points. In our case, these data points correspond to the vertices of the triangular
grid, where we know the solution to the Laplace equation. Through interpolation, we
can determine the value of the solution at other points within the considered region
and visualize them as an image.

To encompass the data within an image, we first need to define a regular grid
corresponding to the set of pixels. This rectangular grid must cover the entire region
defined by the segmentation polygon, serving as a rectangular hull. Pixels outside
of this region are assigned the minimal value associated with the black color in the
image. Conversely, pixels located within the triangles of the triangular grid are assigned
varying shades of grey based on the interpolated value.

The final image does not have to be grayscale, as we can use a color gradient in
RGB channels. In this case, we choose specific colors representing specific values of
the solution and when interpolating the solution data on the regular grid, we assign
corresponding values to all three RGB channels.

4.2.1 The regular grid

The first step is to define the regular grid, specifically its pixel size. The pixel size
needs to be chosen carefully, as too large sizes can result in the loss of details and too
small sizes increase computational time. In initial tests, we chose to set the pixel size
based on the shortest edge between two adjacent vertices of the triangulation.

Next, we determine the dimensions of the rectangular grid. Using CGAL function-
alities which enable us to find boundary points of a polygon, we identify the coordinates

26

of the top-left and bottom-right points of the regular grid. Now, we can compute the
number of pixels in both the x− and y−directions:

envWidth =
bottomRight.x− topLeft.x

pixelSize
, (4.1)

envHeight =
topLeft.y − bottomRight.y

pixelSize
. (4.2)

These characteristics of the regular grid are used to iterate over each pixel of the
image and identify its color according to the calculated solution through interpolation.

4.2.2 Pixel localization

To correctly assign colors to each pixel of the regular grid, it is necessary to deter-
mine whether a pixel lies outside or inside the region of interest. Outer pixels are simply
assigned the minimal value, behaving as a black background in the image. On the other
hand, assigning the color to the inner pixels is more challenging as we need to identify
to which triangle of the triangular grid each inner pixel belongs. Subsequently, we get
the final color of the pixel by applying interpolation based on the identified triangle.

For this purpose, we iterate through each pixel in a cycle. A pixel does not have to
entirely lie within one triangle, therefore we localize it based on its center given as:

pixelCentre =
(
(i+ 0.5) ∗ pixelSize, (j + 0.5) ∗ pixelSize

)
, (4.3)

where i = 0, . . . , envWidth and j = 0, . . . , envHeight. We then check if this point
belongs to any face of the triangular grid. Many methods exist that help us determine
if a point lies inside a triangle. We specifically implemented an algorithm that assesses
on which side of the half-plane created by the triangle’s edges the point is located.

Assume the triangle ABC and point P whose location we want to check. For the
triangle’s edge AB, we determine if P lies to the left or right of the line defined by
points A and B. Let’s define two vectors: u, lying on the edge AB in any orientation,
and v, starting from the same point and aiming to the point P (see Fig. 4.2). The
orientation of u is arbitrary but must be consistent for all edges of the triangle. We
consider these vectors as 3D vectors with zero z-coordinate:

u⃗ = A− B = (Ax − Bx, Ay − By, 0),

v⃗ = P − B = (Px − Bx, Py − By, 0),

because the half-plane containing the point P is determined using the cross product of
these vectors.

27

Figure 4.2: The determination of the point P ’s position relative to the edge AB using vectors
u⃗ and v⃗.

For these vectors, the cross product yields non-zero value only in the z-coordinate:

(u⃗× v⃗)z = (Ax − Bx)(Py − By)− (Ay − By)(Px − Bx)

and we are interested in its sign.

Algorithm 1: Pixel localization - check if the pixel’s center lies inside the
triangle of the triangular grid

Input: triangle’s vertices A, B and C, the point of interest P

/* Compute z-coordinate of the cross product between a vector corresponding
to triangle's edge and a vector pointing to the point P */

sgn1← (Ax −Bx) ∗ (Py −By)− (Ay −By) ∗ (Px −Bx)

sgn2← (Bx − Cx) ∗ (Py − Cy)− (By − Cy) ∗ (Px − Cx)

sgn3← (Cx −Ax) ∗ (Py −Ay)− (Cy −Ay) ∗ (Px −Ax)

/* Check for the same signs of cross products */
plus← (sgn1 ≥ 0) ∧ (sgn2 ≥ 0) ∧ (sgn3 ≥ 0)

minus← (sgn1 ≤ 0) ∧ (sgn2 ≤ 0) ∧ (sgn3 ≤ 0)

isInsideTriangle← plus ∨minus

We repeat the process and get three signs for all three edges of the triangle. If
the signs are the same (either negative or positive), the point lies within the triangle.
Otherwise, it lies outside the triangle. It is important to account for cases where the
point lies directly on the triangle’s boundary, indicated by a zero z-coordinate in the
cross product. The whole algorithm is shown in Alg. 1.

Once we establish that the point is located inside the triangle, the next step involves
interpolating the solution at the triangle’s vertices to this point.

28

4.2.3 Barycentric interpolation

There are various types of interpolation, such as:

• nearest neighbor interpolation,

• bilinear interpolation,

• bicubic interpolation,

• barycentric interpolation (only for triangles), …

Since the solution is given in the vertices of the triangular grid, we choose the barycen-
tric interpolation.

