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Abstract
Title: Utilization of aerial laser scanning point cloud data for the study of habitats
Abstract: In this thesis we adopted a workflow for extracting various statistical metrics from
classified point cloud data describing vertical vegetation structure. These LiDAR metrics
were subsequently exported into multi-band geo-referenced TIFF images for further analysis.
Additionally, we used this data to create a multi-dimensional dataset which served as an input
for habitat classification using natural numerical networks and linear discriminant analysis.
All computations were implemented in Matlab and C++.

Keywords: Natura 2000 habitats, classified point cloud, LiDAR metrics, GeoTIFF, habitat
classification

Abstrakt
Názov práce: Využitie mračien bodov z leteckého laserového skenovania na štúdium biotopov
Abstrakt: V tejto práci sme využili postupy na extrakciu rôznych štatistických metrík
z klasifikovaných mračien bodov, kde dané metriky popisujú vertikálnu štruktúru vegetácie.
Tieto LiDAR-ové metriky boli následne exportované do multikanálových georeferencovaných
TIFF obrázkov určených pre ďalšiu analýzu. Tieto údaje sme navyše použili na vytvorenie
multidimenzionálneho datasetu, ktorý slúžil ako vstup pre klasifikáciu biotopov pomocou
prirodzených numerických sietí a lineárnej diskriminačnej analýzy. Všetky výpočty sme im-
plementovali v Matlabe a v jazyku C++.

Kľúčové slová: Natura 2000 biotopy, klasifikované mračno bodov, LiDAR-ové metriky,
GeoTIFF, klasifikácia biotopov
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Preface

The focus of this thesis is to explore the potential of Point Cloud (PC) data obtained
from areal laser scanning to contribute knowledge about the vertical structure of vegetation,
mainly in the context of protected Natura 2000 habitats. To achieve this, we will be utilizing
the methods presented in the recent paper [15]. The authors developed a workflow called
Laserfarm that allows for the extraction of various statistical metrics (LiDAR metrics) calcu-
lated from the height of vegetation points. These LiDAR metrics will serve as the foundation
for further analysis and exploration of the vegetation structure.

This thesis is structured into 5 chapters. In chapter 1 we provide a motivation on how
remote sensing methods can be useful for locating and preserving Natura 2000 habitats as
well as a simple outline of our goals we plan to accomplish.

In chapter 2 we provide an overview of the input data we used. Specifically, the classified
PC [26] in section 2.1 and the segmented Natura 2000 habitat curves in section 2.2. Next, we
outline the steps of the Laserfarm workflow in section 2.5. We provide details on the compu-
tational grid construction in section 2.3. Furthermore, we describe the steps involved in the
PC processing in section 2.4.

In chapter 3, in which we describe the methods we employed for further analysis of
the representative LiDAR metrics. In section 3.1 we provide the basics behind the natu-
ral numerical networks model which is currently being used for habitat classification [18].
Additionally, we have chosen a second classification model, namely the linear discriminant
analysis, explained in section 3.3. For dimensionality reduction we employed the principal
component analysis (section 3.2) and for projection into a lower dimensional space we used
the canonical discriminant analysis (section 3.3.1).

In chapter 4 we provide description of our workflow implementations in Matlab and in
C++. Additionally, in Figure 4.1 we showcase the UI application we made for visualizing the
PC data along line segments specified on the LiDAR metrics raster. This tool was helpful in
gaining a better insight into the vegetation structure based on the LiDAR metrics values. To
visually analyze the representative metrics, we developed a second UI application, depicted
in Figure 4.2.

Our achieved results are presented in chapter 5. In section 5.1 we analyze the LiDAR
metrics by plotting the corresponding PC data and showcase how it can help us better
understand the LiDAR metrics. In section 5.2 we discuss the advantages and disadvantages
of having a finer computational grid. Furthermore, in section 5.3 we present the results
obtained from large-scale computations performed on the territorial extent of lots 02 and
03. All the GeoTIFF images from the large-scale computations are available to download at
https://bit.ly/tiff_lots_2_3. Lastly, in section 5.4, we present the outcomes of the
statistical analysis.

13

https://bit.ly/tiff_lots_2_3


14



Contents

1 Introduction 17

2 Data description and processing 19
2.1 Classified Point Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Habitat curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Conversion of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Computational grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Point cloud processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 LAZ file search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Selection of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Point cloud normalization . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 LiDAR metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Statistical methods for further analysis 29
3.1 Natural numerical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Canonical Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . 34

4 Implementation 37
4.1 Matlab workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 C++ workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Results 41
5.1 LiDAR metrics with point cloud view . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Higher-resolution computations . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Large-scale computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Dimensionality reduction by CDA . . . . . . . . . . . . . . . . . . . . 50
5.4.2 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions 55

Resumé 57

Bibliography 59

15



16



Chapter 1

Introduction

Natura 2000 is a network of protected areas set up by the European Union that plays
a crucial role in preserving Europe’s most valuable species and habitats [4]. Therefore it
is important to map and monitor these regions. However, it can often be challenging to
accurately define and keep track of these habitats as it requires specialists to inspect the
areas in person.

With the emergence of advanced remote sensing methods such as the Sentinel 2 mission [5],
we have access to high-resolution multi-spectral satellite images. Naturally, methods were
developed using these images for automated tracking of Natura 2000 habitats, for example
the NaturaSat software [19, 18], which provides tools for both segmentation and classification.

Despite its numerous advantages, Sentinel 2 satellite images lack height information.
Fortunately, thanks to nation-wide aerial laser scanning surveys using LiDAR technology [27],
we have also access to 3D point cloud data describing the surface of Earth and objects on it in
great detail. The authors of [15] introduced a workflow for processing large-scale point cloud
data into multi-band geo-referenced images containing information on vegetation structure
described by several statistical metrics (LiDAR metrics). Utilizing height information from
LiDAR data should therefore have the potential to contribute new knowledge for the study
of Natura 2000 habitats.

In this thesis we aim to implement parts of the workflow from [15] using Matlab and C++.
We plan to create GeoTIFF images containing LiDAR metrics for parts of Western Slovakia.
Additionally, we will use some of the methods from [18] to form a multi-dimensional training
dataset for classification models. The goal is to test if LiDAR data can provide relevant
information about the protected habitats.

17



18 CHAPTER 1. INTRODUCTION



Chapter 2

Data description and processing

2.1 Classified Point Cloud

The areal laser scanning (ALS) using a LiDAR1 sensor mounted on an airplane/drone is
a powerful active remote sensing tool that enables us to capture detailed and accurate 3D
information about the surface of Earth. It works on the principle of emitting light pulse
directed toward the ground and measuring the time it takes to return. Using basic principles
of physics, the onboard computer can then calculate the distance dGP between the plane
and the spot hit by the light pulse. To calculate the elevation z at the point of impact, the
distance dGP is subtracted from the plane’s altitude. This information is stored along with
the corresponding GPS coordinates as a triplet (x, y, z) representing one point. Additional
data can be added to each point such as RGB values or return intensity of the light pulse.

In reality, to scan a wider area, multiple pulses are emitted at various angles. This must
be considered when calculating the distance dGP. Additionally, the computer must also factor
in any changes in the plane’s inertial measurement unit, such as yaw, roll, and pitch. The
resulting data set of points is called a Point Cloud (PC). Visual representation of ALS is
depicted in Figure 2.1.

Figure 2.1: Airborne laser scanning, source of the image: [11].

Between the years 2017 and 2023, a large-scale ALS survey of the entire territory of
Slovakia was carried out in the project titled ”Airborne Laser Scanning and DTM 5.0” by
ÚGKK SR2. Its objective was to gather data from ALS conducted by the private sector and
create a new Digital Terrain Model (DTM) of Slovakia [26].

1An acronym for Light Detection And Ranging.
2Geodesy, Cartography and Cadastre Authority of Slovak Republic.

19
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Figure 2.2: Division of Slovak territory into lots, source of the image: [26].

As stated in [26], Slovakia’s territory was partitioned into 42 regions called lots, as shown
in Figure 2.2. The lots’ borders (lots’ footprints) are described in ESRI Shapefiles (SHP, see
[6]), available for download at [28]. The ALS was carried out step-by-step on individual lots,
starting in the western regions and gradually moving to the east. The raw PC from ALS was
then further processed into a classified PC according to:

1. Compulsory classification: 01-Unclassified, and 02-Ground

2. Optional classification: 01-Unclassified, 02-Ground, 03-Low vegetation, 04-Medium veg-
etation, 05-High vegetation, 06-Buildings, 07-Low noise, 09-Water, 11-Road surface,
17-Bridge deck, and 18-High noise

For the purposes of this thesis, we focused on the points classified as ground and vegeta-
tion. As described in [26], the DTM and classified PC must meet the following compulsory
criteria:

• scanning density at least 5 points per m2,
• overlap between swaths min. 20% on 95% of their mutual coincidence,
• horizontal and vertical reference systems:

– S-JTSK(JTSK03)3 + HBpv4,
– ETRS89-TM345 + hETRS89,

• absolute vertical accuracy of point cloud at ellipsoidal heights: |ETRS89−mh| ≤ 0.15m,
• absolute positional accuracy of point cloud: |ETRS89-TM34−mXY| ≤ 0.30m,
• absolute vertical accuracy of DTM: |hETRS89 −mH| ≤ 0.20m,
• absolute vertical accuracy of DTM: |Bpv −mH| ≤ 0.25m,
3System of the Unified Trigonometrical Cadastral Network. In Slovak: Systém Jednotnej Trigonometrickej

Siete Katastrálnej.
4Baltic vertical reference frame after adjustment. In Slovak: Baltský výškový systém po vyrovnaní.
5European Terrestrial Reference System 1989 zone 34.
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where mh and mH stand for the measured elevation and mXY for the location. The coordinates
of all data utilized in this thesis will be expressed in S-JTSK(JTSK03) - Krovak East-North
and HBpv reference systems.

Both DTM and classified PC are freely available for the public [28]. To download smaller
volume of data, one can use the data export feature of the web application Map Client ZBGIS.
The user can specify the export region, for example, by outlining it with a polygon. Once
done, the data download link will be sent to the provided user’s email address. In order to
obtain a larger amount of PC data, it is necessary to fill out the order form and deliver it
together with an external drive to the ÚGKK SR offices located either in Bratislava or Prešov
[28].

PC data can be stored in LAS (LASer) file format or its compressed version LAZ. When
downloading via the Map Client ZBGIS, both file types are available. However, larger PC
data are given out only in LAZ format due to their substantial size (almost 10.5 TB in the
compressed version). The territorial extent of each LAZ file, also called a footprint, is given as
a polygon described by X and Y coordinates of its nodal points, see Figure 2.3. All footprints
from the same lot are grouped and stored in the corresponding SHP file. These files are
available at [28].

Figure 2.3: Example of some footprints from LOT05, the red point marking the city of Trnava.

The SHP files provided by ÚGKK SR can be loaded using the function shaperead()
from the Matlab Mapping Toolbox [25]. As the input argument, we provide the path to the
selected SHP file. For convenience, the X and Y coordinates of nodal points for each footprint
were used to create polyshape6 objects. This significantly simplified the workflow for the
PC processing, which is described in section 2.4. Furthermore, we also need to save the LAZ
file name of each footprint to access the correct PC data.

To read PC data from a LAZ file, we can use the function readPointCloud() from
the Matlab Lidar Toolbox [24]. As the first argument, we input the lasFileReader object
containing metadata for a given LAZ file. Then we can specify what attributes to include,
for instance, the points’ classification. After the reading is completed, retrieved information
is saved in 2 objects of type pointCloud and lidarPointAttributes, respectively.

Listing 2.1: Code example for handling the SHP and LAZ files in Matlab.
% Read SHP file
shapefile = shaperead(shapefileName);
footprints = cell(numel(shapefile), 1);
for i = 1:numel(shapefile)

footprints{i}.poly = polyshape(shapefile(i).X, shapefile(i).Y);
footprints{i}.lazFileName = shapefile.filename;

6Matlab class for handling 2D polygonal shapes.

https://zbgis.skgeodesy.sk/mkzbgis/en/teren?pos=48.800000,19.530000,8
https://zbgis.skgeodesy.sk/mkzbgis/en/teren?pos=48.800000,19.530000,8
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end

% Read LAZ file
lasReader = lasFileReader(lazFileName);
[ptCloud , ptAttributes] = readPointCloud(lasReader ,...

'Attributes', 'Classification');
xyz = ptCloud.Location; % points ' coordinates
class = ptAttributes.Classification;

2.2 Habitat curves
In total, we were provided with 111 habitat curves segmented in NaturaSat software which

were checked in the field by botanists [18]. These include the following 4 protected Natura
2000 habitats:

(91E0) Alluvial forests with Alnus glutinosa and Fraxinus excelsior (22 curves)

(91F0) Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus
excelsior or Fraxinus angustifolia, along the great rivers (27 curves)

(91G0) Pannonic woods with Quercus petraea and Carpinus betulus (31 curves)

(9110) Luzulo-Fagetum beech forests (31 curves)

Figure 2.4: Segmented curves of the protected Natura 2000 habitats together with the representative
squares visualized in Google Earth. The red curves represent mixed alder-ash alluvial forests located
in Bodíky municipal region around the Danube river. The green curves represent riparian mixed
oak-elm-ash forests north-west of the village Vysoká pri Morave. The blue curves show the Pannonic
oak-hornbeam woods above Bratislava-Rača. Lastly, the magenta curves indicate the acidophilous
beech forests near Biely kríž cottage.

https://www.google.com/maps/@47.906393,17.4729127,1321m/data=!3m1!1e3?entry=ttu
https://www.google.com/maps/@48.3462967,16.8970724,4405m/data=!3m1!1e3?entry=ttu
https://www.google.com/maps/@48.2137809,17.1331451,2656m/data=!3m1!1e3?entry=ttu
https://www.google.com/maps/@48.2505989,17.1409402,1430m/data=!3m1!1e3?entry=ttu
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For classification purposes, there are also 111 so-called representative squares correspond-
ing to each segmented area. These play an important role in the formation of the learning
data-set. Aside from the habitat curves, we were provided with 22 additional representative
squares for monoculture tree plantations in the vicinity of the 91E0 habitats around the
Danube river.

Both the habitats’ curves and the representative squares were supplied as KML files. It
is an XML file format commonly used to display geographic data, for instance, in Google
Earth [10]. Similarly to the footprint curves mentioned in section 2.1, we also stored the
habitats’ curves as polyshape objects.

2.2.1 Conversion of coordinates
In order to work with habitat curves and classified PC, both must use the same coordinate

system. The nodal points of each habitat curve are expressed in GPS coordinates, meaning
as longitude λ and latitude ϕ. It is equivalent to saying they are described using the geodetic
coordinates (λ, ϕ, h) within the global WGS847 datum. The ellipsoidal height h is assumed
to be zero.

Points from classified PCs are expressed in the projected grid coordinates within the local
S-JTSK(JTSK03) datum. Because we have tens of millions of these points, it is more practical
to convert the habitat curves to these grid coordinates. This conversion of coordinates is
carried out in 5 steps, as shown in Figure 2.5. The steps (T1) and (T4) involve changes
between geodetic and geocentric coordinates. The steps (T2) and (T3) encompass datum
transformations using the Helmert transformation [21]. The final step (T5) is a forward
projection from geodetic to grid coordinates of our choice. For more details see section 2.3
Coordinate system transformation in [12].

Figure 2.5: Transformation from WGS84 to S-JTSK(JTSK03), source of the image: [12].

2.3 Computational grid
We created 2 different methods for establishing the computational domain denoted as Ω.

For both the user must define the desired pixel size h [m]. In case of an area chosen via
the Map Client ZBGIS, we take advantage of having the DTM. Let us denote nxterrain and

7World Geodetic System 1984.
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nyterrain as the dimensions of the DTM where each pixel represents 1× 1m square. Then the
dimensions of the domain nxΩ and nyΩ will be calculated as

nxΩ =
⌊nxterrain

h

⌋
and nyΩ =

⌊nyterrain
h

⌋
.

Unless we choose h = 1, this method in general yields a grid with a slightly smaller real
world size compared to the extent of the DTM. This simpler method was used only in the
first testing computations.

The second approach is more universal, as the area of interest can be specified by any
generic curve denoted as γ. It can be either a segmented habitat boundary or a general area.
Let us define the width and the height of the bounding box of γ (a smallest rectangle which
completely encloses a curve, see Figure 2.6) as

Wγ = |xmax − xmin| and Hγ = |ymax − ymin|.

By xmax and xmin we denote the maximum and the minimum of γ points’ x coordinates,
similarly for y coordinates. We will define the computational domain Ω by offsetting the
bounding box of γ outwards, such that the width WΩ and the height HΩ must be divisible
by the pixel size h. This is ensured by having

WΩ =

⌈
Wγ

h

⌉
h+ np h and HΩ =

⌈
Hγ

h

⌉
h+ np h,

where we added another user defined padding parameter np to have the ability to include a
larger area around the curve γ, see Figure 2.7. We can calculate the unknown offset lengths
∆x and ∆y (see Figure 2.6) as follows:

∆x =
WΩ −Wγ

2
and ∆y =

HΩ −Hγ

2
.