The barycentric interpolation is based on barycentric coordinates on a triangle.
Assume triangle ABC and barycentric coordinates λ0, λ1, λ2 defined on this triangle.
Then the coordinates of an arbitrary point P inside the triangle or on its boundary
can be expressed as

P = λ0A+ λ1B + λ2C, (4.4)

where λ0, λ1, λ2 ≥ 0. Additionally, barycentric coordinates fulfill property:

λ0 + λ1 + λ2 = 1. (4.5)

The barycentric coordinates λ0, λ1, λ2 of point P are equivalent to the ratios of the
areas of PBC, PCA and PAB to the area of the reference triangle ABC (Fig. 4.3).
Let denote:

• the area of a triangle ABC as A,

• the area of a triangle PBC as A0,

• the area of a triangle PCA as A1,

• the area of a triangle PAB as A2,

then:
λ0 =

A0

A
, λ1 =

A1

A
, λ2 =

A2

A
. (4.6)

The problem of determining the barycentric coordinates of a point inside the tri-
angle is reduced to finding the areas of individual triangles created inside the reference
triangle. To solve this problem we need to compute the area using available information
about the triangle.

Let define two vectors u⃗ = (B − A) and v⃗ = (C − A) as shown in Fig. 4.3.
Applying the cross product on these vectors we get a normal vector to the triangle
ABC. The magnitude of the cross product equals to the area of a parallelogram with

29

the vectors as its sides. As we are working with triangle, its area is a half of the area
of a parallelogram:

A =
∥u⃗× v⃗∥

2
. (4.7)

The cross product in (4.7) is a normal vector with only non-zero z-coordinate, because
the triangle lies in a plane z = 0:

u⃗× v⃗ = (0, 0, uxvy − uyvx). (4.8)

Then the formula for the area can be adjusted as:

A =

√
(uxvy − uyvx)2

2
=
|uxvy − uyvx|

2

=
|(Bx − Ax)(Cy − Ay)− (By − Ay)(Cx − Ax)|

2
. (4.9)

Analogically, we compute the areas of inner triangles A0, A1, and A2. It is suffi-
cient to compute two of these areas because the third barycentric coordinate can be
determined using the property (4.5).

A0 =
|(Bx − Px)(Cy − Py)− (By − Py)(Cx − Px)|

2
(4.10)

A1 =
|(Ax − Px)(Cy − Py)− (Ay − Py)(Cx − Px)|

2
(4.11)

Figure 4.3: Barycentric interpolation on a triangle ABC with inner point P and marked area
of inner triangles PBC, PCA and PAB. Vectors u⃗ and v⃗ are used to compute the area of
the reference triangle ABC.

30

Inputting the areas into the formulas for barycentric coordinates (4.6), we obtain
λ0 and λ1. The third coordinate λ3 is determined as

λ2 = 1− λ0 − λ1. (4.12)

Now, since we know the barycentric coordinates of the point P inside the reference
triangle ABC, we want to determine the value of the solution at this point. Assume
three values of solution u0, u1 and u2 given in the vertices of the triangle, then the
value in point P can be computed as

uP = λ0u0 + λ1u1 + λ2u2. (4.13)

Finally, we know the values of the solution for the entire regular grid, both for
background pixels and pixels inside the region of interest. The program uses these
values to create an image that is easy to display.

31

5 Numerical experiments

In this chapter, we present the application of the basic hydrological modeling im-
plementation in NaturaSat software through different numerical experiments. These
experiments progressively transition from synthetic scenarios to real situations. We
focus specifically on defining a region of interest, the result of triangulation and the
visualization of the solution.

For the implementation, we first need to provide the region as a set of vertices
along its boundary. The vertices can either be synthetic for a specific type of boundary
or obtained by segmentation within NaturaSat software. Subsequently, we proceed to
create a triangulation of the region with predefined criteria. By default, we set the size
criterion for the length of the triangles’ edges as the distance between two neighboring
vertices on the boundary. In some cases, we may adjust the size criterion to create
a denser grid. The final triangulation is not directly accessible to the user but can
be exported and saved into a VTU file for visualization in ParaView. Finally, after
computing the solution, we interpolate the values of the solution to RGB channels for
color visualization using a linear color gradient. This color gradient is configured with
three nodes of blue, white, and red colors, where blue corresponds to the lowest water
level and red to the highest water level.

5.1 Synthetic region - square with the Poisson equa-
tion

In the first experiment, we want to check whether the implementation is correct
by computing the experimental order of convergence (EOC). To compute the EOC we
need to know the exact solution of the boundary problem. In this specific case, we
decided to solve the Poisson equation

−∆u =− y2(1− y)2
(
−8x(1− x) + 2(1− x)2 + 2x2

)
(5.1)

− x2(1− x)2
(
−8y(1− y) + 2(1− y)2 + 2y2

)

32

with the exact solution uexact = x2y2(1−x)2(1−y)2 on a simple domain given as a unit
square Ω = [0, 1]× [0, 1]. The boundary conditions are derived from the exact solution
for the points on the boundary of the domain. Solving the Poisson equation instead
of the Laplace equation required small changes in the right-hand side of the system of
linear equations.

We apply the derived numerical method to solve this boundary problem with a
changing triangular grid, which is getting progressively denser, as shown in Fig. 5.1. In
this experiment, we manually set the vertices of the triangular grid to obtain a regular
grid, because CGAL triangulation does not guarantee the regularity. The parameter
n, representing the number of line segments on each edge of the unit square, is chosen
as n = 2k, where k = 1, 2, 3, Subsequently, we visualize the solution for each case
of the triangular grid using VTK files and ParaView software (see Fig. 5.2).

(a) n=2 (b) n=4

(c) n=8 (d) n=16

Figure 5.1: The triangulation of the domain, which is getting progressively denser.

33

(a) n=2 (b) n=4

(c) n=8 (d) n=16

Figure 5.2: The solution of the Poisson equation on the domain with a changing density of a
triangular grid.

For each numerical solution u, we compute the L2 norm error as

error =

√√√√(
1

n

)2 N∑
i=0

(uexact(Xi)− ui)
2. (5.2)

The EOC is then computed from the ratio of errors of two consecutive cases as

EOC = log2

(
errork
errork+1

)
, (5.3)

where errork corresponds to the case with n = 2k.

34

n Error EOC
2 0.00195312000
4 0.00045168300 2.112400
8 0.00011233800 2.007460
16 0.00002807700 2.000390
32 0.00000701919 2.000010
64 0.00000175480 1.999998

Table 5.1: Error of the numerical solution and the EOC for progressively denser mesh of the
domain.

The values of EOC for our experiment are presented in Tab. 5.1. We computed the
error of the numerical solution for six cases with gradually denser triangular grids. As
the value of EOC approaches the number 2, it suggests that the numerical method is
of the second order of convergence.

5.2 Synthetic region - discretized circle
In the next experiment, we focus on the original boundary problem involving the

Laplace equation. The domain is represented by a discretized circle defined by 10

evenly spaced vertices along its boundary (Fig. 5.3). The coordinates of the vertices
are initially computed in UTM (Universal Transverse Mercator) coordinates [10] and
then converted to GPS coordinates for application within NaturaSat software. We
chose the radius of the circle to be R = 500m for detailed visualization of the solution.

Figure 5.3: The computational domain given as a discretized circle with 10 vertices on the
boundary. Red vertices indicate the boundary conditions with a value of 1, while blue vertices
indicate the boundary conditions with a value of 0.

35

All vertices of the circle are given synthetic Dirichlet boundary conditions. Specif-
ically, we manually assign boundary conditions such that the left half of the circle is
set to the value of 1, while the right half is set to the value of 0 (see Fig. 5.3). These
boundary conditions enable us to validate the correctness of the solution of the Laplace
equation.

Initially, we keep the default triangulation criteria. The distance of two neighboring
vertices is 309.017 and it serves as the size criterion. Even though this criterion implies
the generation of a symmetrical regular grid, the triangulation process via the CGAL
library usually results in an irregular grid, as depicted in Fig. 5.4a.

The triangular grid serves as the basis for constructing a co-volume grid which
enters into the complementary volume method. The visualization of its solution is
presented in Fig. 5.4b, where red denotes the highest water level and blue represents
the lowest water level. The water level range in the domain is [0, 1]. We observe minor
color distortions in certain areas of the domain, which could be reduced by choosing a
denser triangular grid.

(a) Triangulation of the domain. (b) The solution representing the water level.

Figure 5.4: Results of the applied implementation on the domain of a discretized circle with
the default size criterion for the triangular grid.

The density of the triangular grid is determined by the size criterion used for tri-
angulation. We tried halving the size criterion, resulting in a value of 154.5085. As
depicted in Fig. 5.5a, the obtained triangular grid is denser compared to the previ-
ous configuration. This grid results in the solution with reduced color distortions (see
Fig. 5.5b).

The results align with expectations when solving the Laplace equation: the left half
of the circle appears in shades of red, while the right half is depicted in shades of blue,
with a gradual transition to white along the vertical line crossing the circle’s center.

36

(a) Triangulation of the domain. (b) The solution representing the water level.

Figure 5.5: Results of the applied implementation on the domain of a discretized circle with
the size criterion set as the half of the default value for the triangular grid.

5.3 Real region
In the following experiments, the computational domain is based on a real region

located in the area of CHKO Dunajské luhy [1], near the municipality of Bodíky (see
Fig. 5.6). The region is bounded by two distributaries, Bodické rameno, and Bačianske
rameno, which naturally provide elevation data for boundary conditions. Furthermore,
the southern part of this region falls within the Foráš nature reserve, which is protected
as part of the floodplain forests and wetlands by the State Nature Conservancy of
the Slovak Republic [27]. This suggests possible occurrences of wetlands, making it
particularly suitable for testing the implementation.

To solve the boundary problem and compute the water level inside the region, we
experimented with various sets of boundary conditions, and the results are discussed
in further sections.

5.3.1 Synthetic boundary conditions

The segmentation polygon for this experiment was obtained using a segmentation
tool within NaturaSat software on orthomosaic images [7], which are characterized by
high resolution. The polygon consists of 108 unique points on the boundary, connected
by straight lines. Due to the proximity of these points, the default size criterion for
triangulation is sufficient for generating a suitably dense triangular grid (see Fig. 5.7).
(Reminder: the default size criterion is defined as the distance between two neighboring
vertices on the boundary).

37

Figure 5.6: The segmentation polygon (cyan polyline) corresponding to the computational
domain, based on the real region in CHKO Dunajské Luhy near Bodíky displayed on an
orthomosaic image.