Thus we can define Ω by adding or subtracting the corresponding offsets from all four vertices
of the bounding box of γ. The dimensions of the domain are obtained simply as nxΩ = WΩ/h
and nyΩ = HΩ/h.

Figure 2.6: Construction of Ω by offsetting the bounding box (dashed rectangle) of γ.

Furthermore, we separated all grid pixels into 2 categories: inside and outside the curve γ.
If a pixel center belongs to the interior of γ then this pixel is labeled as an internal pixel,
otherwise as an external pixel. To find all the internal pixels we utilized the Matlab function
inpolygon(). This information is important in the formation of the learning data-set because
we are interested only in the LiDAR metrics within the representative squares. It also enables
us to speed up the computation process by skipping all external pixels.
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Figure 2.7: Comparison of 2 grids created with different values of np around one of the habitat curves
(blue). For the grid on the left we used np = 0. The one on the right used np = 3. Internal pixels are
colored in green, external in red color.

Additionally, we will denote by Ωn the grid of pixels for PC normalization (see section
2.4.3) with the fixed size of 1 × 1m. By Ωh we understand the grid of pixels for LiDAR
metrics computation.

2.4 Point cloud processing
2.4.1 LAZ file search

For the first approach mentioned in the previous section 2.3, this part is very straightfor-
ward. All the LAZ files for the selected area can be simply downloaded using the link sent
to the user’s email address as mentioned in section 2.1. For the second approach, we must
select the LAZ files ourselves.

Since we have the information about each LAZ file’s territorial extent in the form of
the footprint curve, we can simply check for the intersection between the domain Ω and
each footprint curve. If they intersect, we will include the corresponding LAZ file. As we
mentioned previously, by storing all curves as polyshape objects, we can simply use the
Matlab intersect() function.

To make this more computationally efficient, we first check for the intersection between
the domain Ω and lots’ boundaries. This way we don’t need to check for all the available
footprint curves. We only iterate through footprints of those lots where Ω is located.

2.4.2 Selection of points
This step is identical for both approaches. Firstly, we filter out all the points outside of

the domain Ω. Thus we can significantly reduce memory requirements because the majority
of the points usually fall outside of the domain Ω. Secondly, we select only points classified
either as ground or vegetation.

2.4.3 Point cloud normalization
PC data typically have the z coordinates (height) as the absolute height with respect to

some vertical reference system. We need it, however, as height relative to the ground. The
normalization8 can be done in 2 ways. We can use the DTM because it contains information
about the terrain height. For each DTM pixel, we subtract its height value from z coordinate

8In this context it means to eliminate the influence of the terrain.
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of all points within this pixel. It can, however, lead to negative z values in places where
points are lower than the interpolated height from the DTM. In such case, we set all negative
values to zero.

The other method, as was used in [15], is subtracting the minimum height of all the
points within a 1× 1m pixel. Advantages of this approach include having no negative height
values as well as not being dependent on the availability of the DTM. We implemented both
methods, but chose to use the latter as it does not require any additional data.

Figure 2.8: Comparison of the PC data before and after the normalization.

2.5 LiDAR metrics
The utilization of a classified PC to describe the vegetation structure of selected Natura

2000 habitats was inspired by the paper [15]. Its authors introduced an effective workflow
for processing large-scale PC data into ecologically meaningful information in the form of
geo-referenced raster images. These images contain various statistical metrics, e.g. maximal
height of vegetation or vegetation density within different height layers, see [15]. In total,
they extracted 25 LiDAR metrics from the PCs covering the whole country of Netherlands.

As is described in [15], their workflow consists of 4 steps. First, the original LAZ files are
split into multiple smaller files in the process called re-tiling. This allows the workflow to be
easily parallelized. In the second step, the normalization of re-tiled data includes subtracting
the ground to eliminate the influence of the terrain. Thus the z values represent the true
height of vegetation above the ground. The last 2 steps deal with features extraction from
the normalized data and the subsequent export into GeoTIFF images.

For our purposes we adopted this workflow and implemented parts of it in Matlab and
C++ with emphasis on the segmented habitat curves. We used 23 (of the 25 original)
LiDAR metrics described in Tables 2.1, 2.2, and 2.3. Similarly to [15], one of the outputs
of our workflow also includes multi-band raster images with LiDAR metrics, see Figure 2.9.
Additionally, we used the LiDAR metrics to create a multi-dimensional feature space as input
for 2 classification models, see sections 3.1 and 3.3.
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Table 2.1: Ecosystem height metrics.

Index Abbreviation Metric name Description

1 Hmax Maximum vegetation height Maximum of normalized
z coordinates in pixel.

2 Hmean Mean of vegetation height Mean of normalized
z coordinates in pixel.

3 Hmedian Median of vegetation height Median of normalized
z coordinates in pixel.

4-6 Hp25, Hp75
Hp95

25th, 75th, and 95th

percentile of vegetation
height

Corresponding percentiles
of normalized z coordinates

in pixel.

Table 2.2: Ecosystem cover metrics.

Index Abbreviation Metric name Description

7 PPR Pulse penetration ratio Ratio of ground points
to all points in pixel.

8 DAM_z Canopy cover Number of laser returns
above mean height in pixel.

9-17
BR_below_z2,

BR_z1_z2,
BR_above_z1

Vegetation points density
within height layers (<1m,

1-2m, 2-3m, >3m,
3-4m, 4-5m, <5m,

5-20m, >20m)

Ratios of vegetation points
within specified height layer

to all vegetation points in pixel.

Table 2.3: Ecosystem structural complexity metrics.

Index Abbreviation Metric name Description

18 Coef_var_z Coefficient of variation
Ratio of standard deviation

and mean of normalized
z coordinates in pixel.

19 Hkurt Kurtosis of vegetation height Kurtosis of normalized
z coordinates in pixel.

20 Hskew Skewness of vegetation height Skewness of normalized
z coordinates in pixel.

21 Hstd Standard deviation of
vegetation height

Standard deviation of
normalized z coordinates

in pixel.

22 Hvar Variance of vegetation height Variance of normalized
z coordinates in pixel.

23 Shannon Shannon index

Equal to −
∑

pi ln pi where
pi is the proportion of the
vegetation points within

0.5m height layers in pixel.
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Figure 2.9: Georeferenced raster images (5 × 5m per pixel) showing some of the LiDAR metrics
computed for the area near Biely kríž cottage.

https://www.google.com/maps/@48.2505989,17.1409402,1430m/data=!3m1!1e3?entry=ttu


Chapter 3

Statistical methods for further
analysis

In this chapter we describe the methods for analyzing the dataset derived from the Li-
DAR metrics. The goal is to determine if we can differentiate individual habitat types and
artificial monocultures using LiDAR data. Section 3.1 provides the basics behind the Nat-
Nets model, currently implemented in NaturaSat software for habitats classification [18]. As
an alternative, we use also the Linear Discriminant Analysis, which is explained in section
3.3. For reducing the number of predictors, we utilized the Principal Component Analysis
described in section 3.2. To visualize the dataset in a lower dimension, we used the Canonical
Discriminant Analysis described in section 3.3.1.

3.1 Natural numerical networks
Natural Numerical Networks (NatNets) is a deep learning method developed in order to

perform automated classification of protected Natura 2000 habitats [18]. A deep learning
network typically contains multiple hidden layers where all the computations occur. In the
case of the NatNets, these layers are defined by the discretization of the nonlinear forward-
backward diffusion equations on a complete graph. So one layer is represented as one time
step of the numerical scheme.

The basic idea of this algorithm is to utilize the clustering effect of the forward diffusion.
This means that points with similar features in the feature space are brought closer together,
forming clusters. To classify a new observation, we look at which cluster it was assigned
to and evaluate it with a relevancy coefficient. The number of clusters NC is given by the
number of habitat types we assume. For the purposes of this thesis, we will explain only the
core ideas behind this model.