In this experiment, we define synthetic boundary conditions for the region, similar
to those in the first experiment. Figure 5.8 depicts all vertices of the segmentation
polygon, with the highlighted first vertex, along with the polyline orientation. For
the first half of the boundary, starting with the yellow vertex, the boundary condition
value is set to 1, while for the second half, it is set to 0.

Figure 5.7: Triangulation of the domain with the default size criterion.

38

Figure 5.8: The segmentation polygon with all vertices (orange dots). The yellow vertex
represents the first vertex and the arrow indicates the polyline orientation.

These boundary conditions lead to the solution depicted in Fig. 5.9. As in the first
experiment, the expected outcome is achieved, with the highest water level appearing
in the half of the region with a boundary condition value of 1, and the lowest in the
half with a boundary condition value of 0.

Figure 5.9: The solution of the boundary problem. Red represents a value of 1 and blue
corresponds to a value of 0.

39

5.3.2 Boundary conditions from elevation data

In the next experiment, we explore the same region but with different boundary
conditions. This time, we choose more realistic values acquired from the DTM (Digital
terrain model) available via Geodetický a kartografický ústav Bratislava (GKÚ) [6], as
shown in Fig. 5.10. To obtain more accurate water levels from the DTM we need to
adjust the segmentation polygon, so its vertices lie in the middle of distributaries (see
Fig. 5.11). The polygon is manually defined by linear segments, which contain a new
vertex every 20m. The boundary conditions are set only for the vertices at the linear
segments’ ends and their range is [117.161, 117.628] meters.

Figure 5.10: The digital terrain model data in the area of the region of interest.

Another change compared to the previous experiment involves the frequency of
given boundary conditions. As previously mentioned, they are not defined at each
vertex on the boundary. It deals with cases when the user has limited measurements of
the water level (only in a few vertices on the boundary). However, the complementary
volume method requires boundary conditions in all vertices on the boundary, so it is a
necessity to define the values for other vertices. This problem is solved by interpolation
of given values for vertices without defined boundary conditions.

Simultaneously, as the segmentation polygon differs from the one in the previous
experiment, we also get a different triangulation. The triangular grid is much denser,
because this region is defined by more vertices on the boundary (see Fig. 5.12).

40

Figure 5.11: The segmentation polygon with the vertices, in which are defined boundary
conditions (orange dots). The vertices are located in the middle of the distributaries.

Figure 5.12: Triangulation of the domain with default size criterion and its detail (on the
right). The grid is denser because the segmentation polygon contains more vertices that are
closer to each other.

The solution is depicted in Fig. 5.13. We see that the highest water level occurs
in the west of the region and the lowest in the east. This result is expected because
there are two weirs located within the distributaries which lower the water level by a
few tens of centimeters.

41

Figure 5.13: The solution of the boundary problem. Red represents a maximal value of
117.628m and blue corresponds to a minimal value of 117.161m.

42

6 Comparison of the solution of the
Laplace equation with the DTM

The information about the water level inside the region of interest is not sufficient
for assessing wetland conditions alone. The saturation of a region with water depends
on the elevation of the ground. Therefore, we are interested in the relationship between
the water surface and the ground. This way, we can identify areas where water is either
above or close to the terrain. These areas may indicate potential wetland occurrences.

To compare the water level with the ground elevation, we use the already mentioned
Digital terrain model (DTM) obtained from GKÚ. The DTM is derived from airborne
laser scanning, which generates a point cloud representing the Earth’s surface. The
DTM is created by interpolation from the classified point cloud. We specifically use
the data from the second cycle of the project, which is currently in progress, with five
regions already completed (see Fig. 6.1) [6]. One of them is the Danube basin, which
we are particularly interested in. We choose a part of the data corresponding to the
real region we are working with.

Figure 6.1: Slovakia is divided into 73 regions which are gradually processed in the second
cycle of the DTM acquisition. The regions highlighted in blue color are already available.

43

The DTM contains the elevation of the ground. In the case of water bodies, the
data represents the elevation of the water surface at the time of scanning, interpolated
from the points on the water surface and the points on the shore. This means that
the elevation of the water surface in water bodies can be affected by errors caused by
interpolation from the points on the shore. When creating the segmentation polygon
for the real region presented in the previous chapter, we attempted to set the polygon’s
vertices in a way that would minimize the influence of such errors. Additionally, we
need to keep in mind that the DTM data for the water surface are influenced by the
time of scanning. In the case of our region of interest, the airborne laser scanning was
done in the winter, so the water level is lower than in other seasons.

The solution of the Laplace equation is computed in a resolution 0.5m × 0.5m,
which is identical to the resolution of the DTM. The comparison is then done in all
pixels within the computation domain as:

comparison = DTM − solution. (6.1)

To visualize the comparison in color, we use a 5-node linear color gradient. We choose
more colors to better distinguish the areas of possible wetland occurrence:

• blue - areas where the water surface is significantly above the ground,

• green - areas where the water surface is slightly above the ground,

• white - areas where the water level matches the ground elevation,

• yellow - areas where the water surface is slightly below the ground,

• red - areas where the water surface is significantly below the ground.

We also enable the user to set a parameter to lower the elevation of the ground. This
feature can be used to highlight areas with a water level slightly below the ground
because it can indicate the saturation of soil by water and also can eliminate the
errors of the DTM data (the accuracy of the DTM is ±5 cm). It can also help with
simulated scenarios of increased water levels in surrounding distributaries caused by
intense precipitation or water regulation.

6.1 Results for the real region
The comparison of the solution with the DTM is performed on the same region

in CHKO Dunajské Luhy as in real scenarios of the previous chapter, and the result
is depicted in Fig. 6.2. The range of the comparison values is [−1.508, 2.782] meters.
Negative values represent situations where the water surface is above the ground, while

44

positive values indicate situations where the water surface is below the ground. We are
particularly interested in the negative values, which are visualized in shades ranging
from blue, through green, to white.

Figure 6.2: The comparison of the solution of the Laplace equation with the DTM for the
region of interest.

Both maximum and minimum values of the comparison are observed in the northern
part of the region, as shown in Fig. 6.3. There is an area visualized mainly in green, so it
suggests the possible occurrence of a shallow lake or swamp. The curved blue segment
indicates the possible occurrence of a stream. However, due to vegetation cover, we
are not able to distinguish these possible water bodies from the orthophoto image and
check the correctness of our assumptions. It would require a terrain inspection.

In the western part of the region, we observe another case of negative values near
the minimum (see Fig. 6.4). There seems to be a continuous land depression, which
should be flooded by water. However, in the orthophoto images, we are not able to
identify the land depression or water presence, even though there are areas with sparse
vegetation. This may be again checked by the terrain inspection.

The region includes the Foráš nature reserve in the southeast, where the orthophoto
image suggests the presence of a lake or multiple smaller lakes. As the DTM for water
bodies provides elevation data for their surfaces, we expect values close to zero. In
Fig. 6.5, we see that the area is mostly displayed in light green, white, and light yellow.
The corresponding values are close to zero, aligning with our expectations. One of the
reasons why the area is not fully white is the accuracy of the DTM.

45

Figure 6.3: Detail of the comparison and the orthophoto image for the northern part of the
region. There are located both minimum (blue) and maximum (red) values of the comparison.

Figure 6.4: Detail of the comparison and the orthophoto image for the western part of the
region. There are values close to the minimum (blue) suggesting a flooded land depression.

46

Figure 6.5: Detail of the comparison and the orthophoto image for the southeast part of
the region. In the orthophoto image, we observe a lake and in the comparison, this area is
displayed in light green, white, and light yellow.

(a) The increase of 10 cm (b) The increase of 30 cm

(c) The increase of 50 cm

Figure 6.6: The comparison of the solution of the Laplace equation in the case of increased
water levels in surrounding distributaries.

47

We also simulated scenarios where water levels in surrounding distributaries rise to
identify areas theoretically flooded by water. Flow of water in the distributaries can be
regulated leading to changes in the water level. We are interested in how to raise the
water level to keep wetlands in a healthy state or to create conditions for the formation
of wetlands. In Fig. 6.6, we can see the effect of water level rises of 10, 30, and 50 cm.
We observe that in such cases the majority of the region should be flooded by water.

The areas depicted in blue and green in all results of this section suggest potential
wetland occurrences, assuming the land is a homogeneous environment. However, this
is generally not true and we may at least suppose that these areas represent the land
depressions, which in case of increased water levels in the surrounding distributaries
could become flooded, potentially transforming into wetlands.

48

7 Conclusions

The thesis dealt with basic hydrological modeling in an effort to support ecologists,
botanists, and other specialists in the analysis and restoration of wetlands. It focused
on determining one of the wetlands’ characteristics, the water level, in a specified
computational domain by solving the Laplace equation with given Dirichlet boundary
conditions.

The first step involved creating a triangular grid over the computational domain,
for which we explored different libraries for triangulation. Then we derived the com-
plementary volume method scheme for solving the Laplace equation. Finally, we tried
two types of visualization of the solution - using VTK files and interpolation onto a
regular grid. This method was implemented into the NaturaSat software.

We proceeded to test the implementation through various experiments, from syn-
thetic scenarios to real-world applications. Initially, we conducted synthetic experi-
ments to verify the correctness of the solution of the Laplace equation and compute its
EOC. The proposed method worked successfully with the artificial data, both for defin-
ing the region and specifying boundary conditions. Additionally, the method proved
effective also for other experiments, where we focused on a real segmented region with
both synthetic and real boundary conditions derived from the digital terrain model. In
the result obtained with real boundary conditions, we successfully identified the jump
in water level caused by the presence of weirs within the distributaries.

Lastly, we analyzed the relationship between the water surface and the ground by
comparing the solution of the Laplace equation with the digital terrain model. Such
analysis is necessary to comprehensively assess wetland conditions because the water
level alone is not sufficient. It revealed two particularly promising areas of potential
wetland occurrence within the region of interest in the Danube basin. However, they
were not identifiable on the orthophoto images, so further terrain inspection is required.
Concurrently, we identified existing lakes within the Foráš nature reserve, which are
characterized by comparison values close to zero.

This work can be expanded in various ways. One of them is to verify the accuracy
of the Laplace equation in describing the behavior of groundwater through compar-
ison with real measurements of water level within the region. Additionally, as our
colleagues have done field measurements of the water level around the region of in-

49

terest, it would be interesting to apply the method to this real data. Furthermore,
we can continue by further refinement of the hydrological module in the NaturaSat
software. This includes the derivation of a numerical scheme for solving the minimal
surface equation, potentially leading to more accurate results, as well as calculating
other wetland characteristics.