Let G =
(
V (G) , E (G)

)
denote a complete graph, meaning all vertices are connected by

edges. We will describe the location X(v, t) =
(
x1(v, t) , . . . , xp(v, t)

)
∈ Rp of a vertex v ∈

V (G) at time t ∈ [0, T ] in the p-dimensional feature space by the function X : G×[0, T ] → Rp.
The diffusion process can be formulated by the following PDE

∂tX(v, t) = ∇ ·
(
g∇X(v, t)

)
, (3.1)

coupled with the initial conditions X(v, 0) = X0(v) for all v ∈ V (G). The basic definition of
the diffusion coefficient g = g (euv) for each edge euv connecting vertices u and v is as follows

g (euv) = ε (euv)
1

1 +KL2 (euv)
,

where L (euv) denotes the Euclidean distance between points X(u, ·) and X(v, ·), the coeffi-
cient K ≥ 0 is controlling the influence of the length L (euv) and the parameter ε (euv) for

29
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switching between forward and backward diffusion.
The diffusion coefficient g is further modified, for example by introducing multiple pa-

rameters Ki or reducing the influence of observations outside the so-called ”δ-diffusion neigh-
borhood”, see [18].

For the numerical discretization of the model (3.1) we first approximate the diffusion flux
to or from the vertex v along the edge euv as

Fi (v, euv, t) = g (euv)
(
xi(u, t)− xi(v, t)

)
,

where xi(u, t) denotes the i-th coordinate of X(v, t). This can be understood as an analogy
to Fick’s law. If the value of Fi is positive we regard it as a diffusion inflow to the vertex v.
On the other side, if Fi is negative, it means there is a diffusion outflow from the vertex v.

Next, we can describe the balance of the diffusion fluxes by summing up contributions
along all edges connected to the vertex v

∂t xi(v, t) =
∑
euv

Fi (v, euv, t) =
∑
euv

g (euv)
(
xi(u, t)− xi(v, t)

)
, (3.2)

where the expression on the right is the ”graph-Laplacian” from graph theory [7]. Last step
is the time discretization by the finite difference method

∂t xi(v, t) ≈
xmi (v)− xm−1

i (v)

τ
(3.3)

where τ is the time step and xmi (v) = xi(v, tm). By plugging (3.3) into (3.2) and some
rearranging we obtain in each time step the following systems of linear equations

(
1 + τ

∑
euv

gm−1
euv

)
xmi (v)− τ

∑
euv

gm−1
euv xmi (u) = xm−1

i (v) , ∀v ∈ V (G) , i = 1, . . . , p

which we solve for each coordinate xi separately. As mentioned before, these systems repre-
sent the dynamics of the NatNets. For further information see [18].

To determine the relevancy of classification of the new observation w, the authors of [18]
introduced the so-called relevancy coefficient R (w) which is based on distances to the cluster
centroids Ci. These can be defined simply as the arithmetic mean of all points from the
cluster Ci at the final time step T

Ci =
1

NCi

∑
v∈Ci

X(v, T ) , i = 1, . . . , NC .

After the network dynamics is stopped, we look for the closest point of the network (from
the cluster Ca) to the new observation w. If its distance is smaller than some predefined
tolerance, we assign w to the cluster Ca. Otherwise it is regarded as an outlier with zero
relevancy. Next, we calculate the distance between the original position X(w, 0) and the
centroid Ca

da(w) = |X(w, 0)− Ca|,

and the average distance to the other centroids

Da(w) =
1

NC − 1

NC∑
i=1
i ̸=a

|X(w, 0)− Ci|.

Using the distances da and Da we define the quantity
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R◦
a(w) = 1− da(w)

da(w) +Da(w)
∈ [0, 1] .

As mentioned in [18], if the position X(w, 0) is near the centroid Ca, then the distance da is
almost 0 and the value of R◦

a(w) is close to 1, thus indicating high relevancy. If the quantity
R◦

a(w) is less than 0.5, then the relevancy of classification should be reduced. For this purpose
the authors used the logistic function

L (x) =
1

1 + eλ(0.5−x)
,

where λ = 12. The relevancy coefficient is then defined as

Ra (w) =
L
(
R◦

a(w)
)
− L (0)

L (1)− L (0)
.

Figure 3.1: The relevancy coefficient R (w) plotted as a function of R◦
a(w).

3.2 Principal Component Analysis
Principal Component Analysis (PCA) is an unsupervised learning method used to reduce

the dimensionality of multivariate data-set. It does so by finding the directions (principal
components) that capture the maximum variance. To reduce the dimension we project the
original data into the sub-space with its basis composed of the first two or three principal
components.

Let X denote the n × p matrix containing coordinates of n observations in the original
p-dimensional feature space. We assume the coordinates to be standardized, meaning each
column of X has zero mean and is scaled to have unit standard deviation. This is important
because PCA favors the features with greater variances and this can lead to skewed results.
The standardization ensures that all features contribute proportionally to finding the principal
components.

To simplify, let us assume only the first principal component represented by the axis Z
in the direction of the greatest variance. As mentioned in [1], this axis can be expressed by
a linear combination of the original feature space axes X1, . . . , Xp as

Z = v1X1 + · · ·+ vpXp

where v = (v1, . . . , vp)
⊺ is called the loadings vector with unit norm ∥v∥ = 1. Coordinates of

observations on the axis Z, denoted as z, will be calculated as z = Xv. As mentioned before,
the goal is to maximize the variance var[Z] which we can express as
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var[Z] = E
[
Z2

]
=

1

n
z⊺z =

1

n
v⊺X⊺Xv = v⊺

(
1

n
X⊺X

)
v = v⊺Σv

where Σ is the symmetric covariance matrix of our data X. To find the vector v1 correspond-
ing to the first principal component, we can solve the following optimization problem

v1 = argmax
v

v⊺Σv s.t. v⊺v = 1. (3.4)

A simple way is to use the Lagrange multipliers method where we define the Lagrange function
as L(v, λ) = v⊺Σv − λ (v⊺v − 1). Then we differentiate with respect to v and set the
derivative equal to zero.

∇v L(v, λ) = 2Σv − 2λv = 0 =⇒ Σv1 = λ1v1. (3.5)
As we can see from (3.5), the direction of the greatest variance is given by the eigenvector
v1 of the matrix Σ corresponding to its largest eigenvalue λ1. Subsequently, the direction of
the second greatest variance will be given by the eigenvector v2 corresponding to the second
largest eigenvalue λ2, and so on. To find all principal components at once, we can diagonalize
the matrix Σ to obtain its eigenvalue decomposition [22]

Σ = VΛV⊺

where V is the orthogonal p× p matrix whose columns correspond to the eigenvectors. This
is the matrix that transforms the data X to a new coordinate system represented by the
eigenvectors vi. The projected coordinates, also called scores, will be calculated as Z = XV.
Eigenvalues are given by the diagonal matrix Λ = diag (λ1, . . . , λp), and they explain the
variance of the corresponding principal components [22]

var[zi] =
1

n
z⊺i zi =

1

n
v⊺
iX

⊺Xvi = v⊺
iΣvi = v⊺

i λivi = λiv
⊺
i vi = λi.

There is no straight-forward method to tell how many principal components to retain. To
help us decide we can use a scree plot (see Figure 3.2) which graphically shows, for instance
the Proportion of Variance Explained

PVE (i) =
λi
p∑

j=1
λj

for each principal component. Then by applying the ”elbow method” we look for the compo-
nent where the curve flattens out which indicates that subsequent components explain much
smaller proportion of variance [1]. Alternatively, we can set a variance threshold (e.g. 90%)
and choose the number of components that cumulatively sum up to that desired threshold.

Figure 3.2: Scree plot for the first 10 principal components.
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3.3 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) belongs to the family of generative classifiers. In

contrast to discriminative methods, they take an indirect approach for modeling the condi-
tional probability Pr [Y = k|X = x], meaning the probability of assigning the observation x
to the k-th class. By Y we denote the response variable (in our case 5 classes - 4 habitats
and monocultures) and by X the vector of predictors. Generative methods try to learn the
probability distributions fk of predictors for each value of the response Y . Then the posterior
probability is computed using the Bayes’ theorem as

Pr [Y = k|X = x] =
πkfk(x)

K∑
j=1

πjfj(x)

(3.6)

where πk = Pr [Y = k] is called the prior probability of class k. It can be easily estimated
as nk

n where nk denotes the number of observations belonging to the class k. In general,
probability densities fk may be more difficult to estimate.