50

Resumé

Mokrade sú trvalo alebo sezónne zaplavené oblasti, ktoré sa vyznačujú výraznou
biodiverzitou a plnia viacero významných funkcií, čím sú pre prírodu a ľudstvo veľmi
dôležité. Avšak mokrade sa veľmi rýchlym tempom vytrácajú. Dobrý stav mokradí je
možné zabezpečiť ich dlhodobým monitorovaním, analýzou ich vlastností a v prípade
potreby aplikovaním revitalizačných procesov.

Cieľom tejto diplomovej práce bolo pomôcť odborníkom pri analýze a revitalizácii
mokradí formou hydrologického modelovania založeného na numerických metódach.
Základné hydrologické modelovanie predstavuje rozšírenie environmentálneho softvéru
NaturaSat [14], ktorý slúži na identifikáciu a monitorovanie biotopov Natura2000. V
rámci neho sme sa zamerali na výšku hladiny podzemnej vody ako jednu z vlastností
mokradí, ktorá sa dá použiť na posúdenie ich stavu. Správanie podzemnej vody sa dá
popísať rovnicou minimálnej plochy, ktorá sa pre homogénne prostredie a malé hodnoty
gradientov riešenia aproximuje Laplaceovou rovnicou. Základnou myšlienkou teda bolo
vypočítať výšku hladiny vo zvolenej výpočtovej oblasti pomocou riešenia Laplaceovej
rovnice metódou komplementárnych objemov so zadanými Dirichletovými okrajovými
podmienkami na hranici oblasti.

Prvým krokom je diskretizovať výpočtovú oblasť. Výpočtová oblasť je daná vo
forme segmentačného polygónu, ktorý je možné vytvoriť pomocou semi-automatickej
alebo automatickej segmentácie v softvéri NaturaSat [12, 13]. Na oblasti vytvoríme
nepravidelnú trojuholníkovú sieť pomocou triangulácie cez knižnicu CGAL [21] (pozri
kapitolu 2). Používame Delaunayovú trianguláciu, ktorá sa vyznačuje ostrými trojuhol-
níkmi podobnej veľkosti a tvaru, vďaka čomu je zabezpečená efektivita numerických
výpočtov a jednoduchá konštrukcia komplementárnych objemov. Sieť komplemen-
tárnych objemov vybudujeme na trojuholníkovej sieti.

Následne je potrebné odvodiť numerickú schému metódy komplementárnych obje-
mov pre Laplaceovu rovnicu, ktorú popisujeme v kapitole 3. Pri odvádzaní využívame
techniky metódy konečných objemov a metódy konečných prvkov, keďže metóda kom-
plementárnych objemov je ich kombináciou. Výsledná numerická schéma pre konkrétny
komplementárny objem vedie na systém lineárnych rovníc. Po dosadení Dirichletových
okrajových podmienok sme schopní tento systém riešiť. Na riešenie sme použili metódu
BiCGSTAB [23] z knižnice EIGEN [8].

51

Riešenie Laplaceovej rovnice predstavuje výšku hladiny podzemnej vody v jed-
notlivých komplementárnych objemoch a jednotlivých vrcholoch trojuholníkovej siete.
Pre lepšie porozumenie výsledkov je vhodné ich vizualizovať. Na vizualizáciu sme
použili dva prístupy (pozri kapitolu 4). Prvý prístup ukladá geometriu a riešenie
Laplaceovej rovnice do VTK súboru [24], ktorý je možné si externe otvoriť napr. v
softvéri ParaView [16]. Druhý prístup slúži na zobrazenie vizualizácie priamo v soft-
véri NaturaSat a je založený na interpolácii riešenia do rovnomernej mriežky. Takýto
typ vizualizácie vedie k šedotónovému obrázku, ale zavedením lineárneho farebného
prechodu je možné riešenie vizualizovať aj farebne.

Takto navrhnutú metódu sme implementovali do softvéru NaturaSat v programova-
com jazyku C++. Otestovali sme ju najprv na umelej oblasti pre prípad Poissonovej
rovnice, ktorej riešenie poznáme, aby sme mohli určiť experimentálny rád presnosti
metódy. Podarilo sa nám ukázať, že numerická metóda je druhého rádu presnosti.
Následne sme ju ďalej aplikovali aj na reálnej oblasti nachádzajúcej sa v CHKO Duna-
jské Luhy, ktorá je ohraničená riečnymi ramenami Dunaja. V experimente sme použili
umelé aj reálne okrajové podmienky. Reálne Dirichletove okrajové podmienky sme
určili z digitálneho modelu reliéfu (DMR), ktorý poskytuje Úrad geodézie, kartografie
a katastra SR [6]. Experiment dopadol úspešne, keďže sme z výsledkov dokázali iden-
tifikovať dve miesta skoku výšky vodnej hladiny, ktorý je spôsobený prítomnosťou
hrádzí v riečnych ramenách, a teda spôsobuje pokles hladiny v desiatkach centimetrov.
Všetky experimenty sú detailne popísané v kapitole 5.

Samotná výška hladiny podzemnej vody však nie je postačujúca pre posúdenie
stavu mokradí. Je potrebné ju porovnať s výškou terénu. Tomuto sme sa venovali
v poslednej časti diplomovej práce (pozri kapitolu 6), v ktorej identifikujeme vzťah
medzi vodnou hladinou a terénom. Výsledok Laplaceovej rovnice pre reálnu oblasť
sme porovnali s digitálnym modelom reliéfu a na základe toho sme identifikovali miesta,
ktoré predstavujú možný výskyt mokrade. Pri porovnávaní s ortofoto snímkami sme
ich však nevedeli priamo potvrdiť, preto je potrebná terénna inšpekcia týchto miest.
Súčasne sme sa sústredili aj na jazero, ktoré sa nachádza v juhovýchodnej časti oblasti
a určili miesto jeho výskytu vďaka hodnotám porovnania blízkym nule.

V našej práci sa dá ďalej pokračovať verifikáciou presnosti Laplaceovej rovnice pri
popisovaní správania podzemnej vody. Môžeme to zhodnotiť pomocou porovnania
riešenia a reálnych nameraných hodnôt výšky hladiny vo vnútri výpočtovej oblasti.
Ďalším posunom v tejto téme by mohla byť aplikácia metódy na reálne merania výšky
hladiny podzemnej vody v teréne, ktoré robili naši kolegovia z katedry. Na takto reál-
nych dátach by mohli výsledky lepšie zodpovedať realite. Navyše môžeme pokračovať
aj v rozširovaní hydrologického modelovania v softvéri NaturaSat, napr. o riešenie
rovnice minimálnej plochy, či o výpočet ďalších vlastností mokradí, ktoré by mohli byť
použité na posúdenie ich stavu.

52

Bibliography

1. CHRÁNENÁ KRAJINNÁ OBLASŤ DUNAJSKÉ LUHY. [N.d.]. Available also
from: https://chkodunajskeluhy.sopsr.sk/. Online; accessed March 2024.

2. EYMARD, R.; GALLOUËT, T.; HERBIN, R. Finite volume methods. In: Solu-
tion of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3).
Elsevier, 2000, vol. 7, pp. 713–1018. Handbook of Numerical Analysis. issn 1570-
8659. Available from doi: https://doi.org/10.1016/S1570-8659(00)07005-8.

3. FLUET-CHOUINARD, E.; STOCKER, B.; ZHANG, Z., et al. Extensive global
wetland loss over the past three centuries. Nature. 2023, vol. 614, pp. 281–286.
Available from doi: 10.1038/s41586-022-05572-6.

4. GEOM SOFTWARE. Fade2D Documentation. 2024. Available also from: https:
//www.geom.at/fade2d/html/index.html.

5. GIEZEMAN, G.-J.; WESSELINK, W. 2D Polygons. In: CGAL User and Refer-
ence Manual. 5.6.1. CGAL Editorial Board, 2024. Available also from: https:
//doc.cgal.org/5.6.1/Manual/packages.html#PkgPolygon2.

6. GKÚ BRATISLAVA. Letecké laserové skenovanie. [N.d.]. Available also from:
https://www.geoportal.sk/sk/zbgis/lls/.

7. GKÚ BRATISLAVA, NLC. Ortofotomozaiky SR. [N.d.]. Available also from: https:
//www.geoportal.sk/sk/zbgis/ortofotomozaika/2-cyklus/.

8. GUENNEBAUD, G.; JACOB, B., et al. Eigen: A C++ template library for linear
algebra. 2021. Available also from: http://eigen.tuxfamily.org.

9. KOLLÁR, M. Solving partial differential equations on surfaces with applications
to geodetic data analysis. 2018. PhD thesis. Slovak University of Technology in
Bratislava.

10. LANGLEY, R. B. The UTM grid system. GPS world. 1998, vol. 9, no. 2, pp. 46–
50.

11. LEICA GEOSYSTEMS. CDT: C++ library for constrained Delaunay triangula-
tion. 2019. Available also from: https://artem-ogre.github.io/CDT/index.
html.

53

https://chkodunajskeluhy.sopsr.sk/
https://doi.org/https://doi.org/10.1016/S1570-8659(00)07005-8
https://doi.org/10.1038/s41586-022-05572-6
https://www.geom.at/fade2d/html/index.html
https://www.geom.at/fade2d/html/index.html
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgPolygon2
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgPolygon2
https://www.geoportal.sk/sk/zbgis/lls/
https://www.geoportal.sk/sk/zbgis/ortofotomozaika/2-cyklus/
https://www.geoportal.sk/sk/zbgis/ortofotomozaika/2-cyklus/
http://eigen.tuxfamily.org
https://artem-ogre.github.io/CDT/index.html
https://artem-ogre.github.io/CDT/index.html

12. MIKULA, K.; URBÁN, J.; KOLLÁR, M.; AMBROZ, M.; JAROLÍMEK, I.;
SIBIK, J.; ŠIBÍKOVÁ, M. An automated segmentation of NATURA 2000 habi-
tats from Sentinel-2 optical data. Discrete & Continuous Dynamical Systems - S.
2021, vol. 14, pp. 1017–1032. Available from doi: 10.3934/dcdss.2020348.

13. MIKULA, K.; URBÁN, J.; KOLLÁR, M.; AMBROZ, M.; JAROLÍMEK, I.;
SIBIK, J.; ŠIBÍKOVÁ, M. Semi-automatic segmentation of NATURA 2000 habi-
tats in Sentinel-2 satellite images by evolving open curves. Discrete & Contin-
uous Dynamical Systems - S. 2021, vol. 14, pp. 1033–1046. Available from doi:
10.3934/dcdss.2020231.