For this reason, LDA makes an assumption about joint normal probability distribution
for each class k, meaning X ∼ N(µk,Σ). The probability density function is thus given as

fk(x) =
1

(2π)
p
2 |Σ|

1
2

exp

(
−1

2
(x− µk)

⊺Σ−1 (x− µk)

)
(3.7)

where µk = E [X|Y = k] is the vector of mean values for the class k. The covariance p × p
matrix Σ is assumed to be equal for all classes. After plugging (3.7) into (3.6) we get

Pr [Y = k|X = x] =

πk
�����1

(2π)
p
2 |Σ|

1
2
exp

(
−1

2 (x− µk)
⊺Σ−1 (x− µk)

)
K∑
j=1

πj
�����1

(2π)
p
2 |Σ|

1
2
exp

(
−1

2(x− µj)
⊺Σ−1(x− µj)

) (3.8)

Note that the denominator in (3.8) remains constant across all classes so we can focus
on the numerator only. As we classify the observation x according to the highest posterior
probability, we can simplify this calculation by applying the logarithm. Because the logarithm
is a strictly increasing function, applying it to (3.8) will preserve the order of the posterior
probabilities.

ln Pr [Y = k|X = x] = lnπk ������−1

2
x⊺Σ−1x+ x⊺Σ−1µk −

1

2
µ⊺
kΣ

−1µk

�������
− ln

K∑
j=1

(. . . ) (3.9)

Furthermore, we can omit the terms in (3.9) that are independent of k because adding
constant terms does not affect the classification outcome. This leads us to the so-called
discriminant function δk given as

δk(x) = x⊺Σ−1µk −
1

2
µ⊺
kΣ

−1µk + ln πk, (3.10)

which preserves order of classes, so we can classify the observation x according to the highest
value of δk(x). Note that δk is linear in its argument, thus explaining why this method is
called the linear discriminant analysis.

The discriminant function gives us also a tool to find the decision boundary between 2
classes k1 and k2. For an observation to be on the boundary we must have

δk1(x) = δk2(x)
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which reduces to the following equation

x⊺Σ−1
(
µk1 − µk2

)
+

1

2

(
µ⊺
k2
Σ−1µk2 − µ⊺

k1
Σ−1µk1

)
+ ln

πk1
πk2

= 0,

which is a linear equation in the variable x. Therefore, the decision boundary for a 2-
dimensional problem would be a line, for a multi-dimensional problem a hyperplane.

Figure 3.3: Synthetic data from 3 classes plotted with their mutual decision boundaries.

3.3.1 Canonical Discriminant Analysis
Canonical Discriminant Analysis (CDA), as a special case of LDA, is a technique that

can be used both for dimensionality reduction and classification. Similarly to PCA, from
an exploratory point of view we look for the canonical axis defined by some vector u such
that the linear combination z = Xu adequately separates classes [22]. Ideally, we want to
maximize the between-class dispersion while minimizing the within-class dispersion. It means
having the class centroids well separated with observations concentrated closely around them.
Unfortunately, it is not possible to achieve both at the same time, so we need to find a
compromise.

As mentioned in [1, 22], the overall variance V can be decomposed as V = W + B,
meaning into the within-class variance matrix

W =
1

n− 1

K∑
k=1

X⊺
k Xk,

where Xk is the k-th class centered data matrix, and the between-class variance matrix

B =
1

n− 1

K∑
k=1

nk (µk − µ) (µk − µ)⊺ ,

where µk and µ denote the k-th class and global centroids, respectively. Alternatively, this
decomposition can be also expressed as a quadratic form

u⊺V u = u⊺Wu︸ ︷︷ ︸
minimize

+ u⊺Bu︸ ︷︷ ︸
maximize

.

A reasonable compromise is to use the so-called F-ratio criterion [22, 1] which is given as
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max

{
u⊺Bu

u⊺Wu

}
,

and can be reformulated using a normalization restriction u⊺Wu = 1 to give the following
optimization problem

max u⊺Bu s.t. u⊺Wu = 1.

This can be solved analogously to the problem (3.4) from section 3.2. Once again we define
the Lagrange function L(u, λ) = u⊺Bu− λ (u⊺Wu− 1), we take a gradient with respect to
u and set it equal to zero

∇u L(u, λ) = 2Bu− 2λWu = 0,

from which we obtain

Bu = λWu, (3.11)

which is called the generalized eigen-value problem (see [9]). Similarly to (3.5), the canonical
axes here will also correspond to the eigen-vectors we obtain from (3.11). When the first
canonical axis has been found, we search for the next one until we find the total number of
canonical axes determined by min{K − 1, p} [1, 22]. Intuitively, we can not have more than
the original p axes. Additionally, the number of canonical axes is also limited by the rank of
the between-class matrix B which is at most K − 1 [3].

For classification purposes, CDA uses the so-called Mahalanobis distance which is a metric
induced by the matrix W−1

d2M (x,µk) = (x− µk)
⊺W−1 (x− µk) . (3.12)

This metric measures the squared distance between the observation x and the centroid µk

by taking into consideration the correlation structure of the predictors [22]. Naturally, if the
observation is closest to the centroid µk in terms of Mahalanobis distance, we classify the
observation x to the class k. Note that CDA is a special case of LDA. LDA reduces to CDA
under the assumption that the prior probabilities are equal for all classes

π1 = π2 = · · · = πK = π.

Let us expand the expression (3.12)

d2M (x,µk) =�����
x⊺W−1x− 2x⊺W−1µk + µ⊺

kW
−1µk

where we can once again omit the term independent of k (terms constant across all classes
do not affect the classification outcome). As we can see, this can be seen as a special case of
the discriminant function (3.10) from the previous section 3.3

−2x⊺W−1µk + µ⊺
kW

−1µk ∼ −2δk(x) = −2x⊺Σ−1µk + µ⊺
kΣ

−1µk ����−2 ln π.
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Chapter 4

Implementation

In this chapter, we describe our workflow implementations in Matlab and C++. Addi-
tionally, we also show two UI application we developed for visual analysis of the results.

4.1 Matlab workflow
During the initial stages of this thesis, the computation of the LiDAR metrics was done in

Matlab as it provided numerous convenient functionalities. Later we also employed Matlab to
create the learning dataset and to perform statistical analysis. For visualization purposes, we
created two UI applications using the Matlab App Designer. Individual steps of our Matlab
workflow can be described as follows:

(M1) Specifying the area (or areas) of interest. We can either choose from the already
segmented habitat curves, representative squares or manually create a boundary of
some area, for example in Google Earth via the ”Add - Path” functionality. In both
cases, the curves should be stored in the KML format.

(M2) Import and processing of KML curves. For each one of the specified curves we first
read and save the GPS coordinates of their nodal points. As explained in section 2.2.1,
we must transform the nodal points of each curve from WGS84 geodetic coordinates to
the S-JTSK(JTSK03) - Krovak East North projected coordinates, see Figure 2.5.

(M3) Domain specification. We choose the desired pixel size h, for example h = 10m, and
the optional padding parameter np to define the domain Ω as was described in section
2.3. For further processing we save it as the polyshape object.

(M4) LAZ files search. As stated in section 2.4.1, we first search for the intersection of
Ω with the lots’ footprints. Subsequently, we seek which of the relevant lots’ LAZ
footprints overlap with Ω and save the names of the corresponding LAZ files.

(M5) Normalization of PC to get the points’ heights relative to the ground. To do so, we
iterate through all the pixels of the grid Ωn. From each point within a pixel we subtract
either the value of the DTM or minimum of z coordinates. The comparison of PC data
before and after the normalization can be seen in Figure 2.8.

(M6) Computation of LiDAR metrics. For each pixel of the grid Ωh we compute the
LiDAR metrics described in Tables 2.1, 2.2 and 2.3.

(M7) Computation of representative metrics. This step assumes that the representative
squares were chosen as the areas of interest. For each LiDAR metric we compute mean,
standard deviation, minimum and maximum but only using the values from internal
pixels.

37
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(M8) Processing of the results. LiDAR metrics rasters are exported as geo-referenced
TIFF images. The representative metrics are saved in a CSV file format, easily acces-
sible for further statistical analysis using methods from chapter 3. For visualization
purposes, we created two UI applications in Matlab, see Figures 4.1 and 4.2.

Figure 4.1: UI Matlab application for visualizing LiDAR metrics raster. User can also plot the
normalized PC along an arbitrary line segment by selecting two points in the image.

Figure 4.2: UI Matlab application for visual analysis of the representative metrics.

4.2 C++ workflow
For larger grids, the number of points quickly grew to hundreds of millions which resulted

in severely prolonged computation time (several hours). Therefore we decided to implement
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parts of the Matlab workflow using C++. To speed up the computations even further we also
parallelized steps (C3), (C4) and (C5) using the OpenMP library [2]. We used this workflow
also for large-scale computations, further described in section 5.3.

(C1) Domain specification and LAZ files search were performed in Matlab, since these
steps were sufficiently fast. Therefore, there was no need to implement them in C++.
Afterwards, we exported all essential information into a text file, which serves as the
input for the C++ program. This text file contains coordinates xul, yul of the upper-
left corner of the domain Ω, dimensions for the grids Ωn and Ωh along with paths to all
the necessary LAZ files.