14. MIKULA, K.; ŠIBÍKOVÁ, M.; AMBROZ, M.; KOLLÁR, M.; OŽVAT, A. A.;
URBÁN, J.; JAROLÍMEK, I.; ŠIBÍK, J. NaturaSat—A Software Tool for Identi-
fication, Monitoring and Evaluation of Habitats by Remote Sensing Techniques.
Remote Sensing. 2021, vol. 13, no. 17. issn 2072-4292. Available from doi: 10.
3390/rs13173381.

15. NC WETLANDS. Why Our Wetlands Matter: Functions and Benefits of NC’s
Wetlands [https : / / www . ncwetlands . org / learn / functions - benefits/].
[N.d.]. Online; accessed February 2024.

16. PARAVIEW. 2024. Available also from: https://www.paraview.org/.

17. PION, S.; YVINEC, M. 2D Triangulation Data Structure. In: CGAL User and
Reference Manual. 5.6.1. CGAL Editorial Board, 2024. Available also from: https:
//doc.cgal.org/5.6.1/Manual/packages.html#PkgTDS2.

18. RINEAU, L. 2D Conforming Triangulations and Meshes. In: CGAL User and Ref-
erence Manual. 5.6.1. CGAL Editorial Board, 2024. Available also from: https:
//doc.cgal.org/5.6.1/Manual/packages.html#PkgMesh2.

19. SCHROEDER, W.; MARTIN, K.; LORENSEN, B. The Visualization Toolkit (4th
ed.) Kitware, 2006. isbn 978-1-930934-19-1.

20. SHEWCHUK, J. R. Triangle: Engineering a 2D quality mesh generator and Delau-
nay triangulator. In: LIN, M. C.; MANOCHA, D. (eds.). Applied Computational
Geometry Towards Geometric Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 203–222. isbn 978-3-540-70680-9.

21. THE CGAL PROJECT. CGAL User and Reference Manual. 5.6.1. CGAL Edi-
torial Board, 2024. Available also from: https://doc.cgal.org/5.6.1/Manual/
packages.html.

22. THE EUROPEAN SPACE AGENCY (ESA). Space key to wetland conservation
[https://www.esa.int/Applications/Observing_the_Earth/Space_key_to_
wetland_conservation]. [N.d.]. Online; accessed February 2024.

54

https://doi.org/10.3934/dcdss.2020348
https://doi.org/10.3934/dcdss.2020231
https://doi.org/10.3390/rs13173381
https://doi.org/10.3390/rs13173381
https://www.ncwetlands.org/learn/functions-benefits/
https://www.paraview.org/
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgTDS2
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgTDS2
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgMesh2
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgMesh2
https://doc.cgal.org/5.6.1/Manual/packages.html
https://doc.cgal.org/5.6.1/Manual/packages.html
https://www.esa.int/Applications/Observing_the_Earth/Space_key_to_wetland_conservation
https://www.esa.int/Applications/Observing_the_Earth/Space_key_to_wetland_conservation

23. VAN DER VORST, H. A. Bi-CGSTAB: A Fast and Smoothly Converging Variant
of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on
Scientific and Statistical Computing. 1992, vol. 13, no. 2, pp. 631–644. Available
from doi: 10.1137/0913035.

24. VTK DOCUMENTATION. VTK file formats. [N.d.]. Available also from: https:
/ / docs . vtk . org / en / latest / design _ documents / VTKFileFormats . html.
Online; accessed February 2024.

25. WEISSTEIN, E. W. Heron’s Formula. [N.d.]. Available also from: https : / /
mathworld.wolfram.com/HeronsFormula.html. From MathWorld–A Wolfram
Web Resource.

26. YVINEC, M. 2D Triangulations. In: CGAL User and Reference Manual. 5.6.1.
CGAL Editorial Board, 2024. Available also from: https://doc.cgal.org/5.6.
1/Manual/packages.html#PkgTriangulation2.

27. ŠTÁTNA OCHRANA PRÍRODY SLOVENSKEJ REPUBLIKY. Foráš. [N.d.].
Available also from: https://data.sopsr.sk/chranene-objekty/chranene-
uzemia/detail/1145. Online; accessed March 2024.

55

https://doi.org/10.1137/0913035
https://docs.vtk.org/en/latest/design_documents/VTKFileFormats.html
https://docs.vtk.org/en/latest/design_documents/VTKFileFormats.html
https://mathworld.wolfram.com/HeronsFormula.html
https://mathworld.wolfram.com/HeronsFormula.html
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgTriangulation2
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgTriangulation2
https://data.sopsr.sk/chranene-objekty/chranene-uzemia/detail/1145
https://data.sopsr.sk/chranene-objekty/chranene-uzemia/detail/1145

	Introduction
	Triangulation
	Delaunay triangulation
	Constrained Delaunay triangulation

	Implementation using CGAL library
	Generating constrained Delaunay triangulation
	Mesh refinement

	Complementary volume method for solving the Laplace equation
	Spatial discretization
	Numerical scheme
	System of linear equations
	Implementation

	Visualization
	Using VTK file
	Interpolation onto the regular grid
	The regular grid
	Pixel localization
	Barycentric interpolation

	Numerical experiments
	Synthetic region - square with the Poisson equation
	Synthetic region - discretized circle
	Real region
	Synthetic boundary conditions
	Boundary conditions from elevation data

	Comparison of the solution of the Laplace equation with the DTM
	Results for the real region

	Conclusions
	Resumé
	Bibliography