(C2) Load LAZ files using the LAStools library [14] which provides a fast low level access
for reading PC data. One of its advantages we utilized was reading the points one by
one. This enabled us to store only the relevant points and ignore the rest. We can
easily find the indices r and c (row and column) of the pixel in which the given point
is located by

r = ⌊abs(yP − yul︸ ︷︷ ︸
δy

)/h⌋ and c = ⌊abs(xP − xul︸ ︷︷ ︸
δx

)/h⌋, (4.1)

where xP , yP are x and y coordinates of a point P . At this stage, we use the value h = 1
because we distribute points to the grid Ωn. Furthermore, we must check whether the
point P is inside Ωn by the following criterion:

If (δx < 0) or (δy > 0) or (c ≥ nxΩn) or (r ≥ nyΩn) then ignore the point.

We also ignore all points that are not classified as ground or vegetation.

(C3) Normalization of PC by subtracting the minimum of z coordinates as described in
section 2.4.3.

(C4) Redistribution of points to the pixels of the grid Ωh. This process is analogous to
image downsampling by averaging. But instead of averaging we take points from all
pixels of Ωn that correspond to a pixel in Ωh and reassign them to that pixel, see Figure
4.3.

Figure 4.3: Redistribution of points from Ωn to Ωh with h = 5.

(C5) Computation of LiDAR metrics similarly as described in step (M6). The only
difference is that we had to implement auxiliary functions, for instance for mean value,
skewness, etc.

(C6) Export of the results using the GDAL library [8]. One of the features it provides
is a C++ API for seamless data export to a multi-band geo-referenced TIFF image,
where each band represents one LiDAR metric.
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Chapter 5

Results

5.1 LiDAR metrics with point cloud view
We can review the LiDAR rasters via QGIS, an open source geographic information

system [20]. It also provides great features for making images from geo-referenced data, e.g.
Figures 5.1a, 5.1b or 5.7. To better understand the vegetation based on individual LiDAR
metrics, we also wanted to plot the normalized PC along arbitrary line segments.

For this purpose we created a simple UI application using the Matlab App Designer,
see Figure 4.1. The user can upload a GeoTIFF image containing LiDAR metrics and its
corresponding normalized PC data. Once uploaded, the user can specify 2 points on the
image. The program will then plot all of the points in the area along the line segment
connecting the two specified points. Additionally, the user can also specify the width of the
area.

Below, we provide 3 examples of how we can visually analyze the vegetation structure
using a combination of LiDAR rasters and the normalized PC. We chose LiDAR metrics
Hmax, Hskew and BR_above_20, meaning maximum height, skewness and proportion of
vegetation points above 20m, respectively. For reference, we also added orthomosaic images
for the selected areas.

Example 1. In Figure 5.1a, differences between the natural 91E0 habitats and artificially
planted monoculture forests are clearly visible. Monocultures are easily distinguishable by
areas with almost constant height values, whereas the natural habitats have varying ranges
of maximal heights. PC data in Figure 5.1c shows various tree species as expected. In Figure
5.1d we provide an example of PC from natural habitat (left part) and from the monoculture
(right part).

Example 2. In this example, we demonstrate the expected vegetation structure based on
varying values of skewness. From Figure 5.2c it is evident that areas of negative skewness
have the majority of vegetation points concentrated in high denser canopies and barely any
vegetation points close to the ground. Values around zero indicate a more uniform distribution
of vegetation points along the z axis. In regions with positive skewness, we can expect more
vegetation points near the ground.

Example 3. LiDAR metrics numbered 9 to 17 are easily interpretable, as they provide
information about the proportion of vegetation points either within, below, or above some
specific heights. By looking around the point A in Figure 5.3a, we see zero values, which
implies the absence of vegetation points above the 20m mark, as is indicated in Figure 5.3c.
On the other hand, in areas with higher values we expect a greater number of vegetation
points above 20m.
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(a) Grid with pixel size h = 10m. (b) Orthomosaic for the selected area.

(c) PC along the line segment A-B.

(d) PC along the line segment C-D.

Figure 5.1: Area south-east from village Bodíky depicting natural forest of type 91E0 (red curves)
and artificially planted monocultures. LiDAR metric in Figure 5.1a: maximum height of vegetation
points in pixel.

https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=47.905109,17.480276,16
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(a) Grid with pixel size h = 10m. (b) Orthomosaic for the selected area.

(c) PC along the line segment A-B.

(d) PC along the line segment C-D.

Figure 5.2: Area around Biely Kríž cottage from Figure 2.4 with several of 9110 habitats (magenta
curves). LiDAR metric in Figure 5.2a: skewness of height of vegetation points in pixel.

https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.250118,17.142680,17
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(a) Grid with pixel size h = 10m. (b) Orthomosaic for the selected area.

(c) PC along the line segment A-B.

(d) PC along the line segment C-D.

Figure 5.3: Area around Morava river from Figure 2.4 with some of 91F0 habitats (green curves).
LiDAR metric in Figure 5.3a: proportion of vegetation points above 20m.

5.2 Higher-resolution computations

In this section we present results obtained by using the pixel size h = 1m. As the first
example we have chosen the maximum height of vegetation points, see Figure 5.4. Thanks
to the higher resolution, we can even distinguish shapes of individual trees, which could be
potentially useful for tree segmentation.

Interestingly, we may have also identified several trees in this area with height exceeding
40m, see the zoomed area A in Figure 5.4. In the future, these trees will be measured by the
botanists to validate our results.

https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.344326,16.883132,16
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Figure 5.4: Area southeast from Bodíky village. LiDAR metric: maximum height.

It is also worth noting that a finer grid is not always the best choice. For instance, in
Figure 5.5a, the image appears to have a lot of noise. On the other hand, with a coarser grid
used in Figure 5.5b, we can see some patterns that can be further investigated by plotting
the PC, as shown in section 5.1. It should again help us better understand what vegetation
structure to expect based on varying values of the kurtosis.

Band 19: Hkurt

(a) Grid with pixel size h = 1m.

Band 19: Hkurt

(b) Grid with pixel size h = 10m.

Figure 5.5: Comparison of the results for kurtosis of vegetation points height with different pixel sizes.
In both images we see the area near Vysoká pri Morave.

https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=47.893886,17.474763,16
https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.350041,16.885394,16
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5.3 Large-scale computations

Because we had access to all PC data for lots 02, 03, 04, 05 and 06 (see Figure 2.2), we
decided to compute LiDAR metrics also for a larger area. To be specific, we focused on lots
02 a 03 as they contained most of the segmented curves for Natura 2000 habitats that we
had access to.

To do this, we used our grid algorithm from section 2.3 to create a grid of 2×2 km square
areas. Subsequently, we selected only those areas that intersected with footprints of lots 02
and 03. However, since we did not have PC data for lot 01 (located above lot 02, see Figure
2.2), we had to exclude some areas that contained PC data from lot 01. For each of the
remaining 564 squares (marked by red in Figure 5.6) we created a text file containing all
necessary information, as was described in step (C1).

Figure 5.6: Division of lots 02 and 03 into 2 × 2 km areas, by red color we highlighted squares for
which we computed the LiDAR metrics.

Although our implementation in C++ was significantly faster than in Matlab, the com-
putation still took almost 3 days to complete. This was mainly because we did not implement
the re-tilling step from [15] which resulted in multiple reads of the LAZ files. Nevertheless, as
we can see from Table 5.1, the computation time took only several seconds even with around
200 million points on average per area.

Table 5.1: Statistics from the large-scale computation for the first 41 areas highlighted in red.

# LAZ files # points LAZ reading Normalization Redistribution LiDAR metrics
22 203,427,769 6.37 min 0.38 sec 3.96 sec 8.51 sec

After the computation was done, we imported all 564 GeoTIFF images (7 MB per file)
into QGIS software [20] and used its ”Raster - Miscellaneous - Merge” feature to merge
all of them into one large GeoTIFF image (5.5 GB), see Figures 5.7, 5.8 and 5.9. All the
564 individual GeoTIFF images as well as the merged version are available to download at
https://bit.ly/tiff_lots_2_3.

https://bit.ly/tiff_lots_2_3
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Figure 5.7: Median height of vegetation points for lots 02 and 03. As could be expected, it is mostly
the Small Carpathians mountain range that have higher values of the median vegetation height.
Additionally, there also regions with NaN values that mostly correspond to rivers or lakes, such
as the Danube river. An interesting fact is that several areas were excluded from the areal laser
scanning, potentially due to security reasons. One such place is the Slovnaft oil refinery in Bratislava,
see the zoomed region A. Other similar areas include, for instance, the nuclear power plants near
Mochovce or Jaslovské Bohunice. In the zoomed region B we highlighted one of the 91F0 habitats.

https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.118912,17.181243,15
https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.261900,18.450241,15
https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.493514,17.682688,16
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Figure 5.8: Pulse penetration ratio for lots 02 a 03. In contrast to Figure 5.7, places with vegetation
in this case correspond to regions with lower values. On the other hand, areas with lower or no
vegetation, such as fields or cities, are depicted with values closer to 1.
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Band 10:BR_1_2

Figure 5.9: Vineyards around Pezinok showing higher proportions of vegetation points between 1 and
2m above ground.

https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa?pos=48.290975,17.246780,14
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5.4 Statistical analysis

In this section, we present the results of statistical analysis we conducted in Matlab on
a dataset comprising of 133 observations and 92 predictors. Furthermore, we divided the
dataset into 3 subsets: habitats only, habitats with monocultures, and only 91E0 habitats
with monocultures. Before using CDA as well as the LDA model described in chapter 3,
we reduced the number of predictors using PCA. To determine the number of principal
components to use, we set a threshold of 99.9% explained variance.

Additionally, since the LDA model assumes a normal distribution of predictors, we checked
for normality using the Kolmogorov-Smirnov normality test [16, 23]. This helped us iden-
tify any predictors that were unlikely to be normally distributed. Thus we removed these
predictors before applying PCA. The number of remaining predictors is shown in Table 5.2.

Table 5.2: Number of the remaining predictors.

All predictors Only PCA K-S test + PCA
Only habitats 92 55 32

Habitats + mono 92 58 32
91E0 + mono 92 37 35

5.4.1 Dimensionality reduction by CDA

As explained in section 3.3.1, Canonical Discriminant Analysis (CDA) is used to project
data into a lower dimensional space where classes should be adequately separated. Ideally,
we should observe distinct clusters of points for each class. This is evident in Figures 5.10a,
and 5.12 when using only the first 2 canonical axes. However, from Figure 5.11 can see that
the clusters were better separated when using 3 canonical axes. Interestingly, as we might
have expected, the monoculture points in Figures 5.11a and 5.12 are very well separated from
the natural habitats.

We may also observe that in Figure 5.12, we added the 91F0 habitat type even though
it was not included in the third dataset from Table 5.2. As we explained in section 3.3.1,
the number of canonical axes is determined by min {K − 1, p}. So in order to visualize the
clusters using 2 canonical axes, we needed to add at least one more class to the third dataset.
We chose the 91F0 habitat type because it is similar to the 91E0 type, as both experience
periodical flooding. For classification however, we used only the 91E0 habitat type and the
monocultures.

(a) Only PCA applied. (b) Both K-S test and PCA applied.

Figure 5.10: Dimensionality reduction via CDA for only the habitats observations.
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(a) Only PCA applied. (b) Both K-S test and PCA applied.

(c) 3D view, only PCA applied. (d) 3D view, both K-S test and PCA applied.

Figure 5.11: Dimensionality reduction via CDA for the habitats and the monoculture observations.

(a) Only PCA applied. (b) Both K-S test and PCA applied.

Figure 5.12: Dimensionality reduction via CDA for the 91E0 habitats, the 91F0 habitats, and the
monoculture observations.

5.4.2 Classification results
In this section, we provide the results of classification from Natural Numerical Networks

(NatNets) and the Linear Discriminant Analysis (LDA). Accuracy results were obtained by
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Cross Validation (CV) which is a statistical method used to estimate the performance of a
classification model. There are various types of CV, but we decided to use k-Fold CV and
Leave-One-Out CV.

The k-Fold CV starts with uniformly assigning observations at random into k groups.
One group is then selected as a validation sample, while the rest as a training sample to fit
the model. We do this for all groups and measure the accuracy of the model each time. Then
we calculate an average of these accuracy values to better estimate the model performance.
Furthermore, we can repeat this whole process multiple times to get even better accuracy
estimate.

Leave-One-Out CV (L-O-O CV) is a specific type of k-Fold CV if the number of groups
is equal to the number of observations. L-O-O CV is preferred when the dataset contains
a smaller number of observations. The reason being that each time only one observation is
selected as a validation sample, thus leaving enough data to fit the model.

Accuracy values for NatNets represent the highest achieved accuracy during its learning
phase (estimation of the optimal model parameters using only the first 2 principal compo-
nents) using only the L-O-O CV.

Below we present the CV results we obtained for the 3 subsets of our dataset. Results from
L-O-O CV in Figure 5.13 indicate that the LDA model performed better than the NatNets
model in the first 2 cases. However, this could be because the NatNets model was trained
using only the first two principal components. On the other hand, it did achieve the highest
accuracy of 93.18% in the third case.

The results presented in Figure 5.14 were obtained through k-Fold CV for the LDA
model. It indicates that on average the achieved accuracy ranged from 70% to 80%. Figure
5.15 displays the best-case scenarios where the LDA model achieved accuracy between 80% to
90% for all three subsets. In almost all cases we see that selecting only normally distributed
predictors improved the accuracy results.

Figure 5.13: Achieved accuracy using the L-O-O CV.
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Figure 5.14: Mean achieved accuracy of the LDA model compared to the NatNets model. For the
LDA model here we used k-Fold CV with k = 5 for the first two subsets and k = 4 for the third.

Figure 5.15: Maximum achieved accuracy of LDA model compared to NatNets model. For the LDA
model here we used k-Fold CV with k = 5 for the first two subsets and k = 4 for the third.
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Chapter 6

Conclusions

The goal of this thesis was to investigate if classified Point Cloud (PC) data, obtained from
aerial laser scanning, can be used to study protected Natura 2000 habitats. The paper [15]
served as an inspiration because its authors developed a workflow for extracting useful LiDAR
metrics from large-scale PC data into geo-referenced TIFF images. We adopted parts of their
workflow with a focus on areas around segmented Natura 2000 habitats.

We have successfully implemented the data import and processing, as well as the algo-
rithm for specification of computational domain and searching for relevant LAZ files using
Matlab [13]. We were also able to compute all LiDAR metrics described in Tables 2.1, 2.2,
and 2.3, as is visualized in Figure 2.9.

For larger areas, we implemented PC normalization, LiDAR metrics extraction and export
in C++ using the LAStools [14], OpenMP [2] and GDAL [8] libraries. This was mainly
for computing the LiDAR metrics for the territorial extent of lots 02 and 03, together 564
GeoTIFF images, each covering a 2 × 2 km region. These were then merged using QGIS
software [20] into one GeoTIFF image, see Figures 5.7, 5.8, and 5.9.

Furthermore, we created a UI application using the Matlab App Designer, see Figure 4.1,
to visualize the normalized PC along user-specified line segments. This can help us better
understand the vegetation structure based on the values of LiDAR metrics. In section 5.1 we
provide examples of this functionality in Figures 5.1, 5.2, and 5.3.

Calculations of the representative metrics were successfully performed in Matlab and then
exported to a CSV file. To analyze these results visually, we created a second UI application
(as shown in Figure 4.2) that can help us identify differences among the 5 assumed classes (4
habitat types and monoculture forests).

The results presented in sections 5.4.1 and 5.4.2 suggest that the classified PC can provide
valuable information on the vegetation height structure in order to differentiate habitat types
and artificial monocultures.

Regarding our next steps, we plan to implement the re-tilling process from [15]. This will
allow us to compute LiDAR metrics for the entire territory of Slovakia, as well as reduce the
time required for reading PC data. Additionally, we want to expand our C++ code using
the MPI library [17], which will enable us to run the code in parallel on cluster computers.
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Resumé

Štúdium biotopov zohráva dôležitú úlohu pri ochrane a zachovaní biodiverzity, pretože
rozmanitosť ako aj početnosť rastlín a zvierat úzko súvisí so štruktúrou vegetácie. Za týmto
účelom Európska únia zriadila na území Európy sieť chránených oblastí Natura 2000 [4].
Avšak tradičné metódy manuálneho mapovania týchto biotopov sú pre botanikov jednak fyz-
icky, ale aj časovo veľmi náročné. Našťastie vďaka vývoju moderných technológií diaľkového
prieskumu Zeme, máme k dispozícii nástroje, ktoré majú obrovský potenciál zefektívniť celý
proces od identifikácie až po monitorovanie chránených biotopov.

Ako príklad môžeme uviesť misiu Sentinel 2 [5], vďaka ktorej máme prístup k multi-
spektrálnym satelitným snímkam s vysokým rozlíšením. Na automatické sledovanie biotopov
Natura 2000 boli prirodzene vyvinuté metódy využívajúce tieto snímky, ako je napr. softvér
NaturaSat, ktorý ponúka nástroje na segmentáciu aj klasifikáciu [19, 18].

No napriek početným výhodám Sentinel 2 snímok v nich absentuje výšková informácia.
Avšak, vďaka celoštátnym leteckým laserovým skenovaniam využívajúcich technológiu LiDAR
(Light Detection And Ranging), máme tiež k dispozícii tzv. klasifikované mračno bodov.
V jednoduchosti povedané, ide o množinu bodov v R3, ktoré veľmi detailne popisujú povrch a
objekty na Zemi. Každý bod môže byť opísaný okrem jeho x, y, z súradníc aj ďalšou číselnou
hodnotou (klasifikácia bodu), ktorá hovorí o tom, čo daný bod predstavuje, napr. zem,
vodu, budovy alebo vegetáciu. V tejto práci sme sa zamerali na body klasifikované ako zem
alebo vegetácia (triedy 2 až 5). Klasifikované mračno bodov pre celé územie Slovenska [27]
poskytuje Úrad Geodézie, Kartografie a Katastra SR.

Na spracovanie klasifikovaného mračna bodov predstavili autori článku [15] pracovný
postup s názvom Laserfarm. Pozostáva zo 4 krokov, ktoré sa venujú spracovaniu LiDAR dát,
ďalej extrakcii rôznych štatistických metrík (LiDAR-ové metriky) a ich následného exportu do
formátu GeoTIFF. Týmto postupom teda získame viac-kanálové georeferencované obrázky
(pozri obrázok 2.9), pomocou ktorých vieme zistiť napr. maximálnu alebo priemernú výšku
vegetácie bez potreby dané miesto navštíviť osobne.

V našej práci sme sa snažili zistiť, či LiDAR-ové metriky, popisujúce vertikálnu štruk-
túru vegetácie, môžu prispieť novými vedomosťami o chránených biotopoch Natura 2000.
Konkrétne sme sa zamerali na biotopy typu 91E0 (mäkké lužné lesy), 91F0 (tvrdé lužné
lesy), 91G0 (karpatské a panónske dubodovo-hrabové lesy) a 9110 (kyslomilné bukové lesy),
pozri obrázok 2.4. K týmto 4 typom chránených biotopov nám boli poskytnuté ich vyseg-
mentované hraničné krivky a reprezentatívne štvorce (dôležité pre vytvorenie datasetu pre
klasifikáciu). Navyše okrem biotopov sme mali k dispozícii aj 22 reprezentatívnych štvorcov
pre umelo vysadené monokultúry v blízkosti biotopov 91E0 v povodí Dunaja.

Na spracovanie mračien bodov a extrakciu LiDAR metrík sme využili niektoré postupy
z článku [15], ktoré sme bližšie popísali v sekcii 2.4. Na definovanie výpočtovej siete sme
vytvorili vlastný algoritmus (pozri sekciu 2.3), pomocou ktorého vieme vytvoriť výpočtovú
sieť okolo ľubovoľnej oblasti, ktorú zadá užívateľ. Taktiež pomocou parametra h vieme defi-
novať veľkosť pixela výpočtovej mriežky. Napr. h = 10 znamená, že jeden pixel predstavuje
v skutočnosti územie o rozmeroch 10 × 10 metrov. Ďalej sme rozdelili pixely na vnútorné
a vonkajšie podľa toho, či sa ich stred nachádzal v krivke γ alebo nie (pozri obrázok 2.7).
Toto bolo dôležité pri výpočte reprezentatívnych metrík, keďže tie sa počítali iba z hodnôt
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vo vnútri repr. štvorcov. Myšlienku o výpočte repr. metrík sme prevzali z článku [18].
V jednoduchosti povedané, pre všetky hodnoty LiDAR-ových metrík z vnútorných pixelov
repr. štvorcov vyrátame priemer, štandardnú odchýlku, minimum a maximum. Týmto spô-
sobom dostaneme pre každý biotop a monokultúru bod v 92-rozmernom priestore čŕt.

Na klasifikáciu biotopov sme sa rozhodli využiť 2 modely, prirodzené numerické siete
(NatNets) a lineárnu diskriminačnú analýzu (LDA). V prvom prípade ide o klasifikačný
model, ktorý sa aktuálne využíva v softvéri NaturaSat [18]. Jeho základné princípy vysvetľu-
jeme v sekcii 3.1. V sekcii 3.3 v skratke popisujeme, ako fungujú modely z triedy gener-
atívnych klasifikátorov a aké zjednodušujúce predpoklady uvažujeme v prípade LDA [22, 1].
Kvôli veľkej dimenzii priestoru čŕt sme využili taktiež analýzu hlavných komponentov (PCA)
s cielom zníženia dimenzie, pozri sekciu 3.2. Navyše sme aplikovali aj kanonickú diskrim-
inačnú analýzu (CDA), sekcia 3.3.1, ktorej úlohou je nájsť taký podpriestor, v ktorom sú
zhluky bodov pre jednotlivé triedy od seba dobre oddelené.

Všetky výpočty sme implementovali v kombinácii programu Matlab [13] a jazyk C++.
Jednotlivé kroky nášho pracovného postupu sme popísali v kapitole 4. Na prezentáciu výsled-
kov sme vytvorili pomocou prostredia Matlab App Designer dve aplikácie s užívateľským
rozhraním. V prvej aplikácii (pozri obrázok 4.2), vieme vizuálne analyzovať reprezentatívne
metriky a takto identifikovať potenciálne zaujímavé rozdiely medzi jednotlivými triedami.
Druhá aplikácia (pozri obrázok 4.1), slúži na zobrazenie multi-kanálových GeoTIFF obrázkov,
v ktorých sú uložené extrahované LiDAR-ové metriky. Navyše sme v nej implementovali
aj funkcionalitu zobrazenia klasifikovaného mračna bodov pozdĺž užívateľom zadanej úsečky.
Týmto spôsobom vieme lepšie porozumieť, akej vegetácii zodpovedajú rôzne hodnoty LiDAR-
ových metrík.

V sekcii 5.1 ukazujeme na 3 príkladoch využitie funkcionality zobrazenia mračna bodov
v rôznych rezoch na analýzu LiDAR-ových metrík. Taktiež v sekcii 5.2 uvádzame výhody
a nevýhody voľby jemnejšej výpočtovej siete. Keďže normalizácia a výpočet LiDAR-ových
metrík pre väčšie oblasti trval v Matlabe príliš dlho (aj niekoľko hodín), rozhodli sme sa ich
implementovať aj v jazyku C++. Načítanie LiDAR dát nám umožnila knižnica LAStools
[14] a export metrík do multi-kanalových GeoTIFF obrázkov knižnica GDAL [8]. Navyše
sme výpočty v C++ aj paralelizovali pomocou knižnice OpenMP [2]. Týmto sa nám úspešne
podarilo zredukovať potrebný čas na úroveň sekúnd, ak nerátame samotné načítanie LiDAR
dát. Vďaka tomu sme mali možnosť realizovať výpočet aj pre takmer celé územie lokalít 02
a 03, výsledky môžeme vidieť na obrázkoch 5.7, 5.8 a 5.9. Všetky GeoTIFF obrázky zo sekcie
5.3 sú k dispozícii na stiahnutie cez https://bit.ly/tiff_lots_2_3.

Nakoniec v sekcii 5.4.1 prezentujeme dosiahnuté výsledky z redukcie dimenzie pomocou
CDA. Ako je vidno z obrázkov 5.10 5.12, jednotlivé klastre boli dostatočne oddelené už
pri dvoch dimenziách. Z obrázku 5.11 je zjavné, že pri vyššom počte tried potrebujeme viac
kanonických osí na to, aby boli klastre od seba adekvátne oddelené. Na základe dosiahnutých
úspešností klasifikácie (pozri obrázky 5.13, 5.14 a 5.15), môžeme usúdiť, že LiDAR dáta nám
vedia poskytnúť relevantné informácie o vertikálnej štruktúre vegetácie aj na účely klasifikácie
chránených biotopov Natura 2000.

Ďalšie možné kroky výskumu zahŕňajú konzultovanie a validáciu dosiahnutých výsledkov
s expertami z oblasti botaniky. Taktiež v budúcnosti plánujeme rozšíriť náš C++ kód po-
mocou knižnice MPI [17], aby sme vedeli realizovať výpočet LiDAR-ových metrík pre celé
územie Slovenska aj s pomocou výpočtových klastrov.

https://bit.ly/tiff_lots_2_3
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